1887

Abstract

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.

Funding
This study was supported by the:
  • Tim Downing , Dublin City University , (Award Enhancing Performance grant)
  • Arun Gonzales Decano , Dublin City University , (Award O’Hare Ph.D. fellowship)
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000179
2020-11-18
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000179/acmi000179.html?itemId=/content/journal/acmi/10.1099/acmi.0.000179&mimeType=html&fmt=ahah

References

  1. Gibson MK, Wang B, Ahmadi S, Burnham C-AD, Tarr PI et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology 2016; 1:16024 [CrossRef]
    [Google Scholar]
  2. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 2016; 7:e00347 [CrossRef][PubMed]
    [Google Scholar]
  3. Calhau V, Ribeiro G, Mendonça N, Da Silva GJ. Prevalent combination of virulence and plasmidic-encoded resistance in ST 131 Escherichia coli strains. Virulence 2013; 4:726–729 [CrossRef]
    [Google Scholar]
  4. Van der Bij AK, Peirano G, Pitondo-Silva A, Pitout JD. The presence of genes encoding for different virulence factors in clonally related Escherichia coli that produce CTX-Ms. Diagn Microbiol Infect Dis 2012; 72:297–302 [CrossRef]
    [Google Scholar]
  5. Goswami C, Fox S, Holden M, Connor M, Leanord A et al. Genetic analysis of invasive Escherichia coli in Scotland reveals determinants of healthcare-associated versus community-acquired infections. Microb Genom 2018; 4: [CrossRef]
    [Google Scholar]
  6. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 2016; 213:6–13 [CrossRef]
    [Google Scholar]
  7. The LD. Garrod Lecture: preparing for the black swans of resistance. J Antimicrob Chemother 2018; 2018:2907–2915
    [Google Scholar]
  8. Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 2014; 58:4997–5004 [CrossRef]
    [Google Scholar]
  9. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Research 2017; 6:195 [CrossRef]
    [Google Scholar]
  10. Forde BM, Ben Zakour NL, Stanton-Cook M, Phan M-D, Totsika M et al. The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone. PLoS One 2014; 9:e104400 [CrossRef][PubMed]
    [Google Scholar]
  11. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016; 12:1006280 [CrossRef]
    [Google Scholar]
  12. Kuehn MJ, Heuser J, Normark S, Hultgren SJ. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 1992; 356:252–255 [CrossRef]
    [Google Scholar]
  13. Connell I, Agace W, Klemm P, Schembri M, Mărild S et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 1996; 93:9827–9832 [CrossRef]
    [Google Scholar]
  14. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. Embo J 2000; 19:2803–2812 [CrossRef]
    [Google Scholar]
  15. Selvarangan R, Goluszko P, Singhal J, Carnoy C, Moseley S et al. Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect Immun 2004; 72:4827–4835 [CrossRef]
    [Google Scholar]
  16. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 2013; 4:e00377–13 [CrossRef]
    [Google Scholar]
  17. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 2014; 111:5694–5699 [CrossRef]
    [Google Scholar]
  18. Bloch CA, Orndorff PE. Impaired colonization by and full invasiveness of Escherichia coli K1 bearing a site-directed mutation in the type 1 pilin gene. Infect Immun 1990; 58:275–278 [CrossRef]
    [Google Scholar]
  19. Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 2013; 208:921–928 [CrossRef]
    [Google Scholar]
  20. Sarkar S, Vagenas D, Schembri MA, Totsika M. Biofilm formation by multidrug resistant Escherichia coli ST131 is dependent on type 1 fimbriae and assay conditions. Pathog Dis 2016; 74:ftw013 [CrossRef]
    [Google Scholar]
  21. Bahrani-Mougeot FK, Buckles EL, Lockatell CV, Hebel JR, Johnson DE et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 2002; 45:1079–1093 [CrossRef]
    [Google Scholar]
  22. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535:85–93 [CrossRef]
