1887

Abstract

The digestive organs of terrestrial isopods harbour bacteria of the recently proposed mollicute family . The only complete genome available so far for is that of ‘ Hepatoplasma crinochetorum’. The scarcity of genome sequences has hampered our understanding of the symbiotic relationship between isopods and mollicutes. Here, we present four complete metagenome-assembled genomes (MAGs) of uncultured members identified from shotgun sequencing data of isopods. We propose genomospecies names for three MAGs that show substantial sequence divergence from any previously known members: ‘ Tyloplasma litorale’ identified from the semiterrestrial isopod , ‘ Hepatoplasma vulgare’ identified from the common pill bug , and ‘ Hepatoplasma scabrum’ identified from the common rough woodlouse . Phylogenomic analysis of 155 mollicutes confirmed that is a sister clade of in the order . The 16S ribosomal RNA gene sequences and phylogenomic analysis showed that ‘ Tyloplasma litorale’ and other semiterrestrial isopod-associated mollicutes represent the placeholder genus ‘g_Bg2’ in the r214 release of the Genome Taxonomy Database, warranting their assignment to a novel genus. Our analysis also revealed that lack major metabolic pathways but has a likely intact type IIA CRISPR-Cas9 machinery. Although the localization of the members have not been verified microscopically in this study, these genomic characteristics are compatible with the idea that these mollicutes have an ectosymbiotic lifestyle with high nutritional dependence on their host, as has been demonstrated for other members of the family. We could not find evidence that encode polysaccharide-degrading enzymes that aid host digestion. If they are to provide nutritional benefits, it may be through extra-copy nucleases, peptidases, and a patatin-like lipase. Exploration of potential host-symbiont interaction-associated genes revealed large, repetitive open reading frames harbouring beta-sandwich domains, possibly involved with host cell adhesion. Overall, genomic analyses suggest that isopod-mollicute symbiosis is not characterized by carbohydrate degradation, and we speculate on their potential role as defensive symbionts through spatial competition with pathogens to prevent infection.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award 19J21518)
    • Principle Award Recipient: SatoshiKawato
  • Japan Society for the Promotion of Science (Award JP19H00949)
    • Principle Award Recipient: IkuoHirono
  • Japan Society for the Promotion of Science (Award JP15H02462)
    • Principle Award Recipient: IkuoHirono
  • Japan Science and Technology Corporation (Award JPMJSA1806)
    • Principle Award Recipient: IkuoHirono
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000592.v3
2024-02-20
2024-05-25
Loading full text...

Full text loading...

/deliver/fulltext/acmi/6/2/acmi000592.v3.html?itemId=/content/journal/acmi/10.1099/acmi.0.000592.v3&mimeType=html&fmt=ahah

References

  1. Hornung E. Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behavior. Terr Arthropod Rev 2011; 4:95–130 [View Article]
    [Google Scholar]
  2. Broly P, Deville P, Maillet S. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evol Ecol 2013; 27:461–476 [View Article]
    [Google Scholar]
  3. Hassall M, Turner JG, Rands MRW. Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 1987; 72:597–604 [View Article] [PubMed]
    [Google Scholar]
  4. Rigaud T, Juchault P, Mocquard J-P. The evolution of sex determination in isopod crustaceans. BioEssays 1997; 19:409–416 [View Article]
    [Google Scholar]
  5. Bouchon D, Rigaud T, Juchault P. Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond B 1998; 265:1081–1090 [View Article]
    [Google Scholar]
  6. Becking T, Giraud I, Raimond M, Moumen B, Chandler C et al. Diversity and evolution of sex determination systems in terrestrial isopods. Sci Rep 2017; 7:1084 [View Article] [PubMed]
    [Google Scholar]
  7. Chebbi MA, Becking T, Moumen B, Giraud I, Gilbert C et al. The genome of Armadillidium vulgare (Crustacea, Isopoda) provides insights into sex chromosome evolution in the context of cytoplasmic sex determination. Mol Biol Evol 2019; 36:727–741 [View Article] [PubMed]
    [Google Scholar]
  8. Raimond R, Marcadé I, Bouchon D, Rigaud T, Bossy J-P et al. Organization of the large mitochondrial genome in the isopod Armadillidium vulgare. Genetics 1999; 151:203–210 [View Article]
    [Google Scholar]
  9. Marcadé I, Cordaux R, Doublet V, Debenest C, Bouchon D et al. Structure and evolution of the atypical mitochondrial genome of Armadillidium vulgare (Isopoda, Crustacea). J Mol Evol 2007; 65:651–659 [View Article] [PubMed]
    [Google Scholar]
  10. Doublet V, Raimond R, Grandjean F, Lafitte A, Souty-Grosset C et al. Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species. Genome 2012; 55:234–244 [View Article] [PubMed]
    [Google Scholar]
