1887

Abstract

is an enteric anaerobic, endospore-forming, gram-positive rod with a low GC content that is rarely associated with disease in humans. We present a case of bacteraemia. To the best of our knowledge, this is the second case of bacteraemia in an elderly patient presenting with fever, abdominal pain and bilious emesis. We highlight the Gram stain variability, the lack of visualization of spores and the atypical morphology of the colonies that showed in a polymicrobial presentation that initially appeared to show monomicrobial bacteraemia. The microorganism was rapidly identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We present a comprehensive literature review of 32 cases of clinical infections by in which we describe, if available, sex, age, clinical symptoms, predisposing conditions, other organisms present in the blood culture, other samples with , identification methodology, treatment and outcome.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000137
2020-06-15
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/acmi/2/8/acmi000137.html?itemId=/content/journal/acmi/10.1099/acmi.0.000137&mimeType=html&fmt=ahah

References

  1. Holdeman LV, Cato EP, Moore WEC. Clostridium ramosum (Vuillemin) comb. nov.: emended description and proposed neotype strain. Int J Syst Bacteriol 1971; 21:35–39 [CrossRef]
    [Google Scholar]
  2. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore-formers and other misplaced clostridia. Environ Microbiol 2013; 15:2631–2641
    [Google Scholar]
  3. Alexander CJ, Citron DM, Brazier JS, Goldstein EJ. Identification and antimicrobial resistance patterns of clinical isolates of Clostridium clostridioforme, Clostridium innocuum, and Clostridium ramosum compared with those of clinical isolates of Clostridium perfringens. J Clin Microbiol 1995; 33:3209–3215 [CrossRef]
    [Google Scholar]
  4. Bodey GP, Rodriguez S, Fainstein V, Elting LS. Clostridial bacteremia in cancer patients. A 12-year experience. Cancer 1991; 67:1928–1942 [CrossRef]
    [Google Scholar]
  5. Blairon L, De Gheldre Y, Delaere B, Sonet A, Bosly A et al. A 62-month retrospective epidemiological survey of anaerobic bacteraemia in a university hospital. Clin Microbiol Infect 2006; 12:527–532 [CrossRef]
    [Google Scholar]
  6. Gollapudi LA, Narurkar R, Wang G, Dhand A. Clostridium ramosum (C. ramosum) bacteremia: single-center study. Open Forum Infectious Diseases 2017; 4:S556 [CrossRef]
    [Google Scholar]
  7. Al-kali A, Oswal A, Tfayli A. Non-Autoimmune hemolytic anemia with Clostridium ramosum bacteremia. Clin Med Case Rep. 1 200851–52
    [Google Scholar]
  8. Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML et al. Manual of clinical microbiology, 11 th edition. ASM. Press, Washington DC 2015
    [Google Scholar]
  9. Ibrahim A, Gerner-Smidt P, Liesack W. Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 1997; 47:837–841 [CrossRef]
    [Google Scholar]
  10. Clinical and Laboratory Standards Institute MIC Testing- Performance Standards for Antimicrobial Susceptibility Testing Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 28th Edition. Wayne, Pa, USA.: 2018 p M100
    [Google Scholar]
  11. Freier D, Mothershed CP, Wiegel J. Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol 1988; 54:204–211 [CrossRef]
    [Google Scholar]
  12. Ludwig W, Schleifer KH, Whitman WB. Revised road map to the phylum Firmicutes. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology. 2 3 New York: Springer; 2009 pp 1–8
    [Google Scholar]
  13. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzéby J et al. The Bacteria: phylum Firmicutes: class Clostridia. In Garrity GM. editor The taxonomic outline of Bacteria and Archaea Michigan State University; 2007 pp 271–316
    [Google Scholar]
  14. Rainey FA. Family X. Veillonellaceae. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology. 2 3 New York: Springer; 2009 pp 1059–1129
    [Google Scholar]
  15. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012; 6:610–618 [CrossRef]
    [Google Scholar]
  16. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef]
    [Google Scholar]
  17. Gerber JS, Berney-Meyer L, Segerer S. Clostridium Ramosum —A Rare Cause of Peritoneal Dialysis-Related Peritonitis. Perit Dial Int 2018; 38:231–232 [CrossRef]
    [Google Scholar]
  18. Lavigne J-P, Bouziges N, Sotto A, Leroux J-L, Michaux-Charachon S, Charachon SM. Spondylodiscitis due to Clostridium ramosum infection in an immunocompetent elderly patient. J Clin Microbiol 2003; 41:2223–2226 [CrossRef]
    [Google Scholar]
  19. Miret C, Fernandez-Sola J, Molleda M, De Dios A. Clostridium ramosum: a rare cause of brain abscess. An Med Intern 1998; 15:392–393
    [Google Scholar]
  20. Beveridge TJ. Mechanism of gram variability in select bacteria. J Bacteriol 1990; 172:1609–1620 [CrossRef]
    [Google Scholar]
  21. Set R, Kandian S, Koppikar GV. Clostridium ramosum in a case of cerebellar abscess. Médecine et maladies infectieuses 2008; 38:S145–S147E-08
    [Google Scholar]
  22. Brook I. Antimicrobe. Clostridium species (Clostridium perfringens, C. butyricum, C. clostridioforme, C. innocuum, C. ramosum, C. septicum, C. sordellii, C. tertium). http://www.antimicrobe.org/b90.asp,2016-antimicrobe.org .
