1887

Abstract

Northeast India shares its international border with Southeast Asia and has a number of malaria endemic zones. Monitoring genetic diversity of malaria parasites is important in this area as drug resistance and increasing genetic diversity form a vicious cycle in which one favours the development of the other. This retrospective study was done to evaluate the genetic diversity patterns in strains circulating in North Lakhimpur area of Assam in the pre-artemisinin era and compare the findings with current diversity patterns.

Genomic DNA extraction was done from archived blood spot samples collected in 2006 from malaria-positive cases in Lakhimpur district of Assam, Northeast India. Three antigenic markers of genetic diversity were studied – (block-2), (block-3) and the RII region of using nested PCR.

Allelic diversity was examined in 71 isolates and high polymorphism was observed. In eight genotypes were detected; K1 (single allele), MAD20 (six different alleles) and RO33 (single allele) allelic families were noted. Among genotypes, 22 distinct alleles were observed out of which FC27 had six alleles and IC/3D7 had 16 alleles. In RII region of nine genotypes were obtained. Expected heterozygosity ( ) values of the three antigenic markers were 0.72, 0.81 and 0.88, respectively. Multiplicity of infection (MOI) values noted were 1.28, 1.84 and 1.04 for and respectively.

Results suggest a high level of genetic diversity in ( of and ) and the RII region in Northeast India in the pre-artemisinin era when chloroqunine was the primary drug used for uncomplicated malaria. Comparison with current studies have revealed that the genetic diversity in these genes is still high in this region, complicating malaria vaccine research.

Funding
This study was supported by the:
  • Indian Council of Medical Research
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000350
2022-04-25
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/acmi/4/4/acmi000350.html?itemId=/content/journal/acmi/10.1099/acmi.0.000350&mimeType=html&fmt=ahah

References

  1. WHO World Malaria Report 2021 Geneva: World Health Organization; 2021
    [Google Scholar]
  2. Mohapatra PK, Prakash A, Taison K, Negmu K, Gohain AC et al. Evaluation of chloroquine (CQ) and sulphadoxine/pyrimethamine (SP) therapy in uncomplicated falciparum malaria in Indo-Myanmar border areas. Trop Med Int Health 2005; 10:478–483 [View Article] [PubMed]
    [Google Scholar]
  3. Berzins K. Merozoite antigens involved in invasion. Chem Immunol 2002; 80:125–143 [View Article] [PubMed]
    [Google Scholar]
  4. Genton B, Reed ZH. Asexual blood-stage malaria vaccine development: facing the challenges. Curr Opin Infect Dis 2007; 20:467–475 [View Article] [PubMed]
    [Google Scholar]
  5. Gaur D, Mayer DCG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites . Int J Parasitol 2004; 34:1413–1429 [View Article] [PubMed]
    [Google Scholar]
  6. Sanders PR, Kats LM, Drew DR, O’Donnell RA, O’Neill M et al. A set of glycosylphosphatidyl inositol-anchored membrane proteins of Plasmodium falciparum is refractory to genetic deletion. Infect Immun 2006; 74:4330–4338 [View Article] [PubMed]
    [Google Scholar]
  7. Baldwin M, Yamodo I, Ranjan R, Li X, Mines G et al. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3–MSP1 complex. Biochim Biophys Acta 2014; 1843:2855–2870 [View Article] [PubMed]
    [Google Scholar]
  8. Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck H-P et al. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J 2011; 10:79 [View Article] [PubMed]
    [Google Scholar]
  9. Mohammed H, Kassa M, Mekete K, Assefa A, Taye G et al. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J 2018; 17:386 [View Article] [PubMed]