    [Google Scholar]
  23. Bittinger K et al. Bacterial colonization reprograms the neonatal gut metabolome. Nat Microbiol 2020
    [Google Scholar]
  24. Conway T, Cohen PS. Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol Spectr 2015; 3:
    [Google Scholar]
  25. Hudault S, Guignot J, Servin AL. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 2001; 49:47–55 [CrossRef]
    [Google Scholar]
  26. Li G, Bielicki JA, Islam MS, Berezin EN et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network. Arch Dis Child 2020; 105:26–31 [CrossRef]
    [Google Scholar]
  27. Groussin M et al. Industrialization is associated with elevated rates of horizontal gene transfer in the human microbiome. BioRxiv 2020
    [Google Scholar]
  28. Gurnee EA, Ndao IM, Johnson JR, Johnston BD, Gonzalez MD et al. Gut colonization of healthy children and their mothers with pathogenic Ciprofloxacin-resistant Escherichia coli. J Infect Dis 2015; 212:1862–1868 [CrossRef]
    [Google Scholar]
  29. Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y et al. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J Urol 1997; 157:1127–1129 [CrossRef]
    [Google Scholar]
  30. Rodríguez-Revuelta MJ, López-Cerero L, Serrano L, Luna-Lagares S, Pascual A et al. Duration of colonization by extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy newborns and associated risk factors: a prospective cohort study. Open Forum Infect Dis 2018; 5:ofy312 [CrossRef]
    [Google Scholar]
  31. Roemhild R, Linkevicius M, Andersson DI. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol 2020; 18:e3000612 [CrossRef]
    [Google Scholar]
  32. Russell JT et al. Antibiotics may influence gut microbiome signaling to the brain in preterm neonates. BioRxiv 2020
    [Google Scholar]
  33. ECDCEuropean Centre for Disease Prevention and Control European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) Stockholm: ECDC; 2017
    [Google Scholar]
  34. Findlay J, Gould VC, North P, Bowker KE, Williams MO et al. Characterization of cefotaxime-resistant urinary Escherichia coli from primary care in south-west England 2017–18. J Antimicrob Chemother 2020; 75:65–71 [CrossRef]
    [Google Scholar]
  35. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015; 28:565–591 [CrossRef]
    [Google Scholar]
  36. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8:159–166 [CrossRef]
    [Google Scholar]
  37. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens. FEMS Microbiol Rev 2011; 35:790–819 [CrossRef]
    [Google Scholar]
  38. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7:173 [CrossRef]
    [Google Scholar]
  39. Goldstone RJ, Smith DGE. A population genomics approach to exploiting the accessory ‘resistome’ of Escherichia coli. Microb Genom 2017; 3:e000108 [CrossRef]
    [Google Scholar]
  40. Baraniak A, Fiett J, Hryniewicz W, Nordmann P, Gniadkowski M. Ceftazidime-hydrolysing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J Antimicrob Chemother 2002; 50:393–396 [CrossRef][PubMed]
    [Google Scholar]
  41. Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016; 533:212–216 [CrossRef]
    [Google Scholar]
  42. Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 2020; 27:140–153 [CrossRef]
    [Google Scholar]
  43. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A 2017; 114:1135–1140 [CrossRef]
    [Google Scholar]
  44. Hazen TH, Mettus R, McElheny CL, Bowler SL, Nagaraj S et al. Diversity among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep 2018; 8:10291 [CrossRef]
    [Google Scholar]
  45. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018; 6:e4210 [CrossRef]
    [Google Scholar]
  46. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM et al. Outbreak of NDM-1-Producing Klebsiella pneumoniae in a Dutch Hospital, with Interspecies Transfer of the Resistance Plasmid and Unexpected Occurrence in Unrelated Health Care Centers. J Clin Microbiol 2017; 55:2380–2390 [CrossRef]