  23. Alcalde-Vargas A, Trigo-Salado C, Leo-Carnerero E, Cruz-Ramírez Dde-la, Herrera-Justiniano JM. Pseudomembranous colitis and bacteremia in an immunocompetent patient associated with a rare specie of Clostridium (C. ramosum). Rev Esp Enferm Diag 2012; 104:498–499 [CrossRef]
    [Google Scholar]
  24. Rand KH, Tillan M. Errors in interpretation of gram stains from positive blood cultures. Am J Clin Pathol 2006; 126:686–690 [CrossRef]
    [Google Scholar]
  25. Kim YJ, Kim SH, Park H-J, Park H-G, Park D et al. Maldi-Tof MS is more accurate than Vitek II ANC card and API rapid ID 32 a system for the identification of Clostridium species. Anaerobe 2016; 40:73–75 [CrossRef]
    [Google Scholar]
  26. Lee EHL, Degener JE, Welling GW, Veloo ACM. Evaluation of the Vitek 2 ANC card for identification of clinical isolates of anaerobic bacteria. J Clin Microbiol 2011; 49:1745–1749 [CrossRef]
    [Google Scholar]
  27. Tsukimoto ER, Rossi F. Evaluation of MALDI-TOF mass spectrometry (VITEK-MS) compared to the ANC card (Vitek 2) for the identification of clinically significant anaerobes. J Bras Patol Med Lab 2018; 54:206–212 [CrossRef]
    [Google Scholar]
  28. Dahya V, Ramgopal M, Collin B, Robinson M. Clostridium ramosum osteomyelitis in an immunocompetent patient after traumatic injury. Infect Dis Clin Pract 2015; 23:102–104 [CrossRef]
    [Google Scholar]
  29. Nagy E, Becker S, Kostrzewa M, Barta N, Urbán E. The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 2012; 61:1393–1400 [CrossRef]
    [Google Scholar]
  30. Lee W, Kim M, Yong D, Jeong SH, Lee K et al. Evaluation of Vitek mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria. Ann Lab Med 2015; 35:69–75 [CrossRef]
    [Google Scholar]
  31. Brook I. Clostridial infection in children. J Med Microbiol 1995; 42:78–82 [CrossRef]
    [Google Scholar]
  32. Forrester JD, Spain DA. Clostridium ramosum bacteremia: case report and literature review. Surg Infect 2014; 15:343–346 [CrossRef]
    [Google Scholar]
  33. Shah M, Bishburg E, Baran DA, Chan T. Epidemiology and outcomes of clostridial bacteremia at a tertiary-care institution. The Scientific World Journal 2009; 9:144–148 [CrossRef]
    [Google Scholar]
  34. Muakkassa WF, Mohanty PK, Kipreous B. Left ventricular mass with septic (Clostridium ramosum) arterial emboli in a renal allograft patient: Report of a case and review of the literature. Transplant Proc 1983; 15:1715–1719
    [Google Scholar]
  35. Mohandas R, Poduval RD, Unnikrishnan D, Corpuz M. Clostridium ramosum bacteremia and osteomyelitis in a patient with infected pressure sores. Infect Dis Clin Pract 2001; 10:123–124 [CrossRef]
    [Google Scholar]
  36. Nanda N, Voskuhl GW. Lung abscess caused by Clostridium ramosum. J Okla State Med Assoc 2006; 99:158–160
    [Google Scholar]
  37. Lim YK, Oh SM, Kweon OJ, Lee M-K. Two cases of bacteremias caused by Clostridium ramosum . Ann Clin Microbiol 2015; 18:98–01 [CrossRef]
    [Google Scholar]
  38. Lorleac’h A, Cazanave C, Pereyre S, Kuli B, Neau D et al. Une endocardite Clostridium ramosum: premier cas décrit ?. Hospitalier Pellegrin, Médecine et maladies infectieuses 2008; 38:S145–S147E-08
    [Google Scholar]
  39. García-Jiménez A, Prim N, Crusi X, Benito N. Septic arthritis due to Clostridium ramosum . Semin Arthritis Rheum 2016; 45:617–620 [CrossRef]
    [Google Scholar]
  40. Hammond SP, Buckley MW, Petruzziello G, Koo S, Marty FM et al. Clinical characteristics and outcomes of clostridial bacteraemia in cancer patients. Clin Microbiol Infec 2014; 20:752–757 [CrossRef]
    [Google Scholar]
  41. Leal J, Gregson DB, Ross T, Church DL, Laupland KB. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000–2006. Journal of Infection 2008; 57:198–203 [CrossRef]
    [Google Scholar]