    [Google Scholar]
  10. Takala SL, Smith DL, Stine OC, Coulibaly D, Thera MA et al. A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malar J 2006; 5:31 [View Article] [PubMed]
    [Google Scholar]
  11. Ferreira MU, Hartl DL. Plasmodium falciparum: worldwide sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-2 (MSP-2). Exp Parasitol 2007; 115:32–40 [View Article] [PubMed]
    [Google Scholar]
  12. Barrera SM, Pérez MA, Knudson A, Nicholls RS, Guerra AP. Genotypic survery of Plasmodium falciparum based on the msp1, msp2 and glurp genes by multiplex PCR. Biomedica 2010; 30:530–538 [View Article] [PubMed]
    [Google Scholar]
  13. RTS,S Clinical Trials Partnership Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 2015; 386:31–45 [View Article] [PubMed]
    [Google Scholar]
  14. Nielsen CM, Vekemans J, Lievens M, Kester KE, Regules JA et al. S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. Vaccine 2018; 36:1637–1642 [View Article] [PubMed]
    [Google Scholar]
  15. WHO WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk. Geneva: The World Health Organization (WHO); 2021 https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk
  16. Sehgal PN, Sharma MID, Sharma SL. Resistance to chloroquine in falciparum malaria in Assam state. India. J Commun Dis 1973; 5:175–180
    [Google Scholar]
  17. Das S, Barkakaty BN. Pyrimethamine in combination with sulfadoxine or sulfalene in P. falciparum infected cases in India. Indian J Malariol 1981; 18:109–116
    [Google Scholar]
  18. WHO National Framework for Malaria Elimination in India (2016–2030). Directorate of National Vector Borne Disease Control Programme (NVBDCP). Directorate General of Health Services (DGHS). Ministry Of Health & Family Welfare, Government of India 2016
    [Google Scholar]
  19. Sarma DK, Mohapatra PK, Bhattacharyya DR, Chellappan S, Karuppusamy B et al. Malaria in North-East India: Importance and Implications in the Era of Elimination. Microorganisms 2019; 7:12 [View Article] [PubMed]
    [Google Scholar]
  20. Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK et al. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: implication for vaccine development. PLoS One 2017; 12:e0182674 [View Article] [PubMed]
    [Google Scholar]
  21. Mohapatra PK, Sarma DK, Prakash A, Bora K, Ahmed MA et al. Molecular evidence of increased resistance to anti-folate drugs in Plasmodium falciparum in North-East India: a signal for potential failure of artemisinin plus sulphadoxine-pyrimethamine combination therapy. PLoS One 2014; 9:e105562 [View Article] [PubMed]
    [Google Scholar]
  22. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993; 61:315–320 [View Article] [PubMed]
    [Google Scholar]
  23. Snounou G. Genotyping of Plasmodium spp. In Malaria Methods and Protocols Springer; 2002 pp 103–116
    [Google Scholar]
  24. Soulama I, Nébié I, Ouédraogo A, Gansane A, Diarra A et al. Plasmodium falciparum genotypes diversity in symptomatic malaria of children living in an urban and a rural setting in Burkina Faso. Malar J 2009; 8:135 [View Article] [PubMed]
    [Google Scholar]
  25. Mayengue PI, Ndounga M, Malonga FV, Bitemo M, Ntoumi F. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum isolates from Brazzaville, Republic of Congo. Malar J 2011; 10:276 [View Article] [PubMed]
    [Google Scholar]
  26. Kiwuwa MS, Ribacke U, Moll K, Byarugaba J, Lundblom K et al. Genetic diversity of Plasmodium falciparum infections in mild and severe malaria of children from Kampala, Uganda. Parasitol Res 2013; 112:1691–1700 [View Article] [PubMed]
    [Google Scholar]
  27. Prakash A, Mohapatra P, Bhattacharyya D, Bk G, Mahanta J. Plasmodium ovale: First case report from Assam, India. Curr Sci 2003; 84:1187–1188