    [Google Scholar]
  47. Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM et al. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics 2017; 18:684 [CrossRef]
    [Google Scholar]
  48. Martin J, Phan HTT, Findlay J, Stoesser N, Pankhurst L et al. Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. J Antimicrob Chemother 2017; 72:3025–3034 [CrossRef]
    [Google Scholar]
  49. Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J et al. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J Appl Microbiol 2011; 110:541–549 [CrossRef]
    [Google Scholar]
  50. Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D et al. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom 2020; 6: [CrossRef]
    [Google Scholar]
  51. McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM et al. Diversification of Colonization Factors in a Multidrug-Resistant Escherichia coli Lineage Evolving under Negative Frequency-Dependent Selection. MBio 2019; 10:e00644–19 [CrossRef]
    [Google Scholar]
  52. Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J et al. Complete assembly of Escherichia coli ST131 genomes using long reads demonstrates antibiotic resistance gene variation within diverse plasmid and chromosomal contexts. mSphere 2019; 4:e00130–19 [CrossRef]
    [Google Scholar]
  53. Ny S, Sandegren L, Salemi M, Giske CG. Genome and plasmid diversity of extended-spectrum β-lactamase-producing Escherichia coli ST131 – tracking phylogenetic trajectories with Bayesian inference. Sci Rep 2019; 9:10291 [CrossRef]
    [Google Scholar]
  54. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [CrossRef]
    [Google Scholar]
  55. Johnson JR, Davis G, Clabots C, Johnston BD, Porter S et al. Household Clustering of Escherichia coli Sequence Type 131 Clinical and Fecal Isolates According to Whole Genome Sequence Analysis. Open Forum Infect Dis 2016; 3:ofw129 [CrossRef]
    [Google Scholar]
  56. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53:2227–2238 [CrossRef]
    [Google Scholar]
  57. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61:273–281 [CrossRef]
    [Google Scholar]
  58. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014; 27:543–574 [CrossRef]
    [Google Scholar]
  59. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ et al. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 2009; 53:4472–4482 [CrossRef]
    [Google Scholar]
  60. Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S et al. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 2015; 10:e0122369 [CrossRef]
    [Google Scholar]
  61. Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 2019; 9:17394 [CrossRef]
    [Google Scholar]
  62. Goswami C, Fox S, Holden MTG, Connor M, Leanord A et al. Origin, maintenance and spread of antibiotic resistance genes within plasmids and chromosomes of bloodstream isolates of Escherichia coli. Microb Genom 2020; 6: [CrossRef]
    [Google Scholar]
  63. Jørgensen SB, Søraas A, Sundsfjord A, Liestøl K, Leegaard TM et al. Fecal carriage of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae after urinary tract infection – a three year prospective cohort study. PLoS One 2017; 12:e0173510 [CrossRef]
    [Google Scholar]
  64. Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE. Evidence of extensive DNA transfer between bacteroidales species within the human gut. mBio 2014; 5:e01305–01314 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhao S. Adaptive evolution within the gut microbiome of individual people. BioRxiv 2017 [CrossRef]
    [Google Scholar]
  66. Bishara A. Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale. BioRxiv [CrossRef]
    [Google Scholar]
  67. Knudsen PK, Gammelsrud KW, Alfsnes K, Steinbakk M, Abrahamsen TG et al. Transfer of a bla CTX-M-1-carrying plasmid between different Escherichia coli strains within the human gut explored by whole genome sequencing analyses. Sci Rep 2018; 8:280 [CrossRef]
