Skip to content
1887

Abstract

is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through and experiments focused on the type species . This study examined 95 publicly available genomes representing at least 18 species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the but also other members of the family . Evidence suggests are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all and acetoin for some strains. According to genomic evidence examined, all are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phospho-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000793.v3
2024-08-15
2025-01-16
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/8/acmi000793.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000793.v3&mimeType=html&fmt=ahah

References

  1. Gill RA. The value of honeybee pollination to society. Acta Hortic 199162–68 [View Article]
    [Google Scholar]
  2. Nayak RK, Rana K, Bairwa VK, Singh P, Bharthi VD. A review on role of bumblebee pollination in fruits and vegetables. J Pharmacogn Phytochem 2020; 9:1328–1334 [View Article]
    [Google Scholar]
  3. McGrady CM, Strange JP, López‐Uribe MM, Fleischer SJ. Wild bumble bee colony abundance, scaled by field size, predicts pollination services. Ecosphere 2021; 12:e03735 [View Article]
    [Google Scholar]
  4. Dong Z-X, Li H-Y, Chen Y-F, Wang F, Deng X-Y et al. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol Res 2020; 231:126370 [View Article] [PubMed]
    [Google Scholar]
  5. Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY et al. Dynamic microbiome evolution in social bees. Sci Adv 2017; 3:e1600513 [View Article] [PubMed]
    [Google Scholar]
  6. Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122–137 [View Article] [PubMed]
    [Google Scholar]
  7. Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc Biol Sci 2016; 283:20160312 [View Article] [PubMed]
    [Google Scholar]
  8. Anderson KE, Allen NO, Copeland DC, Kortenkamp OL, Erickson R et al. A longitudinal field study of commercial honey bees shows that non-native probiotics do not rescue antibiotic treatment, and are generally not beneficial. Sci Rep 2024; 14:1954 [View Article] [PubMed]
    [Google Scholar]
  9. Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 2013; 22:2028–2044 [View Article] [PubMed]
    [Google Scholar]
  10. Zheng H, Nishida A, Kwong WK, Koch H, Engel P et al. Metabolism of toxic sugars by trains of the bee gut symbiont Gilliamella apicola. mBio 2016; 7:e01326-16 [View Article] [PubMed]
    [Google Scholar]
  11. Lee FJ, Miller KI, McKinlay JB, Newton ILG. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol Ecol 2018; 94: [View Article]
    [Google Scholar]
  12. Ludvigsen J, Porcellato D, Amdam GV, Rudi K. Addressing the diversity of the honeybee gut symbiont Gilliamella: description of Gilliamella apis sp. nov., isolated from the gut of honeybees (Apis mellifera). Int J Syst Evol Microbiol 2018; 68:1762–1770 [View Article] [PubMed]
    [Google Scholar]
  13. Praet J, Cnockaert M, Meeus I, Smagghe G. Gilliamella intestini sp. nov., Gilliamella bombicola sp. nov., Gilliamella bombi sp. nov. and Gilliamella mensalis sp. nov.: four novel Gilliamella species isolated from the bumblebee gut. Syst Appl Microbiol 2017; 40:199–204 [View Article]
    [Google Scholar]
  14. Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. . Int J Syst Evol Microbiol 2013; 63:2008–2018
    [Google Scholar]
  15. Kwong WK, Engel P, Koch H, Moran NA. Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A 2014; 111:11509–11514 [View Article] [PubMed]
    [Google Scholar]
  16. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res 2021; 49:D751–D763 [View Article]
    [Google Scholar]
  17. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2022; 50:D20–D26 [View Article]
    [Google Scholar]
  18. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020; 48:D445–D453 [View Article] [PubMed]
    [Google Scholar]
  21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  23. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  25. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalizedand complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  26. Schägger H. Respiratory chain supercomplexes of mitochondria and bacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002; 1555:154–159 [View Article]