    [Google Scholar]
  28. Dev V. Plasmodium malariae--a case of quartan malaria in Assam. J Commun Dis 2000; 32:149–151 [PubMed]
    [Google Scholar]
  29. Mohapatra PK, Prakash A, Bhattacharyya DR, Goswami BK, Ahmed A et al. Detection & molecular confirmation of a focus of Plasmodium malariae in Arunachal Pradesh, India. Indian J Med Res 2008; 128:52–56 [PubMed]
    [Google Scholar]
  30. Das CS, Dutta P, Kalita MC. First phylogenetic evidence of Plasmodium malariae from northeast region of India. International Journal of Parasitology Research 2015; 7:136–139
    [Google Scholar]
  31. Dev V, Hira CR, Rajkhowa MK. Malaria-attributable morbidity in Assam, north-eastern India. Ann Trop Med Parasitol 2001; 95:789–796 [View Article] [PubMed]
    [Google Scholar]
  32. Joshi H, Valecha N, Verma A, Kaul A, Mallick PK et al. Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India. Malar J 2007; 6:60 [View Article] [PubMed]
    [Google Scholar]
  33. Mahajan RC, Farooq U, Dubey ML, Malla N. Genetic polymorphism in Plasmodium falciparum vaccine candidate antigens. Indian J Pathol Microbiol 2005; 48:429–438 [PubMed]
    [Google Scholar]
  34. Haddad D, Snounou G, Mattei D, Enamorado IG, Figueroa J et al. Limited genetic diversity of Plasmodium falciparum in field isolates from Honduras. Am J Trop Med Hyg 1999; 60:30–34 [View Article] [PubMed]
    [Google Scholar]
  35. Hussain MM, Sohail M, Kumar R, Branch OH, Adak T et al. Genetic diversity in merozoite surface protein-1 and 2 among Plasmodium falciparum isolates from malarious districts of tribal dominant state of Jharkhand, India. Ann Trop Med Parasitol 2011; 105:579–592 [View Article] [PubMed]
    [Google Scholar]
  36. Mulenge FM, Hunja CW, Magiri E, Culleton R, Kaneko A et al. Genetic diversity and population structure of Plasmodium falciparum in Lake Victoria Islands, a region of intense transmission. Am J Trop Med Hyg 2016; 95:1077–1085 [View Article] [PubMed]
    [Google Scholar]
  37. Tanabe K, Sakihama N, Walliker D, Babiker H, Abdel-Muhsin A-MA et al. Allelic dimorphism-associated restriction of recombination in Plasmodium falciparum msp1. Gene 2007; 397:153–160 [View Article] [PubMed]
    [Google Scholar]
  38. Gómez D, Chaparro J, Rubiano C, Rojas MO, Wasserman M. Genetic diversity of Plasmodium falciparum field samples from an isolated Colombian village. Am J Trop Med Hyg 2002; 67:611–616 [View Article] [PubMed]
    [Google Scholar]
  39. Sorontou Y, Pakpahan A. Genetic diversity in MSP-1 gene of Plasmodium falciparum and its association with malaria severity, parasite density, and host factors of asymptomatic and symptomatic patients in Papua, Indonesia. Int J Med Sci Public Health 2015; 4:1584 [View Article]
    [Google Scholar]
  40. Sarmah NP, Sarma K, Bhattacharyya DR, Sultan A, Bansal D et al. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein. Indian J Med Res 2017; 146:375–380 [View Article] [PubMed]
    [Google Scholar]
  41. Kaur H, Sehgal R, Goyal K, Makkar N, Yadav R et al. Genetic diversity of Plasmodium falciparum merozoite surface protein‐1 (block 2), glutamate‐rich protein and sexual stage antigen Pfs25 from Chandigarh. Trop Med Int Health 2017; 22:1590–1598 [View Article] [PubMed]
    [Google Scholar]
  42. Bharti PK, Shukla MM, Sharma YD, Singh N. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India. Malar J 2012; 11:78 [View Article] [PubMed]
    [Google Scholar]
  43. Kang J-M, Moon S-U, Kim J-Y, Cho S-H, Lin K et al. Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in Plasmodium falciparum field isolates from Myanmar. Malar J 2010; 9:131 [View Article] [PubMed]
    [Google Scholar]