    [Google Scholar]
  68. Göttig S, Gruber TM, Stecher B, Wichelhaus TA, Kempf VAJ. In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin Infect Dis 2015; 60:1808–1815 [CrossRef]
    [Google Scholar]
  69. Willemsen I, van Esser J, Kluytmans-van den Bergh M, Zhou K, Rossen JW et al. Retrospective identification of a previously undetected clinical case of OXA-48-producing K. pneumoniae and E. coli: the importance of adequate detection guidelines. Infection 2016; 44:107–110 [CrossRef]
    [Google Scholar]
  70. Evans DR et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single Hospital. Elife 2020
    [Google Scholar]
  71. Trobos M, Lester CH, Olsen JE, Frimodt-Møller N, Hammerum AM. Natural transfer of sulphonamide and ampicillin resistance between Escherichia coli residing in the human intestine. J Antimicrob Chemother 2009; 63:80–86 [CrossRef]
    [Google Scholar]
  72. Karami N, Martner A, Enne VI, Swerkersson S, Adlerberth I, Wold AE et al. Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics. J Antimicrob Chemother 2007; 60:1142–1145 [CrossRef]
    [Google Scholar]
  73. Warnes SL, Highmore CJ, Keevil CW. Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. mBio 2012; 3:e00489–12 [CrossRef]
    [Google Scholar]
  74. Andersson P, Engberg I, Lidin-Janson G, Lincoln K, Hull R et al. Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence. Infect Immun 1991; 59:2915–2921 [CrossRef]
    [Google Scholar]
  75. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [CrossRef]
    [Google Scholar]
  76. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [CrossRef]
    [Google Scholar]
  77. Rowe WPM, Winn MD. Indexed variation graphs for efficient and accurate resistome profiling. Bioinformatics 2018; 34:3601–3608 [CrossRef]
    [Google Scholar]
  78. Phan MD, Bottomley AL, Peters KM, Harry EJ, Schembri MA. Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. J Antimicrob Chemother 2020dkaa023
    [Google Scholar]
  79. Merlin TL, Davis GE, Anderson WL, Moyzis RK, Griffith JK. Aminoglycoside uptake increased by Tet gene expression. Antimicrob Agents Chemother 1989; 33:1549–1552 [CrossRef]
    [Google Scholar]
  80. Stavropoulos TA, Strathdee CA. Expression of the tetA(C) tetracycline efflux pump in Escherichia coli confers osmotic sensitivity. FEMS Microbiol. Lett 1000:147–150
    [Google Scholar]
  81. Heng J, Zhao Y, Liu M, Liu Y, Fan J et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res 2015; 25:1060–1073 [CrossRef]
    [Google Scholar]
  82. Nguyen-Distèche M, Fraipont C, Buddelmeijer N, Nanninga N. The structure and function of Escherichia coli penicillin-binding protein 3. Cell Mol Life Sci 1998; 54:309–316 [CrossRef]
    [Google Scholar]
  83. Nakamura M, Maruyama IN, Soma M, Kato J-ichi, Suzuki H et al. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Molec Gen Genet 1983; 191:1–9 [CrossRef]
    [Google Scholar]
  84. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 2014; 453:254–267 [CrossRef]
    [Google Scholar]
  85. Curtis NA, Eisenstadt RL, Turner KA, White AJ. Inhibition of penicillin-binding protein 3 of Escherichia coli K-12. Effects upon growth, viability and outer membrane barrier function. J Antimicrob Chemother 1985; 16:287–296 [CrossRef]
    [Google Scholar]
  86. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [CrossRef]
    [Google Scholar]
  87. Toh H, Oshima K, Toyoda A, Ogura Y, Ooka T et al. Complete genome sequence of the wild-type commensal Escherichia coli strain SE15, belonging to phylogenetic group B2. J Bacteriol 2010; 192:1165–1166 [CrossRef]
    [Google Scholar]
  88. Johnson JR, Porter S, Thuras P, Castanheira M. Epidemic emergence in the United States of Escherichia coli sequence type 131-H30 (ST131-H30), 2000 to 2009. Antimicrob Agents Chemother 2017; 61:e00732–17 [CrossRef]
    [Google Scholar]
