Skip to content
1887

Abstract

has been involved in transfusion-transmitted fatalities associated with platelet concentrates (PCs) due to its heightened pathogenicity enhanced by genome-encoded virulence and antibiotic resistance genes. This may be facilitated by mobile genetic elements (MGEs) that can cause rearrangements. Several factors contribute to virulence, including the type VII secretion system (T7SS), composed of six core genes conserved across strains. In this study, we conducted comparative genome analyses of five isolates from PCs (CI/BAC/25/13 /W, PS/BAC/169/17 /W and PS/BAC/317/16 /W were detected during PCs screening with the BACT/ALERT automated culture system, and ATR-20003 and CBS2016-05 were missed during screening and caused septic transfusion reactions). Multiple alignments of the genomes revealed evidence of rearrangements involving phage Sa3int in PS/BAC/169/17 /W and PS/BAC/317/16 /W. While the former had undergone translocation of its immune evasion cluster (IEC), the latter had lost part of the phage, leaving behind the IEC. This observation highlights genome plasticity. Unexpectedly, strain CBS2016-05 was found to encode a pseudo-type VII secretion system (T7SS) that had lost five of the conserved core genes (, and ) and contained a 5′ truncated . Since these genes are essential for the function of the T7SS protein transport machinery, which plays a key role in virulence, CBS2016-05 probably compensates by recruiting other export mechanisms and/or alternative virulence factors, such as neu-tralizing immunity proteins. This study unravels genome rearrangements in isolated from PCs and reports the first isolate lacking conserved T7SS core genes.

Funding
This study was supported by the:
  • Health Canada
    • Principle Award Recipient: SandraRamirez-Arcos
  • Canadian Blood Services
    • Principle Award Recipient: SandraRamirez-Arcos
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000820.v4
2024-09-13
2025-07-17
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/9/acmi000820.v4.html?itemId=/content/journal/acmi/10.1099/acmi.0.000820.v4&mimeType=html&fmt=ahah

References

  1. Ighem-Chi S, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative genome analyses of staphylococcus aureus from platelet concentrates reveal rearrangements involving loss of type VII secretion genes. Microbiology Society. Figshare; 2024 https://doi.org/10.6084/m9.figshare.25958587.v1
  2. Rasigade J, Laurent F, Hubert P, Vandenesch F, Etienne J. Lethal necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. Emerg Infect Dis 2010; 16:1330 [View Article]
    [Google Scholar]
  3. Fernandez S, Murzicato S, Sandoval O, Fernández-Canigia L, Mollerach M. Community-acquired necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus ST30-SCCmecIVc-spat019-PVL positive in San Antonio de Areco, Argentina. Rev Argent Microbiol 2015; 47:50–53 [View Article] [PubMed]
    [Google Scholar]
  4. Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018; 9:2419 [View Article] [PubMed]
    [Google Scholar]
  5. Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017; 75:ftx005 [View Article] [PubMed]
    [Google Scholar]
  6. Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH et al. Antimicrobial treatment of Staphylococcus aureus biofilms. Antibiotics 2023; 12:87 [View Article] [PubMed]
    [Google Scholar]
  7. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661 [View Article] [PubMed]
    [Google Scholar]
  8. Ramirez-Arcos S, Evans S, McIntyre T, Pang C, Yi Q-L et al. Extension of platelet shelf life with an improved bacterial testing algorithm. Transfusion 2020; 60:2918–2928 [View Article] [PubMed]
    [Google Scholar]
  9. Haass KA, Sapiano MRP, Savinkina A, Kuehnert MJ, Basavaraju SV. Transfusion-transmitted infections reported to the National Healthcare safety network hemovigilance module. Transfus Med Rev 2019; 33:84–91 [View Article] [PubMed]
    [Google Scholar]
  10. Brailsford SR, Tossell J, Morrison R, McDonald CP, Pitt TL. Failure of bacterial screening to detect Staphylococcus aureus: the English experience of donor follow‐up. Vox Sang 2018; 113:540–546 [View Article]
    [Google Scholar]
  11. Chi SI, Kumaran D, Zeller MP, Ramirez-Arcos S. Transfusion of a platelet pool contaminated with exotoxin-producing Staphylococcus aureus: a case report. Ann Blood 2021; 20:24
    [Google Scholar]