    [Google Scholar]
  27. Senior AE. The proton-translocating ATPase of Escherichia coli. . Annu Rev Biophys Biophys Chem 1990; 19:7–41 [View Article] [PubMed]
    [Google Scholar]
  28. Bentley R. The shikimate pathway--a metabolic tree with many branches. Crit Rev Biochem Mol Biol 1990; 25:307–384 [View Article] [PubMed]
    [Google Scholar]
  29. Frank A, Groll M. The methylerythritol phosphate pathway to isoprenoids. Chem Rev 2017; 117:5675–5703 [View Article] [PubMed]
    [Google Scholar]
  30. Abby SS, Kazemzadeh K, Vragniau C, Pelosi L, Pierrel F. Advances in bacterial pathways for the biosynthesis of ubiquinone. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020; 1861148259 [View Article]
    [Google Scholar]
  31. Lawrence J, Cox GB, Gibson F. Biosynthesis of ubiquinone in Escherichia coli K-12: biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J Bacteriol 1974; 118:41–45 [View Article] [PubMed]
    [Google Scholar]
  32. Martinson VG, Magoc T, Koch H, Salzberg SL, Moran NA et al. Genomic features of a bumble bee symbiont reflect its host environment. Appl Environ Microbiol 2014; 80:3793–3803 [View Article] [PubMed]
    [Google Scholar]
  33. Engel P, Kwong WK, Moran NA. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol 2013; 63:3646–3651 [View Article] [PubMed]
    [Google Scholar]
  34. Volkmann M, Skiebe E, Kerrinnes T, Faber F, Lepka D et al. Orbus hercynius gen. nov., sp. nov., isolated from faeces of wild boar, is most closely related to members of the orders “Enterobacteriales” and Pasteurellales. Int J Syst Evol Microbiol 2010; 60:2601–2605 [View Article] [PubMed]
    [Google Scholar]
  35. Kuo C-H, Huang P-Y, Sheu S-Y, Sheu D-S, Jheng L-C et al. Zophobihabitans entericus gen. nov.sp. nov., a new member of the family orbaceae isolated from the gut of a superworm Zophobas morio. Int J Syst Evol Microbiol 2021; 71:005081
    [Google Scholar]
  36. Meganathan R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 2001; 61:173–218 [View Article] [PubMed]
    [Google Scholar]
  37. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2011; 1807:1398–1413 [View Article] [PubMed]
    [Google Scholar]
  38. Legein M, Smets W, Wuyts K, Bosmans L, Samson R et al. The greenhouse phyllosphere microbiome and associations with introduced bumblebees and predatory mites. Microbiol Spectr 2022; 10:e0175522 [View Article] [PubMed]
    [Google Scholar]
  39. McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA et al. Flowers and wild megachilid bees share microbes. Microb Ecol 2017; 73:188–200 [View Article] [PubMed]
    [Google Scholar]
  40. Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 2014; 80:7378–7387 [View Article] [PubMed]
    [Google Scholar]
  41. Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002; 1553:140–157 [View Article]
    [Google Scholar]
  42. Bertsova YV, Oleynikov IP, Bogachev AV. A new water-soluble bacterial NADH: fumarate oxidoreductase. FEMS Microbiol Lett 2020; 367:fnaa175 [View Article] [PubMed]
    [Google Scholar]
  43. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  44. Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem 2003; 72:77–109 [View Article] [PubMed]
    [Google Scholar]
  45. Brandt U. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 2006; 75:69–92 [View Article] [PubMed]
    [Google Scholar]
  46. Mathiesen C, Hägerhäll C. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2002; 1556:121–132 [View Article]
    [Google Scholar]
  47. Kao M-C, Di Bernardo S, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A et al. Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation. Biochemistry 2005; 44:3562–3571 [View Article] [PubMed]
    [Google Scholar]
  48. Kervinen M, Pätsi J, Finel M, Hassinen IE. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 2004; 43:773–781 [View Article] [PubMed]
    [Google Scholar]
  49. Möbius K, Arias-Cartin R, Breckau D, Hännig A-L, Riedmann K et al. Heme biosynthesis is coupled to electron transport chains for energy generation. Proc Natl Acad Sci U S A 2010; 107:10436–10441 [View Article] [PubMed]
    [Google Scholar]
  50. Dutton RJ, Boyd D, Berkmen M, Beckwith J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 2008; 105:11933–11938 [View Article] [PubMed]
    [Google Scholar]