  42. Lombardi DP, Engleberg NC. Anaerobic bacteremia: incidence, patient characteristics, and clinical significance. Am J Med 1992; 92:53–60 [CrossRef]
    [Google Scholar]
  43. van der Vorm ER, von Rosenstiel IA, Spanjaard L, Dankert J. Gas gangrene in an immunocompromised girl due to a Clostridium ramosum infection. Clin Infect Dis 1999; 28:923–924 [CrossRef]
    [Google Scholar]
  44. Takano N, Yatabe MS, Yatabe J, Kato M, Sueoka D et al. Fatal Fournier’s gangrene caused by Clostridium ramosum in a patient with central diabetes insipidus and insulin-dependent diabetes mellitus: a case report. BMC Infect Dis 2018; 18:363 [CrossRef]
    [Google Scholar]
  45. Turkoglu OF, Solaroglu I, Tun K, Beskonakli E, Taskin Y. Secondary infection of intracranial hydatid cyst with Clostridium ramosum . Childs Nerv Syst 2005; 21:1004–1007 [CrossRef]
    [Google Scholar]
  46. Langdale LA, Rice CL, Brown N. Emphysematous pyelonephritis in a xanthogranulomatous kidney. An unusual cause of pneumoperitoneum. Arch. Surg 1988; 123:377–379
    [Google Scholar]
  47. Brook I, Schwartz RH, Controni G. Clostridium ramosum and beta hemolytic streptococci isolated from a child presenting with acute otitis media. Clin Pediatr 1979; 18:699–700 [CrossRef]
    [Google Scholar]
  48. Zakham F, Pillonel T, Brunel A-S, Zambelli P-Y, Greub G et al. Molecular diagnosis and enrichment culture identified a septic pseudoarthrosis due to an infection with Erysipelatoclostridium ramosum. Int J Infect Dis 2019; 81:167–169 [CrossRef]
    [Google Scholar]
  49. Kozaki S, Miyamoto S, Uchida K, Shuto T, Tanaka H et al. Infected thoracic aortic aneurysm caused by Clostridium ramosum: a case report. J Cardiol Cases 2019; 20:103–105 [CrossRef]
    [Google Scholar]
  50. Ingram CW, Cooper JN. Clostridial bloodstream infections. South Med J 1989; 82:29–31 [CrossRef]
    [Google Scholar]
  51. Ing AF, McLean AP, Meakins JL. Multiple-organism bacteremia in the surgical intensive care unit: a sign of intraperitoneal sepsis. Surgery 1981; 90:779–786
    [Google Scholar]
  52. De Keukeleire S, Wybo I, Naessens A, Echahidi F, Van der Beken M et al. Anaerobic bacteraemia: a 10-year retrospective epidemiological survey. Anaerobe 2016; 39:54–59 [CrossRef][PubMed]
    [Google Scholar]
  53. Senda S, Fujiyama Y, Ushijima T, Hodohara K, Bamba T et al. Clostridium ramosum, an IgA protease-producing species and its ecology in the human intestinal tract. Microbiol Immunol 1985; 29:1019–1028 [CrossRef]
    [Google Scholar]
  54. Attebery HR, Sutter VL, Finegold SM. Normal human intestinal flora. Anaerobic Bacteria: Role in Disease Springfield: IL. Charles C Thomas Co; 1974 pp 81–97
    [Google Scholar]
  55. Rechner PM, Agger WA, Mruz K, Cogbill TH. Clinical features of clostridial bacteremia: a review from a rural area. Clin Infect Dis 2001; 33:349–353 [CrossRef]
    [Google Scholar]
  56. Kosowska K, Reinholdt J, Rasmussen LK, Sabat A, Potempa J et al. The Clostridium ramosum IgA Proteinase Represents a Novel Type of Metalloendopeptidase. J Biol Chem 2002; 277:11987–11994 [CrossRef]
    [Google Scholar]
  57. Mehta SK, Plaut AG, Calvanico NJ, Tomasi TB, AG Plaut. Human immunoglobulin A: production of an Fc fragment by an enteric microbial proteolytic enzyme. J Immunol 1973; 111:1274–1276[PubMed]
    [Google Scholar]
  58. Potempa J, Poulsen K. Barrett AJ, Rawlings ND, Woessner JF. (editors) IgA protease of Clostridium ramosum. Handbook of Proteolytic Enzymes, 2 ed. London: Elsevier, Academic Press; 2004 pp 759–762
    [Google Scholar]
  59. Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio 2014; 5:01530–01514. [CrossRef]
    [Google Scholar]
  60. Mandić AD, Woting A, Jaenicke T, Sander A, Sabrowski W et al. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep 2019; 4:1177
