1887

Abstract

Here, we report on the one hundred and twenty-five bacterial strains made available by the National Collection of Type Cultures in 2022 alongside a commentary on the strains, their provenance and significance.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000756.v3
2024-07-05
2024-07-17
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/7/acmi000756.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000756.v3&mimeType=html&fmt=ahah

References

  1. Turnbull JD, Dicks J, Gurung S, McGregor H et al. Notification list of bacterial strains made available by the United Kingdom national collection of type cultures in 2021. Microbiol Resour Announc 2022; 11:e0035722 [View Article] [PubMed]
    [Google Scholar]
  2. Shimada S, Nakai R, Aoki K, Kudoh S, Imura S et al. Characterization of the first cultured psychrotolerant representative of Legionella from Antarctica reveals its unique genome structure. Microbiol Spectr 2021; 9:e0042421 [View Article] [PubMed]
    [Google Scholar]
  3. Wang C, Wu W, Wei L, Feng Y, Kang M et al. Enterobacter wuhouensis sp. nov. and Enterobacter quasihormaechei sp. nov. recovered from human sputum. Int J Syst Evol Microbiol 2020; 70:874–881 [View Article]
    [Google Scholar]
  4. Yamada K, Sasaki M, Aoki K, Nagasawa T, Murakami H et al. Pseudomonas tohonis sp. nov., isolated from the skin of a patient with burn wounds in Japan. Int J Syst Evol Microbiol 2021; 71:34762579
    [Google Scholar]
  5. Chew KL, Octavia S, Lai D, Lin RTP, Teo JWP. Staphylococcus singaporensis sp. nov., a new member of the Staphylococcus aureus complex, isolated from human clinical specimens. Int J Syst Evol Microbiol 2021; 71:34698625 [View Article] [PubMed]
    [Google Scholar]
  6. Bernard KA, Burdz T, Pacheco AL, Wiebe D, Bernier AM. Corynebacterium hindlerae sp. nov., derived from a human granuloma, which forms black colonies and black halos on modified Tinsdale medium but is not closely related to Corynebacterium diphtheriae and related taxa. Int J Syst Evol Microbiol 2021; 71:34338627 [View Article] [PubMed]
    [Google Scholar]
  7. Bernard KA, Pacheco AL, Burdz T, Wiebe D, Bernier AM. Assignment of provisionally named CDC group NO-1 strains derived from animal bite wounds and other clinical sources, to genera nova in the family Comamonadaceae: description of Vandammella animalimorsus gen. nov., sp. nov. and Franklinella schreckenbergeri gen. nov., sp. nov. Int J Syst Evol Microbiol 2022; 72:sp [View Article] [PubMed]
    [Google Scholar]
  8. Volokhov DV, Batac F, Gao Y, Miller M, Chizhikov VE. Mycoplasma enhydrae sp. nov. isolated from southern sea otters (Enhydra lutris nereis). Int J Syst Evol Microbiol 2019; 69:363–370 [View Article] [PubMed]
    [Google Scholar]
  9. Volokhov DV, Furtak VA, Blom J, Zagorodnyaya TA, Gao Y et al. Mycoplasma miroungirhinis sp. nov. and Mycoplasma miroungigenitalium sp. nov., isolated from northern elephant seals (Mirounga angustirostris), Mycoplasma phocoenae sp. nov., isolated from harbour porpoise (Phocoena phocoena), and Mycoplasma phocoeninasale sp. nov., isolated from harbour porpoise and California sea lions (Zalophus californianus). Int J Syst Evol Microbiol 2022; 72:35073252 [View Article] [PubMed]
    [Google Scholar]
  10. Shen Z, Batac F, Mannion A, Miller MA, Bakthavatchalu V et al. Novel urease-negative Helicobacter sp. “H. enhydrae sp. nov.” isolated from inflamed gastric tissue of Southern Sea otters. Dis Aquat Organ 2017; 123:1–11 [View Article] [PubMed]
    [Google Scholar]
  11. Bryant E, Shen Z, Mannion A, Patterson M, Buczek J et al. Campylobacter taeniopygiae sp. nov., Campylobacter aviculae sp. nov., and Campylobacter estrildidarum sp. nov., novel species isolated from laboratory-maintained Zebra Finches. Avian Dis 2020; 64:457–466 [View Article] [PubMed]
    [Google Scholar]
  12. Gooch HCC, Kiu R, Rudder S, Baker DJ, Hall LJ et al. Enterococcus innesii sp. nov., isolated from the wax moth Galleria mellonella. Int J Syst Evol Microbiol 2021; 71:34919037 [View Article]
    [Google Scholar]
  13. Phung C, Scott PC, Dekiwadia C, Moore RJ, Van TTH. Campylobacter bilis sp. nov., isolated from chickens with spotty liver disease. Int J Syst Evol Microbiol 2022; 72:35442881 [View Article] [PubMed]
    [Google Scholar]
  14. Van TTH, Phung C, Anwar A, Wilson TB, Scott PC et al. Campylobacter bilis, the second novel Campylobacter species isolated from chickens with Spotty Liver Disease, can cause the disease. Vet Microbiol 2023; 276:109603 [View Article] [PubMed]
    [Google Scholar]
  15. Newstead LL, Harris J, Goodbrand S, Varjonen K, Nuttall T et al. Staphylococcus caledonicus sp. nov. and Staphylococcus canis sp. nov. isolated from healthy domestic dogs. Int J Syst Evol Microbiol 2021; 71:34296985 [View Article] [PubMed]
    [Google Scholar]
  16. Pearce ME, Langridge GC, Lauer AC, Grant K, Maiden MCJ et al. An evaluation of the species and subspecies of the genus Salmonella with whole genome sequence data: Proposal of type strains and epithets for novel S. enterica subspecies VII, VIII, IX, X and XI. Genomics 2021; 113:3152–3162 [View Article]
    [Google Scholar]
