Skip to content
1887

Abstract

Many Gram-positive spore-forming rhizobacteria of the genus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here, we present a draft-quality genome sequence for EU07, which shows growth-promotion in tomato plants and biocontrol against head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/K003240/1)
    • Principle Award Recipient: NotApplicable
  • Wellcome Trust (Award WT097835MF)
    • Principle Award Recipient: NotApplicable
  • University of Worcester
    • Principle Award Recipient: MahmutTor
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000762.v3
2024-05-30
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/5/acmi000762.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000762.v3&mimeType=html&fmt=ahah

References

  1. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 2020; 128:1583–1594 [View Article] [PubMed]
    [Google Scholar]
  2. Aloo BN, Makumba BA, Mbega ER. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 2019; 219:26–39 [View Article] [PubMed]
    [Google Scholar]
  3. Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 2019; 26:1291–1297 [View Article] [PubMed]
    [Google Scholar]
  4. Baysal Ö, Çalışkan M, Yeşilova Ö. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Pathol 2008; 73:25–32 [View Article]
    [Google Scholar]
  5. Jimenez-Quiros C, Okechukwu EC, Hong Y, Baysal Ö, Tör M. Comparison of antifungal activity of Bacillus strains against Fusarium graminearum in vitro and in planta. Plants 2022; 11:1999 [View Article]
    [Google Scholar]
  6. Krueger F. Trim Galore! Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/trim_galore accessed 14 July 2020
  7. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  8. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  9. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009; 25:2071–2073 [View Article] [PubMed]
    [Google Scholar]
  10. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  11. Studholme DJ. davidjstudholme/bacillus_EU07: v1.0 Zenoob 2024 [View Article]
    [Google Scholar]
  12. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  13. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016; 32:292–294 [View Article] [PubMed]
    [Google Scholar]
  14. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013arXiv.1303.3997 [View Article]
    [Google Scholar]
  15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  16. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  17. Benson DA. GenBank. Nucleic Acids Research 2004; 33:D34–D38 [View Article]
    [Google Scholar]
  18. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD et al. GenBank. Nucleic Acids Res 2019; 47:D94–D99 [View Article] [PubMed]
    [Google Scholar]
  19. Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo C-C et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci Rep 2020; 10:1723 [View Article] [PubMed]
    [Google Scholar]
  20. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  21. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  22. Darling ACE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  23. Kim M-J, Park T, Jeong M, Lee G, Jung D-R et al. Complete genome sequence of Bacillus amyloliquefaciens KNU-28 isolated from peach leaves (Prunus persica [L.] Batsch). Microbiol Resour Announc 2022; 11:e0073422 [View Article] [PubMed]
    [Google Scholar]
  24. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  25. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article]
    [Google Scholar]
  26. Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 2006; 22:2196–2203 [View Article] [PubMed]
    [Google Scholar]
  27. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015; 3:e985 [View Article] [PubMed]
    [Google Scholar]
  28. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021; 9:37 [View Article] [PubMed]
    [Google Scholar]
  29. Starikova EV, Tikhonova PO, Prianichnikov NA, Rands CM, Zdobnov EM et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 2020; 36:3882–3884 [View Article] [PubMed]
    [Google Scholar]
  30. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203–1212 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  34. Rückert C, Blom J, Chen X, Reva O, Borriss R. Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 2011; 155:78–85 [View Article] [PubMed]
    [Google Scholar]
  35. Borriss R, Chen X-H, Rueckert C, Blom J, Becker A et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 2011; 61:1786–1801 [View Article] [PubMed]
    [Google Scholar]
  36. Dunlap CA, Kim S-J, Kwon S-W, Rooney AP. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 2016; 66:1212–1217 [View Article]
    [Google Scholar]
  37. Pandin C, Le Coq D, Deschamps J, Védie R, Rousseau T et al. Complete genome sequence of Bacillus velezensis QST713: a biocontrol agent that protects Agaricus bisporus crops against the green mould disease. J Biotechnol 2018; 278:10–19 [View Article] [PubMed]
    [Google Scholar]
  38. Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiol Res 2016; 192:30–36 [View Article] [PubMed]
    [Google Scholar]
  39. Gamez RM, Rodríguez F, Bernal JF, Agarwala R, Landsman D et al. Genome sequence of the banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome Announc 2015; 3:e01391-15 [View Article] [PubMed]
    [Google Scholar]
  40. Tran TD, Huynh S, Parker CT, Hnasko R, Gorski L et al. Complete genome sequences of three Bacillus amyloliquefaciens strains that inhibit the growth of Listeria monocytogenes in vitro. Genome Announc 2018; 6:e00579-18 [View Article] [PubMed]
    [Google Scholar]
