1887

Abstract

serotype A2 is the main bacterial causative agent of ovine mannheimiosis, a disease that leads to substantial economic losses for livestock farmers. Several virulence factors allow to colonize the lungs and establish infection. Virulence factors can be directly secreted into the environment by bacteria but are also released through outer membrane vesicles (OMVs). In addition, due to the abuse of antibiotics in the treatment of this disease, multidrug-resistant bacterial strains of have emerged. One therapeutic alternative to antibiotics or an adjuvant to be used in combination with antibiotics could be lactoferrin (Lf), a multifunctional cationic glycoprotein of the mammalian innate immune system to which no bacterial resistance has been reported. The aim of this work was to determine the effect of bovine iron-free Lf (apo-BLf) on the production and secretion of proteases into culture supernatant (CS) and on their release in OMVs. Zymography assays showed that addition of sub-MIC concentrations of apo-BLf to cultures inhibited protease secretion without affecting culture growth. Biochemical characterization revealed that these proteases were mainly cysteine- and metalloproteases. The secretion of a 100 kDa metalloprotease was inhibited by sub-MIC concentrations of apo-BLf since this protease was present in the cytoplasm and OMVs but not in CS proteins, as corroborated by Western blotting. On the other hand, proteases produced by caused cleavage of apo-BLf. However, when Lf is cleaved, peptides known as lactoferricins, which are more bactericidal than natural Lf, can be produced. A2 protease-mediated degradation of host tissue proteins could be an important virulence factor during the infectious process of pneumonia in ovines. The mechanism of protease secretion could be inhibited by treatment with apo-BLf in animals.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000269
2021-10-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/10/acmi000269.html?itemId=/content/journal/acmi/10.1099/acmi.0.000269&mimeType=html&fmt=ahah

References

  1. Dereck AM, Simons KR, Confer AW, Panciera RJ, Clinkenberd KD. Pasteurella haemolytica antigens associated with resistence to pneumonic pasteurelosis. Infect Immun 1989; 57:711–716 [View Article] [PubMed]
    [Google Scholar]
  2. Hussain R, Mahmood F, Ali HM, Bacterial SAB. PCR and clinico-pathological diagnosis of naturally occurring pneumonic pasturellosis (mannheimiosis) during subtropical climate in sheep. Microb Pathog 2017; 112:176–181 [View Article] [PubMed]
    [Google Scholar]
  3. Jeyaseelan S, Sreevatsan S, Maheswaran SK. Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Anim Health Res Rev 2002; 3:69–82 [View Article] [PubMed]
    [Google Scholar]
  4. Paulsen DB, Confer AW, Clinkenbeard KD, Mosier DA. Pasteurella haemolytica lipopolysaccharide-induced cytotoxicity in bovine pulmonary artery endothelial monolayers: inhibition by indomethacin. Vet Pathol 1995; 32:173–183 [View Article] [PubMed]
    [Google Scholar]
  5. Belzer CA. Characterization and identification of the immunoreactive 35 kilodalton periplasmic iron-regulated protein of Mannheimia (Pasteurella) haemolvtica. Vet Méx 2001; 40:293–314
    [Google Scholar]
  6. Straus DC, Jolley WL, Purdy CW. Characterization of neuraminidases produced by various serotypes of pasteurella-haemolytica. Infect Immun 1993; 61:4669–4674 [View Article] [PubMed]
    [Google Scholar]
  7. Abdullah KM, Lo RY, Mellors A. Distribution of glycoprotease activity and the glycoprotease gene among serotypes of Pasteurella haemolytica. Biochem Soc Trans 1990; 18:901–903 [View Article] [PubMed]
    [Google Scholar]
  8. González RC, Trigo TF, Reyes LM, León SN, Godínez VD et al. Characterization of microvesicles of Mannheimia haemolytica serotype A1 (Reference strain) and serotype A2 (field Isolate). J ANim Vet Adv 2007; 6:1172–1182
    [Google Scholar]
  9. Pijoan A, Aguilar RF. Resistencia y sensibilidad a antimicrobianos en cepas de Pasteurella haemolytica, P. multocida y Haemophilus somnus, aisladas de becerras lecheras en establos de Tijuana. Vet Méx 2000; 2:153–156
    [Google Scholar]
  10. Watts JL, Yancey RJ, Salmon SA, Case CA. A 4-year survey of antimicrobial susceptibility trends for isolates from cattle with bovine respiratory disease in North America. J Clin Microbiol 1994; 32:725–731 [View Article] [PubMed]
    [Google Scholar]
