1887

Abstract

SARS-CoV-2 is a recently emerged coronavirus that binds angiotensin-converting enzyme 2 (ACE2) for cell entry via its receptor-binding domain (RBD) on a surface-expressed spike glycoprotein. Studies show that despite its similarities to severe acute respiratory syndrome (SARS) coronavirus, there are critical differences in key RBD residues when compared to SARS-CoV-2. Here we present a short study, showing that SARS-like bat coronavirus Rs3367 shares a high conservation with SARS-CoV-2 in important RBD residues for ACE2 binding: SARS-CoV-2’s Phe486, Thr500, Asn501 and Tyr505; implicated in receptor-binding strength and host-range determination. These features were not shared with other studied bat coronaviruses belonging to the genus, including RaTG13, the closest reported bat coronavirus to SARS-CoV-2’s spike protein. Sequence and phylogeny analyses were followed by the computation of a reliable model of the RBD of SARS-like bat coronavirus Rs3367, which allowed structural insight of the conserved residues. Superimposition of this model on the SARS-CoV-2 ACE2-RBD complex revealed critical ACE2 contacts are also maintained. In addition, residue Asn488 interacted with a previously defined pocket on ACE2 composed of Tyr41, Lys353 and Asp355. When compared to available SARS-CoV-2 crystal structure data, Asn501 showed a different interaction with the ACE2 pocket. Taken together, this study offers molecular insights on RBD-receptor interactions with implications for vaccine design.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000166
2020-09-08
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000166/acmi000166.html?itemId=/content/journal/acmi/10.1099/acmi.0.000166&mimeType=html&fmt=ahah

References

  1. Nature Coronavirus latest: who describes outbreak as pandemic. Nature 2020
    [Google Scholar]
  2. WHO 2020; Coronavirus disease (COVID-19) situation report – 201. World Health Organization 2019. https://www.who.int/docs/default-source/coronaviruse/situationreports/20200808-covid-19-sitrep-201.pdf?sfvrsn=121bb855_2
  3. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3:237–261 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–273 [CrossRef][PubMed]
    [Google Scholar]
  5. Walls AC, Xiong X, Park Y-J, Tortorici MA, Snijder J et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 2019; 176:e151026–1039 [CrossRef][PubMed]
    [Google Scholar]
  6. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. Embo J 2005; 24:1634–1643 [CrossRef][PubMed]
    [Google Scholar]
  7. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181:281–292 [CrossRef][PubMed]
    [Google Scholar]
  8. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367:1260–1263 [CrossRef][PubMed]
    [Google Scholar]
  9. Lu R, Zhao X, Li J, Niu P, Yang B et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565–574 [CrossRef][PubMed]
    [Google Scholar]
  10. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181:271–280 [CrossRef][PubMed]
    [Google Scholar]
  11. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26:450–452 [CrossRef][PubMed]
    [Google Scholar]
  12. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94: [CrossRef][PubMed]
    [Google Scholar]
  13. Yan R, Zhang Y, Li Y, Xia L, Guo Y et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367:1444–1448 [CrossRef][PubMed]
    [Google Scholar]
  14. Wang Q, Zhang Y, Wu L, Niu S, Song C et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181:894–904 [CrossRef][PubMed]
    [Google Scholar]
  15. Yuan M, Wu NC, Zhu X, Lee C-CD, So RTY et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368:630–633 [CrossRef][PubMed]
    [Google Scholar]
  16. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA et al. Cross-Neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020; 583:290–295 [CrossRef][PubMed]
    [Google Scholar]
  17. Tian X, Li C, Huang A, Xia S, Lu S et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9:382–385 [CrossRef][PubMed]
    [Google Scholar]
  18. Liu Z, Xiao X, Wei X, Li J, Yang J et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol 2020; 92:595–601 [CrossRef][PubMed]
    [Google Scholar]
  19. Shang J, Ye G, Shi K, Wan Y, Luo C et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581:221–224 [CrossRef][PubMed]
    [Google Scholar]
  20. Peiris JSM, Poon LLM. Severe Acute Respiratory Syndrome (SARS). Encyclopedia of Virology Elsevier Ltd; 2008 pp 552–560
    [Google Scholar]
  21. Li W, Shi Z, Yu M, Ren W, Smith C et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310:676–679 [CrossRef][PubMed]
    [Google Scholar]
  22. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503:535–538 [CrossRef][PubMed]
    [Google Scholar]
  23. Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017; 13:e1006698 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525:135–140 [CrossRef]
    [Google Scholar]
  25. Wu K, Chen L, Peng G, Zhou W, Pennell CA et al. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol 2011; 85:5331–5337 [CrossRef]
    [Google Scholar]
  26. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [CrossRef][PubMed]
    [Google Scholar]
  27. Sayers EW, Beck J, Brister JR, Bolton EE, Canese K et al. Database resources of the National center for biotechnology information. Nucleic Acids Res 2020; 48:D9–D16 [CrossRef][PubMed]
    [Google Scholar]
  28. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [CrossRef][PubMed]
    [Google Scholar]
  29. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016561–565
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  31. Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [CrossRef][PubMed]
    [Google Scholar]
  32. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [CrossRef][PubMed]
    [Google Scholar]
  33. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A et al. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 2011; 39:D465–D474 [CrossRef][PubMed]
    [Google Scholar]
  34. Li F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol 2008; 82:6984–6991 [CrossRef][PubMed]
    [Google Scholar]
  35. Eramian D, Eswar N, Shen M-Y, Sali A. How well can the accuracy of comparative protein structure models be predicted?. Protein Sci 2008; 17:1881–1893 [CrossRef][PubMed]
    [Google Scholar]
  36. Melo F, Sánchez R, Sali A. Statistical potentials for fold assessment. Protein Science 2009; 11:430–448 [CrossRef]
    [Google Scholar]
  37. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  38. Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF chimera. BMC Bioinformatics 2006; 7:339 [CrossRef][PubMed]
    [Google Scholar]
  39. Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495:251–254 [CrossRef][PubMed]
    [Google Scholar]
  40. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A 2019; 116:2681–2690 [CrossRef][PubMed]
    [Google Scholar]
  41. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 2005; 102:7988–7993 [CrossRef][PubMed]
    [Google Scholar]
  42. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5:562–569 [CrossRef][PubMed]
    [Google Scholar]
  43. Ren W, Qu X, Li W, Han Z, Yu M et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol 2008; 82:1899–1907 [CrossRef][PubMed]
    [Google Scholar]
  44. Lan J, Ge J, Yu J, Shan S, Zhou H et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581:215–220 [CrossRef][PubMed]
    [Google Scholar]
  45. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525:135–140 [CrossRef]
    [Google Scholar]
  46. Wu K, Chen L, Peng G, Zhou W, Pennell CA et al. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol 2011; 85:5331–5337 [CrossRef][PubMed]
    [Google Scholar]
  47. Hou Y, Peng C, Yu M, Li Y, Han Z et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch Virol 2010; 155:1563–1569 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000166
Loading
/content/journal/acmi/10.1099/acmi.0.000166
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error