  11. Kostanjsek R, Strus J, Avgustin G. Genetic diversity of bacteria associated with the hindgut of the terrestrial crustacean Porcellio scaber (Crustacea: Isopoda). FEMS Microbiol Ecol 2002; 40:171–179 [View Article] [PubMed]
    [Google Scholar]
  12. Fraune S, Zimmer M. Host-specificity of environmentally transmitted mycoplasma-like isopod symbionts. Environ Microbiol 2008; 10:2497–2504 [View Article] [PubMed]
    [Google Scholar]
  13. Wang Y, Brune A, Zimmer M. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiol Ecol 2007; 61:141–152 [View Article] [PubMed]
    [Google Scholar]
  14. Bouchon D, Zimmer M, Dittmer J. The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol 2016; 7:1472 [View Article] [PubMed]
    [Google Scholar]
  15. Wang Y, Stingl U, Anton-Erxleben F, Geisler S, Brune A et al. “Candidatus hepatoplasma crinochetorum,” a new, stalk-forming lineage of mollicutes colonizing the midgut glands of a terrestrial isopod. Appl Environ Microbiol 2004; 70:6166–6172 [View Article] [PubMed]
    [Google Scholar]
  16. Nechitaylo TY, Timmis KN, Golyshin PN. “Candidatus Lumbricincola”, a novel lineage of uncultured Mollicutes from earthworms of family Lumbricidae. Environ Microbiol 2009; 11:1016–1026 [View Article] [PubMed]
    [Google Scholar]
  17. Russini V, Fassio G, Chimenti C, Davolos D. Discovering symbiosis in the supralittoral: bacterial metabarcoding analysis from the hepatopancreas of Orchestia and Tylos (Crustacea). Symbiosis 2021; 83:225–236 [View Article]
    [Google Scholar]
  18. Leclercq S, Dittmer J, Bouchon D, Cordaux R. Phylogenomics of “Candidatus Hepatoplasma crinochetorum,” a lineage of mollicutes associated with noninsect arthropods. Genome Biol Evol 2014; 6:407–415 [View Article] [PubMed]
    [Google Scholar]
  19. Aubé J, Cambon-Bonavita M-A, Velo-Suárez L, Cueff-Gauchard V, Lesongeur F et al. A novel and dual digestive symbiosis scales up the nutrition and immune system of the holobiont Rimicaris exoculata. Microbiome 2022; 10:189 [View Article] [PubMed]
    [Google Scholar]
  20. Collingro A, Kostanjšek R, Toenshoff ER, Schulz F, Schuster L et al. Draft genome sequence of “Candidatus Hepatoplasma crinochetorum” Ps, a bacterial symbiont in the hepatopancreas of the terrestrial isopod Porcellio scaber. Genome Announc 2015; 3:e00674-15 [View Article] [PubMed]
    [Google Scholar]
  21. Wang Y, Huang J-M, Wang S-L, Gao Z-M, Zhang A-Q et al. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp. Environ Microbiol 2016; 18:2646–2659 [View Article] [PubMed]
    [Google Scholar]
  22. Russell DW, Sambrook J. Molecular Cloning: A Laboratory Manual NY: Cold Spring Harbor Laboratory Cold Spring Harbor; 2001
    [Google Scholar]
  23. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  24. Shen W, Le S, Li Y, Hu F, Zou Q. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 2016; 11:e0163962 [View Article] [PubMed]
    [Google Scholar]
  25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  26. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  27. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  28. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  29. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology Berlin Heidelberg, Berlin, Heidelberg: Springer; 2013 pp 158–170
    [Google Scholar]
  30. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26 [View Article] [PubMed]
    [Google Scholar]
  31. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  32. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  33. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203–1212 [View Article] [PubMed]
    [Google Scholar]
  34. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  35. Steinegger M, Meier M, Mirdita M, Vöhringer H, Haunsberger SJ et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 2019; 20:473 [View Article] [PubMed]
    [Google Scholar]
  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. Genome project data processing subgroup 2009. The sequence alignment/map format and Samtools. Bioinformatics 1000; 25:2078–2079 [View Article]
    [Google Scholar]
  37. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 2012 [View Article]
    [Google Scholar]
  38. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  40. Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 2020; 5:e00920-20 [View Article] [PubMed]
    [Google Scholar]
  41. Seah BKB. SILVA Team SILVA 138.1 SSURef NR99 Database Formatted for phyloFlash Zenodo; 2023
    [Google Scholar]
  42. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  43. Eberl R. Sea-land transitions in isopods: pattern of symbiont distribution in two species of intertidal isopods Ligia pallasii and Ligia occidentalis in the Eastern Pacific. Symbiosis 2010; 51:107–116 [View Article] [PubMed]
    [Google Scholar]
  44. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  45. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  46. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  47. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  48. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article] [PubMed]