  11. Samaniego Barrón ML, Contreras JJL, Jaramillo–Arango CJ, Aguilar–Romero F, Vázquez Navarrete J et al. Resistencia a antimicrobianos en cepas de Mannheimia haemolytica aisladas de exudado nasal de bovinos productores de leche. Vet Méx 2012; 43:123–132
    [Google Scholar]
  12. Olsen AS, Warrass R, Douthwaite S. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 2015; 70:420–423 [View Article] [PubMed]
    [Google Scholar]
  13. Lubbers BV, Hanzlicek GA. Antimicrobial multidrug resistance and coresistance patterns of Mannheimia haemolytica isolated from bovine respiratory disease cases--a three-year (2009-2011) retrospective analysis. J Vet Diagn Invest 2013; 25:413–417 [View Article] [PubMed]
    [Google Scholar]
  14. Orsi N. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 2004; 17:189–196 [View Article] [PubMed]
    [Google Scholar]
  15. Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol 2012; 90:233–244 [View Article] [PubMed]
    [Google Scholar]
  16. Baker HM, Baker EN. Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals 2004; 17:209–216 [View Article] [PubMed]
    [Google Scholar]
  17. Ellison RT, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect Immun 1988; 56: [View Article] [PubMed]
    [Google Scholar]
  18. Appelmelk BJ, An YQ, Geerts M, Thijs BG, de Boer HA et al. Lactoferrin is a lipid a-binding protein. Infect Immun 1994; 62:2628–2632 [View Article]
    [Google Scholar]
  19. Drago-Serrano ME, de la Garza-Amaya M, Luna JS, Campos-Rodríguez R. Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. Int Immunopharmacol 2012; 12:1–9 [View Article] [PubMed]
    [Google Scholar]
  20. Ammendolia MG, Bertuccini L, Iosi F, Minelli F, Berlutti F. Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia. Biometals 2010; 23:531–542 [View Article] [PubMed]
    [Google Scholar]
  21. Arslan SY, Leung KP, Wu CD. The effect of lactoferrin on oral bacterial attachment. Oral Microbiol Immunol 2009; 24:411–416 [View Article] [PubMed]
    [Google Scholar]
  22. Ochoa TJ, Brown EL, Guion CE, Chen JZ, McMahon RJ et al. Effect of lactoferrin on enteroaggregative E. coli (EAEC). Biochem Cell Biol 2006; 84:369–376 [View Article] [PubMed]
    [Google Scholar]
  23. Samaniego-Barron L, Luna-Castro S, Pina-Vazquez C, Suarez-Guemes F, de la Garza M. Two outer membrane proteins are bovine lactoferrin-binding proteins in Mannheimia haemolytica A1. Vet Res 2016; 47:93 [View Article] [PubMed]
    [Google Scholar]
  24. Avalos-Gómez Christian R-L, Gerardo R-R, Efrén D-A, Edgar Z, Cynthia G-R et al. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet Res 2020; 1:2–13
    [Google Scholar]
  25. Ramirez Rico G, Martinez-Castillo M, Gonzalez-Ruiz C, Luna-Castro S, de la Garza M. Mannheimia haemolytica A2 secretes different proteases into the culture medium and in outer membrane vesicles. Microb Pathog 2017; 113:276–281 [View Article] [PubMed]
    [Google Scholar]
  26. Luna-Castro S, Aguilar-Romero F, Samaniego-Barron L, Godinez-Vargas D, de la Garza M. Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae. Biometals 2014; 27:891–903 [View Article] [PubMed]
    [Google Scholar]
  27. Luber P, Bartelt E, Genschow E, Wagner J, Hahn H. Comparison of broth microdilution, E Test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 2003; 41:1062–1068 [View Article] [PubMed]
    [Google Scholar]
  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:254 [View Article]
    [Google Scholar]
  29. Quan S, Hiniker A, Collet JF, Bardwell JC. Isolation of bacteria envelope proteins. Methods Mol Biol 2013; 966:359–366 [View Article] [PubMed]
    [Google Scholar]
  30. Martínez-Castillo M, Ramírez-Rico G, Serrano-Luna J, Shibayama M. Iron-binding protein degradation by cysteine proteases of Naegleria fowleri. Biomed Res Int 2015; 2015:1–8
    [Google Scholar]
  31. Towbin H, Staehelin Ty, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 1979; 74:4354
    [Google Scholar]
  32. Garcia Gonzalez O, Garcia RM, de la Garza M, Vaca S, Paniagua GL et al. Actinobacillus pleuropneumoniae metalloprotease: cloning and in vivo expression. FEMS Microbiol Lett 2004; 234:81–86 [View Article] [PubMed]
    [Google Scholar]
  33. Haney EF, Nazmi K, Bolscher JG, Vogel HJ. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Biochim Biophys Acta 2012; 1818:762–775 [View Article] [PubMed]
    [Google Scholar]
  34. Kalmar J, Arnold R. Killing of Actinobacillus actinomycetemcomitans by human lactoferrin. Infect Immun 1988; 56:2552–2557 [View Article] [PubMed]
    [Google Scholar]
  35. Roseanu A, Damian M, EVANS RW. Mechanisms of the antibacterial activity of lactoferrin and lactoferrin-derived peptides. J Biol Chem 2010; 47:203–209