  51. Dym O, Pratt EA, Ho C, Eisenberg D. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci U S A 2000; 97:9413–9418 [View Article] [PubMed]
    [Google Scholar]
  52. Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent Azo reductases. Appl Environ Microbiol 2003; 69:3448–3455 [View Article] [PubMed]
    [Google Scholar]
  53. Neumann P, Weidner A, Pech A, Stubbs MT, Tittmann K. Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli. . Proc Natl Acad Sci U S A 2008; 105:17390–17395 [View Article] [PubMed]
    [Google Scholar]
  54. Adachi O, Yoshihara N, Tanasupawat S, Toyama H, Matsushita K. Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase. Biosci Biotechnol Biochem 2003; 67:2115–2123 [View Article] [PubMed]
    [Google Scholar]
  55. Melo AMP, Bandeiras TM, Teixeira M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 2004; 68:603–616 [View Article] [PubMed]
    [Google Scholar]
  56. Frankenberg N, Moser J, Jahn D. Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol 2003; 63:115–127 [View Article] [PubMed]
    [Google Scholar]
  57. von Wettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis. Plant Cell 1995; 7:1039–1057 [View Article]
    [Google Scholar]
  58. Darwish AMG, Abd El-Wahed AA, Shehata MG, El-Seedi HR, Masry SHD et al. Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules 2022; 28:227 [View Article] [PubMed]
    [Google Scholar]
  59. Ghrist AC, Stauffer GV. The Escherichia coli glycine transport system and its role in the regulation of the glycine cleavage enzyme system. Microbiology 1995; 141:133–140 [View Article] [PubMed]
    [Google Scholar]
  60. Zhang W, Zhang X, Su Q, Tang M, Zheng H et al. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. Insect Sci 2022; 29:259–275 [View Article] [PubMed]
    [Google Scholar]
  61. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol 2016; 14:374–384 [View Article] [PubMed]
    [Google Scholar]
  62. Anderson KE, Maes P. Social microbiota and social gland gene expression of worker honey bees by age and climate. Sci Rep 2022; 12:10690 [View Article] [PubMed]
    [Google Scholar]
  63. Anderson KE, Ricigliano VA. Honey bee gut dysbiosis: a novel context of disease ecology. Curr Opin Insect Sci 2017; 22:125–132 [View Article] [PubMed]
    [Google Scholar]
  64. Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 1989; 5:223–234 [View Article] [PubMed]
    [Google Scholar]
  65. Green SM, Malik T, Giles IG, Drabble WT. The purB gene of Escherichia coli K-12 is located in an operon. Microbiology 1996; 142:3219–3230 [View Article] [PubMed]
    [Google Scholar]
  66. Zidwick MJ, Rogers P. The determination by radiochemical assay of argininosuccinase produced in an Escherichia coli system in vitro. Biochem J 1982; 207:529–533 [View Article] [PubMed]
    [Google Scholar]
  67. Quinn A, El Chazli Y, Escrig S, Daraspe J, Neuschwander N et al. Foraging on host synthesized metabolites enables the bacterial symbiont Snodgrassella alvito colonize the honey bee gut. bioRxiv 2023 [View Article]
    [Google Scholar]
  68. Garza E. Engineering and chromosomal integration of a functional butanol pathway in Escherichia coli for butanol fermentation; 2016
  69. Robillard GT, Broos J. Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim Biophys Acta 1999; 1422:73–104 [View Article] [PubMed]
    [Google Scholar]
  70. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  71. Clifton MC, Simon MJ, Erramilli SK, Zhang H, Zaitseva J et al. In vitro reassembly of the ribose ATP-binding cassette transporter reveals a distinct set of transport complexes. J Biol Chem 2015; 290:5555–5565 [View Article] [PubMed]
    [Google Scholar]
  72. Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S et al. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem 2004; 279:25544–25548 [View Article] [PubMed]
    [Google Scholar]
  73. Plumbridge J. Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli. Mol Microbiol 1999; 33:260–273 [View Article] [PubMed]
    [Google Scholar]
  74. Liberman ES, Bleiweis AS. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5. Infect Immun 1984; 43:1106–1109 [View Article]
    [Google Scholar]
  75. Jung T, Mack M. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study. FEMS Microbiol Lett 2018; 365: [View Article] [PubMed]
    [Google Scholar]