    [Google Scholar]
  49. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  50. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  51. Gupta RS, Sawnani S, Adeolu M, Alnajar S, Oren A. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek 2018; 111:1583–1630 [View Article] [PubMed]
    [Google Scholar]
  52. Gupta RS, Oren A. Necessity and rationale for the proposed name changes in the classification of Mollicutes species. reply to: ‘recommended rejection of the names Malacoplasma gen nov., Mesomycoplasma gen. nov., Metamycoplasma gen. nov., Metamycoplasmataceae fam. nov., Mycoplasmoidaceae fam. nov., Mycoplasmoidales ord. nov., Mycoplasmoides gen. nov., Mycoplasmopsis gen. nov Gupta, Sawnani, Adeolu, Alnajar and Oren 2018] and all proposed species comb. nov. placed therein’, by M. Balish et al. (Int J Syst Evol Microbiol, 2019;69:3650–3653). Int J Syst Evol Microbiol 2019; 69:3650–3653 [PubMed]
    [Google Scholar]
  53. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  54. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  55. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022; 31:47–53 [View Article] [PubMed]
    [Google Scholar]
  56. Petrov AI, Kay SJE, Gibson R, Kulesha E, Staines D et al. RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 2015; 43:D123–9 [View Article] [PubMed]
    [Google Scholar]
  57. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  58. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  59. Klau LJ, Podell S, Creamer KE, Demko AM, Singh HW et al. The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J Biol Chem 2022; 298:102480 [View Article] [PubMed]
    [Google Scholar]
  60. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  61. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  62. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42:D222–30 [View Article] [PubMed]
    [Google Scholar]
  63. Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M et al. The conserved domain database in 2023. Nucleic Acids Res 2023; 51:D384–D388 [View Article] [PubMed]
    [Google Scholar]
  64. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021; 49:D458–D460 [View Article]
    [Google Scholar]
  65. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res 2003; 31:371–373 [View Article]
    [Google Scholar]
  66. Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R et al. EffectiveDB--updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res 2016; 44:D669–74 [View Article] [PubMed]
    [Google Scholar]
  67. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article]
    [Google Scholar]
  68. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S et al. ColabFold: making protein folding accessible to all. Nat Methods 2022; 19:679–682 [View Article] [PubMed]
    [Google Scholar]
  69. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 2021; 30:70–82 [View Article] [PubMed]
    [Google Scholar]
  70. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res 2015; 43:W39–49 [View Article] [PubMed]
    [Google Scholar]
  71. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [View Article] [PubMed]
    [Google Scholar]
  72. Nickol BB, Dappen GE. Armadillidium vulgare (Isopoda) as an intermediate host of Plagiorhynchus cylindraceus (Acanthocephala) and Isopod response to infection. J Parasitol 1982; 68:570 [View Article]
    [Google Scholar]
  73. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  74. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  75. Phan JR, Do DM, Truong MC, Ngo C, Phan JH et al. An aniline-substituted bile salt analog protects both Mice and Hamsters from multiple Clostridioides difficile strains. Antimicrob Agents Chemother 2022; 66:e0143521 [View Article] [PubMed]
    [Google Scholar]
  76. Nicolás MF, Barcellos FG, Nehab Hess P, Hungria M. ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity. Genet Mol Biol 2007; 30:202–211 [View Article]
    [Google Scholar]
  77. Thomas C, Aller SG, Beis K, Carpenter EP, Chang G et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767–3775 [View Article] [PubMed]
    [Google Scholar]
  78. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543–594 [View Article] [PubMed]
    [Google Scholar]
  79. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006; 70:939–1031 [View Article]
    [Google Scholar]
  80. Zúñiga M, Pérez G, González-Candelas F. Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 2002; 25:429–444 [View Article] [PubMed]
    [Google Scholar]
  81. Blötz C, Stülke J. Glycerol metabolism and its implication in virulence in Mycoplasma. FEMS Microbiol Rev 2017; 41:640–652 [View Article] [PubMed]
    [Google Scholar]
  82. Ferrarini MG, Siqueira FM, Mucha SG, Palama TL, Jobard É et al. Insights on the virulence of swine respiratory tract mycoplasmas through genome-scale metabolic modeling. BMC Genomics 2016; 17:353 [View Article]
    [Google Scholar]
  83. Vilei EM, Frey J. Genetic and biochemical characterization of glycerol uptake in mycoplasma mycoides subsp. mycoides SC: its impact on H(2)O(2) production and virulence. Clin Diagn Lab Immunol 2001; 8:85–92 [View Article] [PubMed]