  12. Loza-Correa M, Kou Y, Taha M, Kalab M, Ronholm J et al. Septic transfusion case caused by a platelet pool with visible clotting due to contamination with Staphylococcus aureus. . Transfusion 2017; 57:1299–1303 [View Article] [PubMed]
    [Google Scholar]
  13. Heroes A-S, Ndalingosu N, Kalema J, Luyindula A, Kashitu D et al. Bacterial contamination of blood products for transfusion in the Democratic Republic of the Congo: temperature monitoring, qualitative and semi-quantitative culture. Blood Transfus 2020; 18:348–358 [View Article] [PubMed]
    [Google Scholar]
  14. Yousuf B, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Genome sequence of Staphylococcus aureus strain CBS2016-05, isolated from contaminated platelet concentrates in Canada. Microbiol Resour Announc 2021; 10:e0028821 [View Article] [PubMed]
    [Google Scholar]
  15. Yousuf B, Flint A, Weedmark K, McDonald C, Bearne J et al. Genome sequence of Staphylococcus aureus strain PS/BAC/317/16/W, isolated from contaminated platelet concentrates in England. Microbiol Resour Announc 2021; 10:e0057721 [View Article] [PubMed]
    [Google Scholar]
  16. Paredes C, Chi SI, Flint A, Weedmark K, McDonald C et al. Complete genome sequence of Staphylococcus aureus CI/BAC/25/13/W, isolated from contaminated platelet concentrates in England. Microbiol Resour Announc 2021; 10:e0084021 [View Article] [PubMed]
    [Google Scholar]
  17. Paredes C, Chi SI, Flint A, Weedmark K, McDonald C et al. Complete genome sequence of Staphylococcus aureus PS/BAC/169/17/W, isolated from a contaminated platelet concentrate in England. Microbiol Resour Announc 2021; 10:e0084121 [View Article] [PubMed]
    [Google Scholar]
  18. Panesso D, Planet PJ, Diaz L, Hugonnet J-E, Tran TT et al. Methicillin-susceptible, vancomycin-resistant Staphylococcus aureus, Brazil. Emerg Infect Dis 2015; 21:1844–1848 [View Article] [PubMed]
    [Google Scholar]
  19. Zhang L, Wen B, Bao M, Cheng Y, Mahmood T et al. Andrographolide sulfonate is a promising treatment to combat methicillin-resistant Staphylococcus aureus and its biofilms. Front Pharmacol 2021; 12:720685 [View Article]
    [Google Scholar]
  20. Treangen TJ, Maybank RA, Enke S, Friss MB, Diviak LF et al. Complete genome sequence of the quality control strain Staphylococcus aureus subsp. aureus ATCC 25923. Genome Announc 2014; 2:e01110-14 [View Article] [PubMed]
    [Google Scholar]
  21. Dietrich A, Steffens U, Gajdiss M, Boschert A-L, Dröge JK et al. Cervimycin-resistant Staphylococcus aureus strains display vancomycin-intermediate resistant phenotypes. Microbiol Spectr 2022; 10:e0256722 [View Article] [PubMed]
    [Google Scholar]
  22. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 2004; 101:9786–9791 [View Article] [PubMed]
    [Google Scholar]
  23. Wang Z, Hülpüsch C, Schwierzeck V, Alharbi SA, Reiger M et al. Complete and draft genome sequences of 48 Staphylococcus aureus isolates obtained from atopic dermatitis patients and healthy controls. Microbiol Resour Announc 2022; 11:e0007222 [View Article] [PubMed]
    [Google Scholar]
  24. Johnson RC, Schlett CD, Crawford K, Lanier JB, Merrell DS et al. Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use. J Clin Microbiol 2015; 53:3677–3682 [View Article] [PubMed]
    [Google Scholar]
  25. Gawlik D, Ruppelt-Lorz A, Müller E, Reißig A, Hotzel H et al. Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80. PLoS One 2020; 15:e0232071 [View Article] [PubMed]
    [Google Scholar]
  26. Sabat AJ, Hermelijn SM, Akkerboom V, Juliana A, Degener JE et al. Complete-genome sequencing elucidates outbreak dynamics of CA-MRSA USA300 (ST8-spa t008) in an academic hospital of Paramaribo, Republic of Suriname. Sci Rep 2017; 7:41050 [View Article] [PubMed]
    [Google Scholar]
  27. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002; 359:1819–1827 [View Article] [PubMed]
    [Google Scholar]
  28. Penna B, Silva MB, Soares AER, Vasconcelos ATR, Ramundo MS et al. Comparative genomics of MRSA strains from human and canine origins reveals similar virulence gene repertoire. Sci Rep 2021; 11:4724 [View Article] [PubMed]
    [Google Scholar]
  29. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547–569 [View Article] [PubMed]
    [Google Scholar]
  30. Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK et al. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380–395 [View Article] [PubMed]
    [Google Scholar]