  89. Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM. Molecular characterization of plasmids encoding CTX-M-15 -lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 2006; 58:665–668 [CrossRef]
    [Google Scholar]
  90. Dudley EG, Abe C, Ghigo JM, Latour-Lambert P, Hormazabal JC et al. An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect Immun 2006; 74:2102–2114 [CrossRef]
    [Google Scholar]
  91. Dhanji H, Doumith M, Hope R, Livermore DM, Woodford N. ISEcp1-mediated transposition of linked blaCTX-M-3 and blaTEM-1b from the IncI1 plasmid pEK204 found in clinical isolates of Escherichia coli from Belfast, UK. J Antimicrob Chemother 2011; 66:2263–2265 [CrossRef]
    [Google Scholar]
  92. Runyen-Janecky LJ, Hong M, Payne SM. The virulence plasmid-encoded impCAB operon enhances survival and induced mutagenesis in Shigellaflexneri after exposure to UV radiation. Infect Immun 1999; 67:1415–1423 [CrossRef]
    [Google Scholar]
  93. Akiba M, Sekizuka T, Yamashita A, Kuroda M, Fujii Y et al. Distribution and relationships of antimicrobial resistance determinants among extended-spectrum-cephalosporin-resistant or carbapenem-resistant Escherichia coli isolates from rivers and sewage treatment plants in India. Antimicrob Agents Chemother 2016; 60:2972–2980 [CrossRef]
    [Google Scholar]
  94. Purves K, Macintyre L, Brennan D, Hreggviðsson G, Kuttner E et al. Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites 2016; 6:2 [CrossRef]
    [Google Scholar]
  95. Typas A, Sourjik V. Bacterial protein networks: properties and functions. Nat Rev Microbiol 2015; 13:559–572 [CrossRef]
    [Google Scholar]
  96. Kirschner M, Gerhart J. Evolvability. Proc Natl Acad Sci U S A 1998; 95:8420–8427 [CrossRef]
    [Google Scholar]
  97. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S et al. String v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47:D607–D613 [CrossRef]
    [Google Scholar]
  98. Miryala SK, Ramaiah S. Exploring the multi-drug resistance in Escherichia coli O157:H7 by gene interaction network: A systems biology approach. Genomics 2019; 111:958–965 [CrossRef]
    [Google Scholar]
  99. Zong Z. Complete sequence of pJIE186-2, a plasmid carrying multiple virulence factors from a sequence type 131 Escherichia coli O25 strain. Antimicrob Agents Chemother 2013; 57:597–600 [CrossRef]
    [Google Scholar]
  100. Holden N, Totsika M, Dixon L, Catherwood K, Gally DL. Regulation of P-Fimbrial phase variation frequencies in Escherichia coli CFT073. Infect Immun 2007; 75:3325–3334 [CrossRef]
    [Google Scholar]
  101. Clark G, Paszkiewicz K, Hale J, Weston V, Constantinidou C et al. Genomic analysis uncovers a phenotypically diverse but genetically homogeneous Escherichia coli ST131 clone circulating in unrelated urinary tract infections. J Antimicrob Chemother 2012; 67:868–877 [CrossRef]
    [Google Scholar]
  102. Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017; 546:528–532 [CrossRef]
    [Google Scholar]
  103. Xia Y, Gally D, Forsman-Semb K, Uhlin BE. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. Embo J 2000; 19:1450–1457 [CrossRef]
    [Google Scholar]
  104. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC et al. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 2005; 73:7588–7596 [CrossRef][PubMed]
    [Google Scholar]
  105. Forsman K, Göransson M, Uhlin BE. Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. Embo J 1989; 8:1271–1277 [CrossRef]
    [Google Scholar]
  106. Holden NJ, Totsika M, Mahler E, Roe AJ, Catherwood K et al. Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 2006; 152:1143–1153 [CrossRef][PubMed]
    [Google Scholar]
  107. Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Olschläger T et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006; 103:12879–12884 [CrossRef][PubMed]
    [Google Scholar]