  17. Gilroy R, Ravi A, Getino M, Pursley I, Horton DL et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941 [View Article] [PubMed]
    [Google Scholar]
  18. Bennett CE, Thomas R, Williams M, Zalasiewicz J, Edgeworth M et al. The broiler chicken as a signal of a human reconfigured biosphere. R Soc Open Sci 2018; 5:180325 [View Article] [PubMed]
    [Google Scholar]
  19. Devriese LA, Pot B, Vandamme P, Kersters K, Collins MD et al. Streptococcus hyovaginalis sp. nov. and Streptococcus thoraltensis sp. nov., from the genital tract of sows. Int J Syst Bacteriol 1997; 47:1073–1077 [View Article] [PubMed]
    [Google Scholar]
  20. Vancanneyt M, Devriese LA, De Graef EM, Baele M, Lefebvre K et al. Streptococcus minor sp. nov., from faecal samples and tonsils of domestic animals. Int J Syst Evol Microbiol 2004; 54:449–452 [View Article] [PubMed]
    [Google Scholar]
  21. Bekal S, Gaudreau C, Laurence RA, Simoneau E, Raynal L. Streptococcus pseudoporcinus sp. nov., a novel species isolated from the genitourinary tract of women. J Clin Microbiol 2006; 44:2584–2586 [View Article] [PubMed]
    [Google Scholar]
  22. Martín V, Mañes-Lázaro R, Rodríguez JM, Maldonado-Barragán A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol 2011; 61:1048–1052 [View Article] [PubMed]
    [Google Scholar]
  23. Rizzardi K, Winiecka-Krusnell J, Ramliden M, Alm E, Andersson S et al. Legionella norrlandica sp. nov., isolated from the biopurification systems of wood processing plants. Int J Syst Evol Microbiol 2015; 65:598–603 [View Article] [PubMed]
    [Google Scholar]
  24. Brooks BW, Murray RGE. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31:353–360 [View Article]
    [Google Scholar]
  25. Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C et al. The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource. Genome Med 2015; 7:97 [View Article] [PubMed]
    [Google Scholar]
  26. Nemec A, Radolfova-Krizova L, Maixnerova M, Sedo O. Acinetobacter colistiniresistens sp. nov. (formerly genomic species 13 sensu Bouvet and Jeanjean and genomic species 14 sensu Tjernberg and Ursing), isolated from human infections and characterized by intrinsic resistance to polymyxins. Int J Syst Evol Microbiol 2017; 67:2134–2141 [View Article]
    [Google Scholar]
  27. Bonnin RA, Girlich D, Jousset AB, Gauthier L, Cuzon G et al. A single Proteus mirabilis lineage from human and animal sources: A hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci Rep 2020; 10:9160 [View Article] [PubMed]
    [Google Scholar]
  28. Paterson GK, Morgan FJE, Harrison EM, Cartwright EJP, Török ME et al. Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J Antimicrob Chemother 2014; 69:907–910 [View Article] [PubMed]
    [Google Scholar]
  29. Dortet L, Bonnin RA, Pennisi I, Gauthier L, Jousset AB et al. Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test. J Antimicrob Chemother 2018; 73:30184212 [View Article]
    [Google Scholar]
  30. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:21266997 [View Article]
    [Google Scholar]
  31. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article] [PubMed]
    [Google Scholar]
  32. Hawkey J, Cottingham H, Tokolyi A, Wick RR, Judd LM et al. Linear plasmids in Klebsiella and other Enterobacteriaceae. Microb Genom 2022; 8:35416146 [View Article]
    [Google Scholar]
  33. Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY et al. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biol 2019; 17:e3000059 [View Article] [PubMed]
    [Google Scholar]
  34. Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 2021; 6:327–338 [View Article] [PubMed]
    [Google Scholar]
  35. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 2016; 48:1211–1217 [View Article] [PubMed]
    [Google Scholar]
  36. Cheesbrough JS, Taxman BC, Green SD, Mewa FI, Numbi A. Clinical definition for invasive Salmonella infection in African children. Pediatr Infect Dis J 1997; 16:277–283 [View Article] [PubMed]
    [Google Scholar]
  37. Msefula CL, Kingsley RA, Gordon MA, Molyneux E, Molyneux ME et al. Genotypic homogeneity of multidrug resistant S. Typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi. PLoS One 2012; 7:e42085 [View Article] [PubMed]
    [Google Scholar]
  38. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28:901–937 [View Article] [PubMed]
    [Google Scholar]
  39. Bart MJ, Zeddeman A, van der Heide HGJ, Heuvelman K, van Gent M et al. Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc 2014; 2:25540342 [View Article] [PubMed]
    [Google Scholar]
  40. Inns T, Flanagan S, Greig DR, Jenkins C, Seddon K et al. First use of whole-genome sequencing to investigate a cluster of Yersinia enterocolitica, Liverpool, United Kingdom, 2017. J Med Microbiol 2018; 67:1747–1752 [View Article]
    [Google Scholar]
  41. Oren A, Arahal DR, Goker M, Moore ERB, Rossello-Mora R. International code of nomenclature of Prokaryotes. Prokaryotic code (2022 revision). Int J Syst Evol Microbiol 2023; 73:37219928 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000756.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000756.v3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error