  44. HG, Kang J-M, Jun H, Lee J, Thái TL et al. Changing pattern of the genetic diversities of Plasmodium falciparum merozoite surface protein-1 and merozoite surface protein-2 in Myanmar isolates. Malar J 2019; 18:241 [View Article] [PubMed]
    [Google Scholar]
  45. Chen Y-A, Shiu T-J, Tseng L-F, Cheng C-F, Shih W-L et al. Dynamic changes in genetic diversity, drug resistance mutations, and treatment outcomes of falciparum malaria from the low-transmission to the pre-elimination phase on the islands of São Tomé and Príncipe. Malar J 2021; 20:467 [View Article] [PubMed]
    [Google Scholar]
  46. Salgueiro P, Vicente JL, Figueiredo RC, Pinto J. Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago. Infect Genet Evol 2016; 43:252–260 [View Article] [PubMed]
    [Google Scholar]
  47. Huang B, Tuo F, Liang Y, Wu W, Wu G et al. Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malar J 2018; 17:83 [View Article] [PubMed]
    [Google Scholar]
  48. Chen J-T, Li J, Zha G-C, Huang G, Huang Z-X et al. Genetic diversity and allele frequencies of Plasmodium falciparum msp1 and msp2 in parasite isolates from Bioko Island, Equatorial Guinea. Malar J 2018; 17:458 [View Article] [PubMed]
    [Google Scholar]
  49. al-Yaman F, Genton B, Anders RF, Falk M, Triglia T et al. Relationship between humoral response to Plasmodium falciparum merozoite surface antigen-2 and malaria morbidity in a highly endemic area of Papua New Guinea. Am J Trop Med Hyg 1994; 51:593–602 [View Article] [PubMed]
    [Google Scholar]
  50. Basco LK, Tahar R, Escalante A. Molecular epidemiology of malaria in Cameroon. XVIII. Polymorphisms of the Plasmodium falciparum merozoite surface antigen-2 gene in isolates from symptomatic patients. Am J Trop Med Hyg 2004; 70:238–244 [PubMed]
    [Google Scholar]
  51. Patgiri SJ, Sarma K, Sarmah N, Bhattacharyya N, Sarma DK et al. Characterization of drug resistance and genetic diversity of Plasmodium falciparum parasites from Tripura, Northeast India. Sci Rep 2019; 9:1–10 [View Article] [PubMed]
    [Google Scholar]
  52. Ranjit MR, Sharma YD. Genetic polymorphism of falciparum malaria vaccine candidate antigen genes among field isolates in India. Am J Trop Med Hyg 1999; 61:103–108 [View Article] [PubMed]
    [Google Scholar]
  53. Bhattacharya P, Malhotra P, Sharma P, Okenu DM, Chauhan VS. Merozoite surface antigen 2 (MSA-2) gene of Plasmodium falciparum strains from India. Mol Biochem Parasitol 1995; 74:125–127 [View Article] [PubMed]
    [Google Scholar]
  54. Bhattacharya PR, Kumar M, Das RH. Surprisingly little polymorphism in the merozoite-surface-protein-2 (MSP-2) gene of Indian Plasmodium falciparum . Ann Trop Med Parasitol 1999; 93:561–564 [View Article] [PubMed]
    [Google Scholar]
  55. Zwetyenga J, Rogier C, Tall A, Fontenille D, Snounou G et al. No influence of age on infection complexity and allelic distribution in Plasmodium falciparum infections in Ndiop, a Senegalese village with seasonal, mesoendemic malaria. Am J Trop Med Hyg 1998; 59:726–735 [View Article] [PubMed]
    [Google Scholar]
  56. Conway DJ, Greenwood BM, McBride JS. The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology 1991; 103:1–6 [View Article] [PubMed]
    [Google Scholar]
  57. Ntoumi F, Contamin H, Rogier C, Bonnefoy S, Trape JF et al. Age-dependent carriage of multiple Plasmodium falciparum merozoite surface antigen-2 alleles in asymptomatic malaria infections. Am J Trop Med Hyg 1995; 52:81–88 [View Article] [PubMed]
    [Google Scholar]
  58. Felger I, Tavul L, Kabintik S, Marshall V, Genton B et al. Plasmodium falciparum: extensive polymorphism in merozoite surface antigen 2 alleles in an area with endemic malaria in Papua New Guinea. Exp Parasitol 1994; 79:106–116 [View Article] [PubMed]
    [Google Scholar]