  31. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The enigmatic Esx proteins: looking beyond Mycobacteria. Trends Microbiol 2017; 25:192–204 [View Article] [PubMed]
    [Google Scholar]
  32. Mielich-Süss B, Wagner RM, Mietrach N, Hertlein T, Marincola G et al. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. . PLoS Pathog 2017; 13:e1006728 [View Article] [PubMed]
    [Google Scholar]
  33. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2016; 2:16183 [View Article] [PubMed]
    [Google Scholar]
  34. Yang Y, Boardman E, Deme J, Alcock F, Lea S et al. Three small partner proteins facilitate the type VII-dependent secretion of an antibacterial nuclease. mBio 2023; 14:e0210023 [View Article] [PubMed]
    [Google Scholar]
  35. Warne B, Harkins CP, Harris SR, Vatsiou A, Stanley-Wall N et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics 2016; 17:222 [View Article] [PubMed]
    [Google Scholar]
  36. Garrett SR, Mariano G, Dicks J, Palmer T. Homologous recombination between tandem paralogues drives evolution of a subset of type VII secretion system immunity genes in firmicute bacteria. Microb Genom 2022; 8:mgen000868 [View Article]
    [Google Scholar]
  37. Tchoupa KA, Watkins KE, Jones RA, Kuroki A, Alam MT et al. The type VII secretion system protects Staphylococcus aureus against antimicrobial host fatty acids. Sci Rep 2020; 10:14838 [View Article]
    [Google Scholar]
  38. Ulhuq FR, Gomes MC, Duggan GM, Guo M, Mendonca C et al. A membrane-depolarizing toxin substrate of the Staphylococcus aureus type VII secretion system mediates intraspecies competition. Proc Natl Acad Sci U S A 2020; 117:20836–20847 [View Article] [PubMed]
    [Google Scholar]
  39. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17:203–218 [View Article] [PubMed]
    [Google Scholar]
  40. Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R et al. Methicillin-resistant Staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients-a multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol 2019; 2019:8321834 [View Article] [PubMed]
    [Google Scholar]
  41. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107 [View Article] [PubMed]
    [Google Scholar]
  42. Selim S, Faried OA, Almuhayawi MS, Saleh FM, Sharaf M et al. Incidence of vancomycin-resistant Staphylococcus aureus strains among patients with urinary tract infections. Antibiotics 2022; 11:408 [View Article] [PubMed]
    [Google Scholar]
  43. Gan T, Shu G, Fu H, Yan Q, Zhang W et al. Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China. BMC Vet Res 2021; 17:177 [View Article] [PubMed]
    [Google Scholar]
  44. Botelho AMN, Cerqueira E Costa MO, Moustafa AM, Beltrame CO, Ferreira FA et al. Local diversification of methicillin- resistant Staphylococcus aureus ST239 in South America after its rapid worldwide dissemination. Front Microbiol 2019; 10:82 [View Article] [PubMed]
    [Google Scholar]
  45. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article]
    [Google Scholar]
  46. Tickler IA, Goering RV, Dewell S, Le VM, Johar L et al. Mobile genetic elements responsible for discordant Staphylococcus aureus phenotypes and genotypes in the same blood culture bottle. Diagn Microbiol Infect Dis 2020; 98:115175 [View Article] [PubMed]
    [Google Scholar]
  47. Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM et al. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genom 2017; 18:684 [View Article]
    [Google Scholar]
  48. Alibayov B, Baba-Moussa L, Sina H, Zdeňková K, Demnerová K. Staphylococcus aureus mobile genetic elements. Mol Biol Rep 2014; 41:5005–5018 [View Article] [PubMed]
    [Google Scholar]
  49. Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 2014; 21:593–601 [View Article] [PubMed]
    [Google Scholar]
  50. Schwendimann L, Merda D, Berger T, Denayer S, Feraudet-Tarisse C et al. Staphylococcal enterotoxin gene cluster: prediction of enterotoxin (SEG and SEI) production and of the source of food poisoning on the basis of vSaβ typing. Appl Environ Microbiol 2021; 87:e0266220 [View Article] [PubMed]
    [Google Scholar]
  51. Kläui AJ, Boss R, Graber HU. Characterization and comparative analysis of the Staphylococcus aureus genomic island vSaβ: an In Silico approach. J Bacteriol 2019; 201:e00777-18 [View Article] [PubMed]
    [Google Scholar]