    [Google Scholar]
  36. Ramos-Clamont GR-FD, Guzmán-Partida AM, Acedo-Félix EY, Vázquez-Moreno L. Actividad antibacteriana de lactoferrina bovina y lactoferrina porcina sobre Escherichia coli K88. Rev cient (Maracaibo) 2010; 20:473–479
    [Google Scholar]
  37. Dial EJ, Hall LR, Serna H, Romero JJ, Fox JG et al. Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig Dis Sci 1998; 43:2750–2756 [View Article] [PubMed]
    [Google Scholar]
  38. Kutila T, Pyorala S, Saloniemi H, Kaartinen L. Antibacterial effect of bovine lactoferrin against udder pathogens. Acta Vet Scand 2003; 44:35–42 [View Article] [PubMed]
    [Google Scholar]
  39. Wakabayashi H, Yamauchi K, Kobayashi T, Yaeshima T, Iwatsuki K et al. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 2009; 53:3308–3316 [View Article]
    [Google Scholar]
  40. Ramirez Rico G, Martinez-Castillo M, de la Garza M, Shibayama M, Serrano-Luna J. Acanthamoeba castellanii proteases are capable of degrading iron-binding proteins as a possible mechanism of pathogenicity. J Eukaryot Microbiol 2015; 62:614–622 [View Article]
    [Google Scholar]
  41. Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G, De la Garza M, Serrano-Luna J. Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012:26 [View Article]
    [Google Scholar]
  42. Culp E, Wright GD. Bacterial proteases, untapped antimicrobial drug targets. J Antibiot 2017; 70:366–377 [View Article]
    [Google Scholar]
  43. Mentlein R. Cell-surface peptidases. Int Rev Cytol 2004; 235:165–213 [View Article] [PubMed]
    [Google Scholar]
  44. Negrete-Abascal E, Tenorio VR, Guerrero AL, García RM, Reyes ME et al. Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes. Can J Vet Res 1998; 62:183–190 [PubMed]
    [Google Scholar]
  45. Hwang SA, Wilk KM, Budnicka M, Olsen M, Bangale YA et al. Lactoferrin enhanced efficacy of the BCG vaccine to generate host protective responses against challenge with virulent Mycobacterium tuberculosis. Vaccine 2007; 25:6730–6743 [View Article] [PubMed]
    [Google Scholar]
  46. Jaramillo ACJ, Trigo TFJ, Suárez GF. Mannheimiosis bovina: etiología, prevención y control. Vet Méx 2009; 40:293–314
    [Google Scholar]
  47. Cutone A, Lepanto MS, Rosa L, Scotti MJ, Rossi A et al. Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int J Mol Sci 2019; 20:14 [View Article]
    [Google Scholar]
  48. Ochoa TJ, Noguera-Obenza M, Ebel F, Guzman CA, Gomez HF et al. Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun 2003; 71:5149–5155 [View Article] [PubMed]
    [Google Scholar]
  49. Gomez HF, Ochoa TJ, Carlin LG, Cleary TG. Human lactoferrin impairs virulence of Shigella flexneri. J Infect Dis 2003; 187:87–95 [View Article] [PubMed]
    [Google Scholar]
  50. Qiu QJ, Hendrixson DR, Baker EN, Murphy TF, St. Geme III JW et al. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc Natl Acad Sci USA 1998; 95:12641–12646 [View Article] [PubMed]
    [Google Scholar]
  51. Plaut AG, Qiu J. Human lactoferrin proteolytic activity: Analysis of the cleaved region in the IGA protease of Haemophilus influenzae. Vaccine 2000; 19 Suppl 1:S148–52 [View Article]
    [Google Scholar]
  52. Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T et al. Twenty-five years of research on bovine lactoferrin applications. Biochimie 2009; 91:52–57 [View Article] [PubMed]
    [Google Scholar]
  53. Coetzee Johann F, Magstadt Drew R, Sidhu Pritam K, Lendie F, Schuler Adlai M et al. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PloS one 2019; 14:1–24
    [Google Scholar]
  54. Vega-Bautista A, De la Garza M, César-Carrero J, Campos-Rodríguez R, Godínez-Victoria M et al. The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int J Mol Sci 2019; 20:1–24 [View Article]
    [Google Scholar]
  55. Rahman MM, Kim WS, Ito T, Kumura H, Shimazaki K. Growth promotion and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe 2009; 15:133–137 [View Article] [PubMed]
    [Google Scholar]
  56. Tian H, Maddox IS, Ferguson LR, Shu Q. Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens. Biometals 2010; 23:593–596 [View Article]
    [Google Scholar]
  57. Zarzosa-Moreno D, Avalos-Gomez C, Ramirez-Texcalco LS, Torres-Lopez E, Ramirez-Mondragon R et al. Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by pathogens. Molecules 2020; 25:24 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000269
Loading
/content/journal/acmi/10.1099/acmi.0.000269
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error