1887

Abstract

As a proven source of potent and selective antimicrobials, bacteria are important to an age plagued with difficult-to-treat microbial infections. Yet, only 27 species have been described to date. In this study, a novel species was discovered through genomic studies on three isolates from Kenyan soils. Soils in Western Kenya were surveyed for steinernematids and isolates VH1 and BG5 were recovered from red volcanic loam soils from cultivated land in Vihiga and clay soils from riverine land in Bungoma respectively. From the two nematode isolates, sp. BG5 and sp. VH1 were isolated. The genomes of these two, plus that of XN45 – this was previously isolated from sp. scarpo that also originated from Kenyan soils – were sequenced and assembled. Nascent genome assemblies of the three isolates were of good quality with over 70 % of their proteome having known functions. These three isolates formed the clade in a phylogenomic reconstruction of the genus. Their species were delineated using three overall genome relatedness indices: an unnamed species of the genus, sp. BG5, VH1 and XN45. A pangenome analysis of this clade revealed that over 70 % of species-specific genes encoded unknown functions. Transposases were linked to genomic islands in sp. BG5. Thus, overall genome-related indices sufficiently delineated species of two new isolates from Kenya, both of which were closely related to . The functions encoded by most species-specific genes in the clade remain unknown.

Funding
This study was supported by the:
  • Hessisches Ministerium für Wissenschaft und Kunst (Award LOEWE Translational Biodiversity Genomics)
    • Principle Award Recipient: HelgeB. Bode
  • Goethe-Universität Frankfurt am Main (Award GRADE Completion Scholarship 2020)
    • Principle Award Recipient: RyanMusumba Awori
  • Deutscher Akademischer Austauschdienst (Award 91653288)
    • Principle Award Recipient: RyanMusumba Awori
  • Kenya National Research Fund (Award NRF 1st CALL/MULTIDISCIPLINARY RESEARCH/127)
    • Principle Award Recipient: NelsonO. Amugune
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000531.v4
2023-05-22
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/acmi/5/5/acmi000531.v4.html?itemId=/content/journal/acmi/10.1099/acmi.0.000531.v4&mimeType=html&fmt=ahah