  52. Aswani V, Najar F, Pantrangi M, Mau B, Schwan WR et al. Virulence factor landscape of a Staphylococcus aureus sequence type 45 strain, MCRF184. BMC Genom 2019; 20:123 [View Article] [PubMed]
    [Google Scholar]
  53. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  54. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  55. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  56. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  58. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  59. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA et al. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017; 33:128–129 [View Article] [PubMed]
    [Google Scholar]
  60. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  61. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning,and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  62. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  63. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinform 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  64. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  65. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988; 16:10881–10890 [View Article] [PubMed]
    [Google Scholar]
  66. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020; 48:D265–D268 [View Article] [PubMed]
    [Google Scholar]
  67. Chi SI, Yousuf B, Paredes C, Bearne J, McDonald C et al. Proof of concept for detection of staphylococcal enterotoxins in platelet concentrates as a novel safety mitigation strategy. Vox Sang 2023; 118:543–550 [View Article] [PubMed]
    [Google Scholar]
  68. Brown CL, Mullet J, Hindi F, Stoll JE, Gupta S et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl Environ Microbiol 2022; 88:e0099122 [View Article] [PubMed]
    [Google Scholar]
  69. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article] [PubMed]
    [Google Scholar]
  70. Bertelli C, Gray KL, Woods N, Lim AC, Tilley KE et al. Enabling genomic island prediction and comparison in multiple genomes to investigate bacterial evolution and outbreaks. Microb Genom 2022; 8:mgen000818 [View Article] [PubMed]
    [Google Scholar]
  71. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  72. Karki AB, Neyaz L, Fakhr MK. Comparative genomics of plasmid-bearing Staphylococcus aureus strains isolated from various retail meats. Front Microbiol 2020; 11:574923 [View Article] [PubMed]
    [Google Scholar]
  73. Cruz AR, van Strijp JAG, Bagnoli F, Manetti AGO. Virulence gene expression of Staphylococcus aureus in human skin. Front Microbiol 2021; 12:692023 [View Article] [PubMed]
    [Google Scholar]
  74. Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM et al. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. Microbiome 2022; 10:239 [View Article] [PubMed]
    [Google Scholar]
  75. Chi SI, Ramirez-Arcos S. Staphylococcal enterotoxins enhance biofilm formation by Staphylococcus aureus in platelet concentrates. Microorganisms 2022; 11:89 [View Article] [PubMed]
    [Google Scholar]
  76. Alabdullatif M, Alzahrani A. Expression of biofilm-associated genes in Staphylococcus aureus during storage of platelet concentrates. Transfus Apher Sci 2022; 61:103456 [View Article] [PubMed]
    [Google Scholar]
  77. Ali Alghamdi B, Al-Johani I, Al-Shamrani JM, Musamed Alshamrani H, Al-Otaibi BG et al. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci 2023; 30:103604 [View Article] [PubMed]
    [Google Scholar]
  78. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011; 1:31–45 [View Article] [PubMed]
    [Google Scholar]
  79. de Jong NWM, van Kessel KPM, van Strijp JAG. Immune evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10 [View Article]
    [Google Scholar]
  80. Bobrovskyy M, Chen X, Missiakas D. The type 7b secretion system of S. aureus and its role in colonization and systemic infection. Infect Immun 2023; 91:e0001523 [View Article] [PubMed]
    [Google Scholar]
  81. Bowman L, Palmer T. The type VII secretion system of Staphylococcus. Annu Rev Microbiol 2021; 75:471–494
    [Google Scholar]
  82. Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005; 102:1169–1174 [View Article] [PubMed]
    [Google Scholar]
  83. Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jäger F et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 2014; 93:928–943 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000820.v4
Loading
/content/journal/acmi/10.1099/acmi.0.000820.v4
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error