    [Google Scholar]
  84. Paredes JC, Herren JK, Schüpfer F, Lemaitre B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. mBio 2016; 7:e01006-16 [View Article] [PubMed]
    [Google Scholar]
  85. Wang L, Westberg J, Bölske G, Eriksson S. Novel deoxynucleoside-phosphorylating enzymes in mycoplasmas: evidence for efficient utilization of deoxynucleosides. Mol Microbiol 2001; 42:1065–1073 [View Article] [PubMed]
    [Google Scholar]
  86. Mitchell A, Sin IL, Finch LR. Enzymes of purine metabolism in Mycoplasma mycoides subsp. mycoides. J Bacteriol 1978; 134:706–712 [View Article] [PubMed]
    [Google Scholar]
  87. Tryon VV, Pollack D. Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity. J Bacteriol 1984; 159:265–270 [View Article] [PubMed]
    [Google Scholar]
  88. Wang L. The role of Ureaplasma nucleoside monophosphate kinases in the synthesis of nucleoside triphosphates. FEBS J 2007; 274:1983–1990 [View Article]
    [Google Scholar]
  89. Kube M, Siewert C, Migdoll AM, Duduk B, Holz S et al. Analysis of the complete genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma'. Microb Physiol 2014; 24:19–36 [View Article]
    [Google Scholar]
  90. Schmiel DH, Miller VL. Bacterial phospholipases and pathogenesis. Microbes Infect 1999; 1:1103–1112 [View Article] [PubMed]
    [Google Scholar]
  91. Chen X, Alonzo F. Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc Natl Acad Sci U S A 2019; 116:3764–3773 [View Article] [PubMed]
    [Google Scholar]
  92. Duncan-Lowey B, Kranzusch PJ. CBASS phage defense and evolution of antiviral nucleotide signaling. Curr Opin Immunol 2022; 74:156–163 [View Article] [PubMed]
    [Google Scholar]
  93. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 2012; 109:E1878–E1887 [View Article] [PubMed]
    [Google Scholar]
  94. Mondino S, Schmidt S, Buchrieser C, Garsin DA. Molecular mimicry: a paradigm of host-microbe coevolution illustrated by Legionella. mBio 2020; 11:e01201-20 [View Article] [PubMed]
    [Google Scholar]
  95. Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta 2008; 1783:1467–1479 [View Article] [PubMed]
    [Google Scholar]
  96. Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:fnaa220 [View Article] [PubMed]
    [Google Scholar]
  97. van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V et al. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103 [View Article] [PubMed]
    [Google Scholar]
  98. Vengadesan K, Narayana SVL. Structural biology of Gram-positive bacterial adhesins. Protein Sci 2011; 20:759–772 [View Article] [PubMed]
    [Google Scholar]
  99. Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 2012; 14:1687–1696 [View Article]
    [Google Scholar]
  100. Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother 1994; 38:409–414 [View Article]
    [Google Scholar]
  101. Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699–735 [View Article]
    [Google Scholar]
  102. Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol 2013; 23:1478–1484 [View Article] [PubMed]
    [Google Scholar]
  103. Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 2001; 47:47–61 [View Article] [PubMed]
    [Google Scholar]
  104. Nakashima K, Kimura S, Ogawa Y, Watanabe S, Soma S et al. Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun 2018; 9:3402 [View Article] [PubMed]
    [Google Scholar]
  105. Imaizumi K, Sano M, Kondo H, Hirono I. Insights into a Chitin synthase of Kuruma Shrimp Penaeus japonicus and its role in peritrophic membrane and cuticle formation. Mar Biotechnol 2023; 25:837–845 [View Article] [PubMed]
    [Google Scholar]
  106. Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. J Insect Physiol 2019; 117:103894 [View Article] [PubMed]
    [Google Scholar]
  107. Hartenstein R. Feeding, digestion, glycogen, and the environmental conditions of the digestive system in Oniscus asellus. J Insect Physiol 1964; 10:611–621 [View Article]
    [Google Scholar]
  108. Hames CAC, Hopkin SP. The structure and function of the digestive system of terrestrial isopods. J Zool 1989; 217:599–627 [View Article]
    [Google Scholar]
  109. Wang Y, Stingl U, Anton-Erxleben F, Geisler S, Brune A et al. Candidatus hepatoplasma crinochetorum,” a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod. Appl Environ Microbiol 2004; 70:6166–6172 [View Article] [PubMed]
    [Google Scholar]
  110. Guéganton M, Rouxel O, Durand L, Cueff-Gauchard V, Gayet N et al. Anatomy and symbiosis of the digestive system of the vent shrimp rimicaris exoculata and rimicaris chacei revealed through imaging approaches. Front Mar Sci 2022; 9: [View Article]
    [Google Scholar]
  111. Halaby DM, Poupon A, Mornon J-P. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng Des Sel 1999; 12:563–571 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000592.v3
Loading
/content/journal/acmi/10.1099/acmi.0.000592.v3
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error