Case Report: isolated from a wound infection after a piercing trauma in the Baltic Sea Open Access

Abstract

spp. are Gram-negative bacteria found in marine ecosystems. Non-cholera spp. can cause gastrointestinal infections and can also lead to wound infections through exposure to contaminated seawater. infections are increasingly documented from the Baltic Sea due to extended warm weather periods. We describe the first isolation of from a wound infection acquired by an impalement injury in the shallow waters of the Baltic Sea. The severe infection required amputation of the third toe. Whole genome sequencing of the isolate was performed and revealed a genome consisting of two circular chromosomes with a size of 1.57 and 3.24 Mb.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000312
2022-01-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/acmi/4/1/acmi000312.html?itemId=/content/journal/acmi/10.1099/acmi.0.000312&mimeType=html&fmt=ahah

References

  1. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK et al. Vibrio spp. infections. Nat Rev Dis Primers 2018; 4:8 [View Article] [PubMed]
    [Google Scholar]
  2. Baker-Austin C, Oliver JD. Vibrio vulnificus: new insights into a deadly opportunistic pathogen. Environ Microbiol 2018; 20:423–430 [View Article] [PubMed]
    [Google Scholar]
  3. Brehm TT, Berneking L, Rohde H, Chistner M, Schlickewei C et al. Wound infection with Vibrio harveyi following a traumatic leg amputation after a motorboat propeller injury in Mallorca, Spain: a case report and review of literature. BMC Infect Dis 2020; 20:104 [View Article] [PubMed]
    [Google Scholar]
  4. Gierer W, Rabsch W, Reissbrodt R. Siderophore pattern of fish-pathogenic Vibrio anguillarum Aeromonas spp. and Pseudomonas spp. from the German Baltic coast. Journal of Fish Diseases 1992; 15:417–23
    [Google Scholar]
  5. Bier N, Schwartz K, Guerra B, Strauch E. Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters. Front Microbiol 2015; 6:1179 [View Article] [PubMed]
    [Google Scholar]
  6. Jores J, Stephan R, Knabner D, Gelderblom HR, Lewin A. Isolation of Vibrio vulnificus and atypical Vibrio from surface water of the Baltic Sea in Germany. Berl Munch Tierarztl Wochenschr 2003; 116:396–400 [PubMed]
    [Google Scholar]
  7. Semenza JC, Trinanes J, Lohr W, Sudre B, Löfdahl M et al. Environmental suitability of Vibrio infections in a warming climate: an early warning system. Environ Health Perspect 2017; 125:10 [View Article] [PubMed]
    [Google Scholar]
  8. Castillo D, Vandieken V, Engelen B, Engelhardt T, Middelboe M. Draft genome sequences of six Vibrio diazotrophicus strains isolated from deep subsurface sediments of the Baltic Sea. Genome Announc 2018; 6:10 [View Article] [PubMed]
    [Google Scholar]
  9. Metelmann C, Metelmann B, Gründling M, Hahnenkamp K, Hauk G et al. Vibrio vulnificus, an increasing threat of sepsis in Germany?. Anaesthesist 2020; 69:672–678 [View Article] [PubMed]
    [Google Scholar]
  10. Baker-Austin C, Trinanes JA, Salmenlinna S, Löfdahl M, Siitonen A et al. Heat wave-associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis 2016; 22:1216–1220 [View Article] [PubMed]
    [Google Scholar]
  11. Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlars S et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 2014; 304:843–850 [View Article] [PubMed]
    [Google Scholar]
  12. Ramamurthy T, Chowdhury G, Pazhani GP, Shinoda S. Vibrio fluvialis: an emerging human pathogen. Front Microbiol 2014; 5:91 [View Article] [PubMed]
    [Google Scholar]
  13. Chakraborty R, Sinha S, Mukhopadhyay AK, Asakura M, Yamasaki S et al. Species-specific identification of Vibrio fluvialis by PCR targeted to the conserved transcriptional activation and variable membrane tether regions of the toxR gene. J Med Microbiol 2006; 55:805–808 [View Article] [PubMed]
    [Google Scholar]
  14. Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 1997; 26:1005–1011 [View Article] [PubMed]
    [Google Scholar]
  15. Schirmeister F, Wieczorek A, Dieckmann R, Taureck K, Strauch E. Evaluation of molecular methods to discriminate the closely related species Vibrio fluvialis and Vibrio furnissii. Int J Med Microbiol 2014; 304:851–857 [View Article] [PubMed]
    [Google Scholar]
  16. Tarr CL, Patel JS, Puhr ND, Sowers EG, Bopp CA et al. Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol 2007; 45:134–140 [View Article] [PubMed]
    [Google Scholar]
  17. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  18. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  19. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  20. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article] [PubMed]
    [Google Scholar]
  21. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  22. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  23. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  24. Andersson A, Meier HEM, Ripszam M, Rowe O, Wikner J et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 2015; 44 Suppl 3:345–356 [View Article] [PubMed]
    [Google Scholar]
  25. Huang K-C, Hsu RW-W. Vibrio fluvialis hemorrhagic cellulitis and cerebritis. Clin Infect Dis 2005; 40:e75–7 [View Article] [PubMed]
    [Google Scholar]
  26. Varghese MR, Farr RW, Wax MK, Chafin BJ, Owens RM. Vibrio fluvialis wound infection associated with medicinal leech therapy. Clin Infect Dis 1996; 22:709–710 [View Article] [PubMed]
    [Google Scholar]
  27. Horseman MA, Surani S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 2011; 15:e157–66 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000312
Loading

Most cited Most Cited RSS feed