  59. Holder AA. Developments with anti‐malarial vaccines. Ann N Y Acad Sci 1993; 700:7–21 [View Article] [PubMed]
    [Google Scholar]
  60. Oeuvray C, Theisen M, Rogier C, Trape JF, Jepsen S et al. Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal. Infect Immun 2000; 68:2617–2620 [View Article] [PubMed]
    [Google Scholar]
  61. Kumar D, Dhiman S, Rabha B, Goswami D, Deka M et al. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J 2014; 13:450 [View Article] [PubMed]
    [Google Scholar]
  62. Nguetse CN, Ojo JA, Nchotebah C, Ikegbunam MN, Meyer CG et al. Genetic diversity of the Plasmodium falciparum glutamate-rich protein R2 region before and twelve years after introduction of artemisinin combination therapies among febrile children in Nigeria. Am J Trop Med Hyg 2018; 98:667–676 [View Article] [PubMed]
    [Google Scholar]
  63. Ariey F, Chalvet W, Hommel D, Peneau C, Hulin A et al. Plasmodium falciparum parasites in French Guiana: limited genetic diversity and high selfing rate. Am J Trop Med Hyg 1999; 61:978–985 [View Article] [PubMed]
    [Google Scholar]
  64. Montoya L, Maestre A, Carmona J, Lopes D, Do Rosario V et al. Plasmodium falciparum: diversity studies of isolates from two Colombian regions with different endemicity. Exp Parasitol 2003; 104:14–19 [View Article] [PubMed]
    [Google Scholar]
  65. Pratt-Riccio LR, Perce-da-Silva D de S, Lima-Junior J da C, Theisen M, Santos F et al. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil. Mem Inst Oswaldo Cruz 2013; 108:523–528 [View Article] [PubMed]
    [Google Scholar]
  66. Ranjit MR, Das A, Das BP, Das BN, Dash BP et al. Distribution of Plasmodium falciparum genotypes in clinically mild and severe malaria cases in Orissa, India. Trans R Soc Trop Med Hyg 2005; 99:389–395 [View Article] [PubMed]
    [Google Scholar]
  67. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S et al. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 1999; 93:369–374 [View Article] [PubMed]
    [Google Scholar]
  68. A-Elbasit IE, A-Elgadir TME, Elghazali G, Elbashir MI, Giha HA. Genetic fingerprints of parasites causing severe malaria in a setting of low transmission in Sudan. J Mol Microbiol Biotechnol 2007; 13:89–95 [View Article] [PubMed]
    [Google Scholar]
  69. Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172 [View Article] [PubMed]
    [Google Scholar]
  70. Akter J, Thriemer K, Khan WA, Sullivan DJ Jr, Noedl H et al. Genotyping of Plasmodium falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh. Malar J 2012; 11:386 [View Article] [PubMed]
    [Google Scholar]
  71. Congpuong K, Sukaram R, Prompan Y, Dornae A. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates along the Thai-Myanmar borders. Asian Pac J Trop Biomed 2014; 4:598–602 [View Article] [PubMed]
    [Google Scholar]
  72. Soe TN, Wu Y, Tun MW, Xu X, Hu Y et al. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar. Parasit Vectors 2017; 10:322 [View Article] [PubMed]
    [Google Scholar]
  73. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A et al. Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, East Malaysia. PLOS ONE 2016; 11:e0152415 [View Article] [PubMed]
    [Google Scholar]
  74. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM et al. Genetic diversity of Plasmodium falciparum isolates from Pahang, Malaysia based on MSP-1 and MSP-2 genes. Parasit Vectors 2011; 4:233 [View Article] [PubMed]
    [Google Scholar]
  75. Yuan L, Zhao H, Wu L, Li X, Parker D et al. Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. Acta Trop 2013; 125:53–59 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000350
Loading
/content/journal/acmi/10.1099/acmi.0.000350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error