References

  1. Booysen E, Dicks LMT. Does the future of antibiotics lie in secondary metabolites produced by Xenorhabdus spp.? A review. Probiotics Antimicrob Proteins 2020; 12:1310–1320 [View Article]
    [Google Scholar]
  2. Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M et al. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol 2017; 2:1676–1685 [View Article] [PubMed]
    [Google Scholar]
  3. Muangpat P, Suwannaroj M, Yimthin T, Fukruksa C, Sitthisak S et al. Antibacterial activity of Xenorhabdus and Photorhabdus isolated from entomopathogenic nematodes against antibiotic-resistant bacteria. PLoS One 2020; 15:e0234129 [View Article]
    [Google Scholar]
  4. Akhurst RJ, Boemare NE. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J Gen Microbiol 1988; 134:1835–1845 [View Article]
    [Google Scholar]
  5. Castaneda-Alvarez C, Prodan S, Zamorano A, San-Blas E, Aballay E. Xenorhabdus lircayensis sp. nov., the symbiotic bacterium associated with the entomopathogenic nematode Steinernema unicornum. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  6. Ferreira T, van Reenen CA, Endo A, Spröer C, Malan AP et al. Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Int J Syst Evol Microbiol 2013; 63:3220–3224 [View Article] [PubMed]
    [Google Scholar]
  7. Kämpfer P, Tobias NJ, Ke LP, Bode HB, Glaeser SP. Xenorhabdus thuongxuanensis sp. nov. and Xenorhabdus eapokensis sp. nov., isolated from Steinernema species. Int J Syst Evol Microbiol 2017; 67:1107–1114 [View Article] [PubMed]
    [Google Scholar]
  8. Kuwata R, Qiu L-H, Wang W, Harada Y, Yoshida M et al. Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari. Int J Syst Evol Microbiol 2013; 63:1690–1695 [View Article]
    [Google Scholar]
  9. Lengyel K, Lang E, Fodor A, Szállás E, Schumann P et al. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol 2005; 28:115–122 [View Article]
    [Google Scholar]
  10. Nishimura Y, Hagiwara A, Suzuki T, Yamanaka S. Xenorhabdus japonicus sp. nov. associated with the nematode Steinernema kushidai. World J Microbiol Biotechnol 1994; 10:207–210 [View Article] [PubMed]
    [Google Scholar]
  11. Tailliez P et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P.luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010; 60:1921–1937
    [Google Scholar]
  12. Tailliez P, Pagès S, Edgington S, Tymo LM, Buddie AG. Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int J Syst Evol Microbiol 2012; 62:1761–1765 [View Article] [PubMed]
    [Google Scholar]
  13. Tailliez P, Pagès S, Ginibre N, Boemare N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol Microbiol 2006; 56:2805–2818 [View Article] [PubMed]
    [Google Scholar]
  14. Heryanto C, Eleftherianos I. Nematode endosymbiont competition: fortune favors the fittest. Mol Biochem Parasitol 2020; 238:111298 [View Article]
    [Google Scholar]
  15. Vigneux F, Zumbihl R, Jubelin G, Ribeiro C, Poncet J et al. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J Biol Chem 2007; 282:9571–9580 [View Article] [PubMed]
    [Google Scholar]
  16. Waturu CN, Hunt DJ, Reid AP. Steinernema karii sp. n.(Nematoda: Steinernematidae), a new entomopathogenic nematode from Kenya. Int J Nematol 1997; 7:68–75
    [Google Scholar]
  17. White GF. A method for obtaining infective nematode larvae from cultures. Science 1927; 66:302–303 [View Article]
    [Google Scholar]
  18. Awori RM. Nematophilic bacteria associated with entomopathogenic nematodes and drug development of their biomolecules. Front Microbiol 2022; 13:993688 [View Article]
    [Google Scholar]
  19. Bhat AH, Chaubey AK, Askary TH. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt J Biol Pest Control 2020; 30:31 [View Article]
    [Google Scholar]
  20. Awori RM, Ng’ang’a PN, Nyongesa LN, Amugune NO, Masiga D. Mursamacin: a novel class of antibiotics from soil-dwelling roundworms of Central Kenya that inhibits methicillin-resistant Staphylococcus aureus. F1000Res 2017; 5:2431 [View Article]
    [Google Scholar]
  21. Mwaniki SW, Nderitu JH, Olubayo F, Kimenju JW, Nguyen K. Factors influencing the occurrence of entomopathogenic nematodes in the Central Rift Valley Region of Kenya. African J Ecol 2008; 46:79–84 [View Article]
    [Google Scholar]
  22. Spiridonov SE, Reid AP, Podrucka K, Subbotin SA, Moens M. Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematol 2004; 6:547–566 [View Article]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  27. Medini D, Donati C, Rappuoli R, Tettelin H. The pangenome: a data-driven discovery in biology. In The Pangenome Cham: Springer; 2020 pp 3–20
    [Google Scholar]
  28. Shi Y-M, Hirschmann M, Shi Y-N, Ahmed S, Abebew D et al. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat Chem 2022; 14:701–712 [View Article] [PubMed]
    [Google Scholar]
  29. Ngugi CN. Characterization and Evaluation of Entomopathogenic Nematodes for the Management of Tomato Leafminer (Tuta absoluta Meyrick). PhD Dissertation. Nairobi, Kenya: Faculty of Science and Technology, University of Nairobi; 2021
  30. Boemare N, Akhurst R, Stackebrandt E. The genera Photorhabdus and Xenorhabdus. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH. eds The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass New York, NY: Springer New York; 2006 pp 451–494 [View Article]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Mothupi B, Featherston J, Gray V. Draft whole-genome sequence and annotation of Xenorhabdus griffiniae strain BMMCB associated with the South African entomopathogenic nematode Steinernema khoisanae strain BMMCB. Genome Announc 2015; 3:e00785-15 [View Article]
    [Google Scholar]
  33. Wattam AR, Brettin T, Davis JJ, Gerdes S, Kenyon R et al. Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. Methods Mol Biol 2018; 1704:79–101 [View Article]
    [Google Scholar]
  34. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  36. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  38. Bah T. Inkscape: Guide to a Vector Drawing Program Prentice Hall Press; 2007
    [Google Scholar]
  39. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for 'omics' data. PeerJ 2015; 3:e1319 [View Article]
    [Google Scholar]
  40. Pantoja Y, Pinheiro K, Veras A, Araújo F, Lopes de Sousa A et al. PanWeb: a web interface for pan-genomic analysis. PLoS One 2017; 12:e0178154 [View Article]
    [Google Scholar]
  41. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  42. Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010; 26:1910–1912 [View Article] [PubMed]
    [Google Scholar]
  43. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  44. UniProt Consortium The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 2009; 37:D169–74 [View Article]
    [Google Scholar]
  45. Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbial genome analysis: the COG approach. Brief Bioinform 2019; 20:1063–1070 [View Article] [PubMed]
    [Google Scholar]
  46. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  47. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
  48. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  49. Mothupi B. Genomics of entomopathogenic bacterial endosymbiont species associated with desiccation tolerant entomopathogenic nematode. South Africa: MSc Dissertation, Faculty of Science, University of the Witwatersrand, Johannesburg; 2016
  50. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  52. Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 2018; 6:e4320 [View Article]
    [Google Scholar]
  53. Heaps HS. Information Retrieval, Computational and Theoretical Aspects Academic Press; 1978
    [Google Scholar]
  54. Rivera-Ramírez A, Salgado-Morales R, Jiménez-Pérez A, Pérez-Martínez R, García-Gómez BI et al. Comparative genomics and pathogenicity analysis of two bacterial symbionts of entomopathogenic nematodes: the role of the GroEL protein in virulence. Microorganisms 2022; 10:486 [View Article]
    [Google Scholar]
  55. Iranzo J, Wolf YI, Koonin EV, Sela I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat Commun 2019; 10:5376 [View Article]
    [Google Scholar]
  56. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  57. Fodor A, Fodor AM, Forst S. Comparative analysis of antibacterial activities of xenorhabdus species on related and non-related bacteria in vivo. J Microbiol Antimicrob 2010; 2:36–46
    [Google Scholar]
  58. Brodie G. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in Viti Levu, Fiji Islands. J Nematol 2020; 52:1–17 [View Article]
    [Google Scholar]
  59. Zepeda-Jazo I, Molina-Ochoa J, Lezama-Gutiérrez R, Skoda SR, Foster JE. Survey of entomopathogenic nematodes from the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in Colima, México. Int J Trop Insect Sci 2014; 34:53–57 [View Article]
    [Google Scholar]
  60. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  61. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci 2005; 102:2567–2572 [View Article]
    [Google Scholar]
  62. Koressaar T, Remm M. Characterization of species-specific repeats in 613 prokaryotic species. DNA Res 2012; 19:219–230 [View Article]
    [Google Scholar]
  63. Klassen JL, Currie CR. Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation. BMC Genomics 2012; 13:14 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000531.v4
Loading
/content/journal/acmi/10.1099/acmi.0.000531.v4
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error