  76. Guest JR, Russell GC. Complexes and complexities of the citric acid cycle in Escherichia coli. In Current Topics in Cellular Regulation vol 33 Academic Press; 1992 pp 231–247 [View Article] [PubMed]
    [Google Scholar]
  77. Matsushita K, Kaback HR. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase. Biochemistry 1986; 25:2321–2327 [View Article] [PubMed]
    [Google Scholar]
  78. Nilekani S, SivaRaman C. Purification and properties of citrate lyase from Escherichia coli. . Biochemistry 1983; 22:4657–4663 [View Article] [PubMed]
    [Google Scholar]
  79. Dimroth P, Loyal R, Eggerer H. Characterization of the isolated transferase subunit of citrate lyase as a CoA-Transferase. Evidence against a covalent enzyme-substrate intermediate. Eur J Biochem 1977; 80:479–488 [View Article] [PubMed]
    [Google Scholar]
  80. Rossmann R, Sawers G, Böck A. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 1991; 5:2807–2814 [View Article] [PubMed]
    [Google Scholar]
  81. W, Du J, Wacker T, Gerbig-Smentek E, Andrade SLA et al. pH-Dependent Gating in a FocA formate channel. Science 2011; 332:352–354 [View Article]
    [Google Scholar]
  82. Palmer-Young EC, Raffel TR, McFrederick QS. pH-mediated inhibition of a bumble bee parasite by an intestinal symbiont. Parasitology 2019; 146:380–388 [View Article] [PubMed]
    [Google Scholar]
  83. Ruan ZS, Anantharam V, Crawford IT, Ambudkar SV, Rhee SY et al. Identification, purification, and reconstitution of OxlT, the oxalate: formate antiport protein of Oxalobacter formigenes. J Biol Chem 1992; 267:10537–10543 [PubMed]
    [Google Scholar]
  84. Papežíková I, Palíková M, Kremserová S, Zachová A, Peterová H et al. Effect of oxalic acid on the mite Varroa destructor and its host the honey bee Apis mellifera. J Apic Res 2017; 56:400–408 [View Article]
    [Google Scholar]
  85. Yu BJ, Sung BH, Lee JY, Son SH, Kim MS et al. sucAB and sucCD are mutually essential genes in Escherichia coli. FEMS Microbiol Lett 2006; 254:245–250 [View Article] [PubMed]
    [Google Scholar]
  86. Simms SA, Voige WH, Gilvarg C. Purification and characterization of succinyl-CoA: tetrahydrodipicolinate N-succinyltransferase from Escherichia coli. J Biol Chem 1984; 259:2734–2741 [View Article]
    [Google Scholar]
  87. Rowbury RJ, Woods DD. O-Succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J Gen Microbiol 1964; 36:341–358 [View Article] [PubMed]
    [Google Scholar]
  88. Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G et al. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406 [View Article]
    [Google Scholar]
  89. Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 2017; 15:e2003467 [View Article] [PubMed]
    [Google Scholar]
  90. Bonilla-Rosso G, Engel P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr Opin Microbiol 2018; 43:69–76 [View Article] [PubMed]
    [Google Scholar]
  91. Zhang Z, Guo Y, Yang F, Li J. Pan-genome analysis reveals functional divergences in gut-restricted Gilliamella and Snodgrassella. Bioengineering 2022; 9:544 [View Article]
    [Google Scholar]
  92. Bryś MS, Skowronek P, Strachecka A. Pollen diet-properties and impact on a bee colony. Insects 2021; 12:798 [View Article] [PubMed]
    [Google Scholar]
  93. Zhang Z-J, Huang M-F, Qiu L-F, Song R-H, Zhang Z-X et al. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella. Insect Sci 2021; 28:302–314 [View Article]
    [Google Scholar]
  94. Zhang Z-J, Zheng H. Bumblebees with the socially transmitted microbiome: a novel model organism for gut microbiota research. Insect Sci 2022; 29:958–976 [View Article]
    [Google Scholar]
  95. Kwong WK, Moran NA. Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 2015; 6:214–220 [View Article] [PubMed]
    [Google Scholar]
  96. Sarton-Lohéac G, da Silva CGN, Mazel F, Baud G, de Bakker V et al. Deep divergence and genomic diversification of gut symbionts of neotropical stingless bees. Microbiology 2023 [View Article]
    [Google Scholar]
  97. Copeland DC, Maes PW, Mott BM, Anderson KE. Changes in gut microbiota and metabolism associated with phenotypic plasticity in the honey bee Apis mellifera. Front Microbiol 2022; 13:1059001 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000793.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000793.v3
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error