  108. Welch RA, Burland V, Plunkett G, Redford P, Roesch P et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:17020–17024 [CrossRef][PubMed]
    [Google Scholar]
  109. Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta 2014; 1840:2783–2793 [CrossRef][PubMed]
    [Google Scholar]
  110. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337:1107–1111 [CrossRef][PubMed]
    [Google Scholar]
  111. Chen SL, Hung C-S, Xu J, Reigstad CS, Magrini V et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 2006; 103:5977–5982 [CrossRef][PubMed]
    [Google Scholar]
  112. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010; 8:207–217 [CrossRef][PubMed]
    [Google Scholar]
  113. Didelot X, Méric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 2012; 13:256 [CrossRef][PubMed]
    [Google Scholar]
  114. Dixit PD, Pang TY, Studier FW, Maslov S. Recombinant transfer in the basic genome of Escherichia coli. Proc Natl Acad Sci U S A 2015; 112:9070–9075 [CrossRef][PubMed]
    [Google Scholar]
  115. Tchesnokova V, Radey M, Chattopadhyay S, Larson L, Weaver JL et al. Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombinations in 11 gene loci. Proc Natl Acad Sci U S A 2019; 116:14740–14748 [CrossRef][PubMed]
    [Google Scholar]
  116. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011; 480:241–244 [CrossRef][PubMed]
    [Google Scholar]
  117. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 2017; 550:61–66 [CrossRef][PubMed]
    [Google Scholar]
  118. Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N et al. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 2018; 24:1809–1814 [CrossRef][PubMed]
    [Google Scholar]
  119. Sundén F, Håkansson L, Ljunggren E, Wullt B. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J Urol 2010; 184:179–185 [CrossRef][PubMed]
    [Google Scholar]
  120. Sundén F, Håkansson L, Ljunggren E, Wullt B. Bacterial interference--is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection?. Int J Antimicrob Agents 2006; 28 Suppl 1:26–29 [CrossRef][PubMed]
    [Google Scholar]
  121. Watts RE, Tan CK, Ulett GC, Carey AJ, Totsika M et al. Escherichia coli 83972 expressing a P fimbriae oligosaccharide receptor mimic impairs adhesion of uropathogenic E. coli. J Infect Dis 2012; 206:1242–1249 [CrossRef][PubMed]
    [Google Scholar]
  122. Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D et al. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog 2010; 6:e1001078 [CrossRef][PubMed]
    [Google Scholar]
  123. Duprilot M et al. Success of Escherichia coli O25b:H4 ST131 clade C associated with a decrease in virulence. BioRxiv 2019
    [Google Scholar]
  124. Mora A, Dahbi G, López C, Mamani R, Marzoa J et al. Virulence patterns in a murine sepsis model of ST131 Escherichia coli clinical isolates belonging to serotypes O25b:H4 and O16:H5 are associated to specific virotypes. PLoS One 2014; 9:e87025 [CrossRef][PubMed]
    [Google Scholar]
  125. Fondi M, Karkman A, Tamminen MV, Bosi E, Virta M et al. "Every gene is everywhere but the environment selects": Global Geolocalization of gene sharing in environmental samples through network analysis. Genome Biol Evol 2016; 8:1388–1400 [CrossRef][PubMed]
    [Google Scholar]
  126. Downing T. Tackling drug resistant infection outbreaks of Global Pandemic Escherichia coli ST131 using evolutionary and epidemiological genomics. Microorganisms 2015; 3:236–267 [CrossRef][PubMed]
    [Google Scholar]
  127. Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol 2020; 5:430–442 [CrossRef][PubMed]
    [Google Scholar]
  128. Smith H, Bossers A, Harders F, Wu G, Woodford N et al. Characterization of epidemic IncI1-Iγ plasmids harboring Ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother 2015; 59:5357–5365 [CrossRef][PubMed]
    [Google Scholar]
  129. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73:1121–1137 [CrossRef][PubMed]
    [Google Scholar]