  41. Tian L, Zhang W, Zhou G-D, Li S, Wang Y et al. A biological product of Bacillus amyloliquefaciens QST713 strain for promoting banana plant growth and modifying rhizosphere soil microbial diversity and community composition. Front Microbiol 2023; 14:1216018 [View Article] [PubMed]
    [Google Scholar]
  42. Yu C, Chen H, Zhu L, Song Y, Jiang Q et al. Profiling of antimicrobial metabolites synthesized by the endophytic and genetically amenable biocontrol strain Bacillus velezensis DMW1. Microbiol Spectr 2023; 11:e0003823 [View Article] [PubMed]
    [Google Scholar]
  43. Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol 2015; 6:780 [View Article] [PubMed]
    [Google Scholar]
  44. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 2009; 140:27–37 [View Article] [PubMed]
    [Google Scholar]
  45. Magno-Pérez-Bryan MC, Martínez-García PM, Hierrezuelo J, Rodríguez-Palenzuela P, Arrebola E et al. Comparative genomics within the Bacillus genus reveal the singularities of two robust Bacillus amyloliquefaciens biocontrol strains. Mol Plant Microbe Interact 2015; 28:1102–1116 [View Article] [PubMed]
    [Google Scholar]
  46. Zhang Y, Stubbe J. Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Biochemistry 2011; 50:5615–5623 [View Article] [PubMed]
    [Google Scholar]
  47. Gu G, Gonzalez-Escalona N, Zheng J, Bolten S, Luo Y et al. Genome sequences of Brevundimonas naejangsanensis strain FS1091 and Bacillus amyloliquefaciens strain FS1092, isolated from a fresh-cut-produce-processing plant. Microbiol Resour Announc 2020; 9:e01448-19 [View Article] [PubMed]
    [Google Scholar]
  48. Becker R, Ulrich K, Behrendt U, Schneck V, Ulrich A. Genomic characterization of Aureimonas altamirensis C2P003 – a specific member of the microbiome of Fraxinus excelsior trees tolerant to ash dieback. Plants 2022; 11:3487 [View Article] [PubMed]
    [Google Scholar]
  49. Zhang C, Song W, Ma HR, Peng X, Anderson DJ et al. Temporal encoding of bacterial identity and traits in growth dynamics. Proc Natl Acad Sci USA 2020; 117:20202–20210 [View Article] [PubMed]
    [Google Scholar]
  50. Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Front Microbiol 2022; 13:966016 [View Article]
    [Google Scholar]
  51. Zhang S, Jiang W, Li J, Meng L, Cao X et al. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium. Stand Genomic Sci 2016; 11:73 [View Article] [PubMed]
    [Google Scholar]
  52. Wash P, Yasmin H, Ullah H, Haider W, Khan N et al. Deciphering the genetics of antagonism and antimicrobial resistance in Bacillus velezensis HU-91 by whole genome analysis. J King Saud Univ Sci 2023; 35:102954 [View Article]
    [Google Scholar]
  53. Sun W, Yan L, Chen C, Tian Y, Li X et al. Identification and biocontrol effect of antagonistic bacterium Bacillus velezensis Bpc6 against soft rot and Sclerotinia rot diseases on lettuce. Chin J Biol 2020; 36:231
    [Google Scholar]
  54. Kuebutornye FKA, Lu Y, Abarike ED, Wang Z, Li Y et al. In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 2020; 12:412–424 [View Article] [PubMed]
    [Google Scholar]
  55. Yang J, Gao MY, Li M, Li ZZ, Li H et al. Bacillus amyloliquefaciens CotA degradation of the lignin model compound guaiacylglycerol-β-guaiacyl ether. Lett Appl Microbiol 2018; 67:491–496 [View Article] [PubMed]
    [Google Scholar]
  56. Manzoor S, Niazi A, Bejai S, Meijer J, Bongcam-Rudloff E. Genome sequence of a plant-associated bacterium, Bacillus amyloliquefaciens strain UCMB5036. Genome Announc 2013; 1:e0011113 [View Article] [PubMed]
    [Google Scholar]
  57. Wang B, Liu C, Yang X, Wang Y, Zhang F et al. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnol Biotechnol Equip 2021; 35:895–904 [View Article]
    [Google Scholar]
  58. Zhao J, Zhou Z, Bai X, Zhang D, Zhang L et al. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Front Microbiol 2022; 13:943232 [View Article] [PubMed]
    [Google Scholar]
  59. Zhang C, Chen L, Si H, Gao W, Liu P et al. Study on the characteristics and mechanisms of nicosulfuron biodegradation by Bacillus velezensis CF57. J Basic Microbiol 2020; 60:649–658 [View Article] [PubMed]
    [Google Scholar]
  60. Reva ON, Larisa SA, Mwakilili AD, Tibuhwa D, Lyantagaye S et al. Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillus strains. Appl Microbiol Biotechnol 2020; 104:7643–7656 [View Article] [PubMed]
    [Google Scholar]
  61. Jeong H, Jeong D-E, Kim SH, Song GC, Park S-Y et al. Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC 13613T. J Bacteriol 2012; 194:4148–4149 [View Article] [PubMed]
    [Google Scholar]
  62. Hassan MK. In vitro pectate lyase activity and carbon uptake assays and whole genome sequencing of Bacillus amyloliquefaciens subsp. plantarum strains for a pectin defective pathway. bioRxiv 20212021.01.03.425148 [View Article]
    [Google Scholar]
  63. Hwangbo K, Um Y, Kim KY, Madhaiyan M, Sa TM et al. Complete genome sequence of Bacillus velezensis CBMB205, a phosphate-solubilizing bacterium isolated from the rhizoplane of rice in the Republic of Korea. Genome Announc 2016; 4:e00654-16 [View Article] [PubMed]
    [Google Scholar]
  64. Chung EJ, Hossain MT, Khan A, Kim KH, Jeon CO et al. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J 2015; 31:152–164 [View Article] [PubMed]
    [Google Scholar]
  65. Jeong H, Park S-H, Choi S-K. Genome sequence of antibiotic-producing Bacillus amyloliquefaciens strain KCTC 13012. Genome Announc 2015; 3:e01121-15 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000762.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000762.v3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error