    [Google Scholar]
  61. Fujimoto K, Kawaguchi Y, Shimohigoshi M, Gotoh Y, Nakano Y et al. Antigen-Specific mucosal immunity regulates development of intestinal bacteria mediated diseases. Gastroenterology 2019; 157:1530–1543 [CrossRef]
    [Google Scholar]
  62. Fujimoto K, Uematsu S. Development of prime-boost-type next-generation mucosal vaccines. Int Immunol 2019pii: dxz085
    [Google Scholar]
  63. Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 2017; 23:2061–2070 [CrossRef]
    [Google Scholar]
  64. Yu J, Feng Q, Wong SH, Zhang D, Liang QY et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017; 66:70–78 [CrossRef][PubMed]
    [Google Scholar]
  65. Jiang H, Li J, Zhang B, Huang R, Zhang J et al. Intestinal flora disruption and novel biomarkers associated with nasopharyngeal carcinoma. Front Oncol 2019; 6:1346
    [Google Scholar]
  66. Koyanagi Y, Suzuki R, Ihara K, Miyagi H, Isogai H et al. Intestinal Clostridium species lower host susceptibility to enterohemorrhagic Escherichia coli O157:H7 infection. Pathog Dis 2019; 77:ftz036 [CrossRef]
    [Google Scholar]
  67. Xu J, Koyanagi Y, Isogai E, Nakamura S. Effects of fermentation products of the commensal bacterium Clostridium ramosum on motility, intracellular pH, and flagellar synthesis of enterohemorrhagic Escherichia coli . Arch Microbiol 2019; 201:841–846 [CrossRef]
    [Google Scholar]
  68. Benjamin B, Kan M, Schwartz D, Siegman-Igra Y. The possible significance of Clostridium spp. in blood cultures. Clin Microbiol Infect 2006; 12:1006–1012 [CrossRef]
    [Google Scholar]
  69. Chen YM, Lee HC, Chang CM, Chuang YC, Ko WC. Clostridium bacteremia: emphasis on the poor prognosis in cirrhotic patients. J. Microbiol. Immunol. Infect 2001; 34:113–118
    [Google Scholar]
  70. Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. laboratory and epidemiologic observations. Rev Infect Dis 1983; 5:35–53 [CrossRef]
    [Google Scholar]
  71. Gorbach SL, Thadepalli H. Isolation of Clostridium in human infections: evaluation of 114 cases. J Infect Dis 1975; 131:S81–S85 [CrossRef]
    [Google Scholar]
  72. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJC et al. Diagnosis and management of complicated Intra‐abdominal infection in adults and children: guidelines by the surgical infection Society and the infectious diseases Society of America. Clin Infect Dis 2010; 50:133–164 [CrossRef]
    [Google Scholar]
  73. Pardo J, Klinker KP, Borgert SJ, Trikha G, Rand KH et al. Time to positivity of blood cultures supports antibiotic de-escalation at 48 hours. Ann Pharmacother 2014; 48:33–40 [CrossRef]
    [Google Scholar]
  74. Martinez JA, Soto S, Fabrega A, Almela M, Mensa J et al. Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol 2006; 44:1468–1474 [CrossRef]
    [Google Scholar]
  75. Peralta G, Roiz MP, Sánchez MB, Garrido JC, Ceballos B et al. Time-To-positivity in patients with Escherichia coli bacteraemia. Clin Microbiol Infect 2007; 13:1077–1082 [CrossRef]
    [Google Scholar]
  76. Lambregts MMC, Bernards AT, van der Beek MT, Visser LG, de Boer MG. Time to positivity of blood cultures supports early re-evaluation of empiric broad-spectrum antimicrobial therapy. PLoS One 2019; 14:0208819 [CrossRef]
    [Google Scholar]
  77. Nord CE, Hedberg M. Resistance to β-lactam antibiotics in anaerobic bacteria. Rev Infect Dis 1990; 12:S231–S234 [CrossRef]
    [Google Scholar]
  78. Tally FP, Armfield AY, Dowell VR, Kwok Y-Y, Sutter VL et al. Susceptibility of Clostridium ramosum to antimicrobial agents. Antimicrob Agents Chemother 1974; 5:589–593 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000137
Loading
/content/journal/acmi/10.1099/acmi.0.000137
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error