  130. Rodríguez-Navarro J, Miró E, Brown-Jaque M, Hurtado JC, Moreno A et al. Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:piie02064–19 [CrossRef][PubMed]
    [Google Scholar]
  131. Dimitriu T, Medaney F, Amanatidou E, Forsyth J, Ellis RJ et al. Negative frequency dependent selection on plasmid carriage and low fitness costs maintain extended spectrum β-lactamases in Escherichia coli. Sci Rep 2019; 9:17211 [CrossRef][PubMed]
    [Google Scholar]
  132. Totsika M, Beatson SA, Sarkar S, Phan M-D, Petty NK et al. Insights into a multidrug resistant Escherichia coli pathogen of the globally disseminated ST131 lineage: genome analysis and virulence mechanisms. PLoS One 2011; 6:e26578 [CrossRef][PubMed]
    [Google Scholar]
  133. Schembri MA, Zakour NL, Phan MD, Forde BM, Stanton-Cook M et al. Molecular Characterization of the Multidrug Resistant Escherichia coli ST131 Clone. Pathogens 2015; 4:422–430 [CrossRef][PubMed]
    [Google Scholar]
  134. Wurpel DJ, Totsika M, Allsopp LP, Webb RI, Moriel DG et al. Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells. J Proteomics 2016; 131:177–189 [CrossRef][PubMed]
    [Google Scholar]
  135. Lane MC, Mobley HL. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007; 72:19–25 [CrossRef][PubMed]
    [Google Scholar]
  136. Gunther NW, Lockatell V, Johnson DE, Mobley HL. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 2001; 69:2838–2846 [CrossRef][PubMed]
    [Google Scholar]
  137. Holden NJ, Uhlin BE, Gally DL. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 2001; 42:319–330 [CrossRef][PubMed]
    [Google Scholar]
  138. Holden NJ, Gally DL. Switches, cross-talk and memory in Escherichia coli adherence. J Med Microbiol 2004; 53:585–593 [CrossRef][PubMed]
    [Google Scholar]
  139. Whitmer GR, Moorthy G, Arshad M. The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure. PLoS Pathog 2019; 15:e1008162 [CrossRef][PubMed]
    [Google Scholar]
  140. NIH HMP Working Group Peterson J, Garges S, Giovanni M, McInnes P et al. The NIH human microbiome project. Genome Res 2009; 19:2317–2323 [CrossRef][PubMed]
    [Google Scholar]
  141. Rudick CN, Taylor AK, Yaggie RE, Schaeffer AJ, Klumpp DJ. Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI. PLoS One 2014; 9:e109321–109329 [CrossRef][PubMed]
    [Google Scholar]
  142. Hancock V, Seshasayee AS, Ussery DW, Luscombe NM, Klemm P. Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972. Mol Genet Genomics 2008; 279:523–534 [CrossRef][PubMed]
    [Google Scholar]
  143. Floyd RV, Upton M, Hultgren SJ, Wray S, Burdyga TV et al. Escherichia coli-mediated impairment of ureteric contractility is uropathogenic E. coli specific. J Infect Dis 2012; 206:1589–1596 [CrossRef][PubMed]
    [Google Scholar]
  144. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  145. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  146. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [CrossRef][PubMed]
    [Google Scholar]
  147. Carver T, Berriman M, Tivey A, Patel C, Böhme U et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008; 24:2672–2676 [CrossRef][PubMed]
    [Google Scholar]
  148. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [CrossRef][PubMed]
    [Google Scholar]
  149. Nicolau M, Levine AJ, Carlsson G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc Natl Acad Sci U S A 2011; 108:7265–7270 [CrossRef][PubMed]
    [Google Scholar]
  150. Vietoris L. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Mathematische Annalen 1927; 97:454–472 [CrossRef]
    [Google Scholar]
  151. Rahm A. HomologyLive; 2019
  152. The LinBox Group Exact linear algebra over the Integers and finite rings, version 1.1.6; 2008
  153. Kim SR, Komano T. The plasmid R64 thin pilus identified as a type IV pilus. J Bacteriol 1997; 179:3594–3603 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000179
Loading
/content/journal/acmi/10.1099/acmi.0.000179
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error