Tracking the genome of four isolates that have a defective Las quorum-sensing system, but are still virulent Open Access

Abstract

In this work we analysed the whole genome extended multilocus sequence typing (wgMLST) of four strains that are characterized by being virulent despite having a defective Las quorum-sensing (QS) system, and compare them with the wgMLST of the PAO1 and PA14 type strains. This comparison was done to determine whether there was a genomic characteristic that was common to the strains with an atypical QS response. The analysed strains include two environmental isolates (ID 4365 isolated from the Indian Ocean, and M66 isolated from the Churince water system in Cuatro Ciénegas Coahuila, México), one veterinary isolate (strain 148 isolated from the stomach of a dolphin) and a clinical strain (INP43 that is a cystic fibrosis pediatric isolate). We determine that the six analysed strains have a core genome of 4689 loci that was used to construct a wgMLST-phylogeny tree. Using the cano-wgMLST_BacCompare software we found that there was no common genomic characteristic to the strains with an atypical QS-response and we identify ten loci that are highly discriminatory of the six strains’ phylogeny so that their MLST can reconstruct the wgMLST-phylogeny tree of these strains. We discuss here the nature of these ten highly discriminatory genes in the context of virulence and evolution.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000132
2020-05-19
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/acmi/2/7/acmi000132.html?itemId=/content/journal/acmi/10.1099/acmi.0.000132&mimeType=html&fmt=ahah

References

  1. Castañeda-Montes FJ, Avitia M, Sepúlveda-Robles O, Cruz-Sánchez V, Kameyama L et al. Population structure of Pseudomonas aeruginosa through a MLST approach and antibiotic resistance profiling of a Mexican clinical collection. Infect Genet Evol 2018; 65:43–54 [View Article][PubMed]
    [Google Scholar]
  2. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [View Article][PubMed]
    [Google Scholar]
  3. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [View Article][PubMed]
    [Google Scholar]
  4. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article][PubMed]
    [Google Scholar]
  5. Mukherjee S, Moustafa DA, Stergioula V, Smith CD, Goldberg JB et al. The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2018; 115:E9411–E9418 [View Article][PubMed]
    [Google Scholar]
  6. Berube BJ, Murphy KR, Torhan MC, Bowlin NO, Williams JD et al. Impact of type III secretion effectors and of phenoxyacetamide inhibitors of type III secretion on abscess formation in a mouse model of Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 2017; 61:e1202–e1217 [View Article]
    [Google Scholar]
  7. Soto-Aceves MP, Cocotl-Yañez M, Merino E, Castillo-Juárez I, Cortés-López H et al. Inactivation of the quorum-sensing transcriptional regulators LasR or RhlR does not suppress the expression of virulence factors and the virulence of Pseudomonas aeruginosa PAO1. Microbiology 2019; 165:425–432 [View Article][PubMed]
    [Google Scholar]
  8. Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS One 2015; 10:e0126468 [View Article][PubMed]
    [Google Scholar]
  9. Grosso-Becerra M-V, Santos-Medellín C, González-Valdez A, Méndez J-L, Delgado G et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15:318 [View Article][PubMed]
    [Google Scholar]
  10. Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont M-J et al. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol 2015; 6:1036 [View Article][PubMed]
    [Google Scholar]
  11. García-Ulloa M, Ponce-Soto G-Y, González-Valdez A, González-Pedrajo B, Díaz-Guerrero M et al. Two Pseudomonas aeruginosa clonal groups belonging to the PA14 clade are Indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environ Microbiol 2019; 21:2964–2976 [View Article][PubMed]
    [Google Scholar]
  12. Feltner JB, Wolter DJ, Pope CE, Groleau M-C, Smalley NE et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa . mBio 2016; 7:e01513–01516 [View Article][PubMed]
    [Google Scholar]
  13. Morales E, González-Valdez A, Servín-González L, Soberón-Chávez G. Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiol Lett 2017; 364: [View Article][PubMed]
    [Google Scholar]
  14. Chen R, Déziel E, Groleau MC, Schaefer AL, Greenberg EP. Social cheating in a quorum-sensing Pseudomonas aeruginosa variant. Proc Natl Acad Sci USA 2019; 116:7921–7926
    [Google Scholar]
  15. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A 2019; 116:7027–7032 [View Article][PubMed]
    [Google Scholar]
  16. Defoirdt T. Quorum-Sensing systems as targets for antivirulence therapy. Trends Microbiol 2018; 26:313–328 [View Article][PubMed]
    [Google Scholar]
  17. García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA et al. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathog Dis 2015; 73:ftv040 [View Article][PubMed]
    [Google Scholar]
  18. Liu Y-Y, Lin J-W, Chen C-C. cano-wgMLST_BacCompare: a bacterial genome analysis platform for epidemiological investigation and comparative genomic analysis. Front Microbiol 2019; 10:1–9 [View Article]
    [Google Scholar]
  19. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  20. Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH. Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 1997; 179:3928–3935 [View Article][PubMed]
    [Google Scholar]
  21. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  22. Diaz MR, King JM, Yahr TL. Intrinsic and extrinsic regulation of type III secretion gene expression in Pseudomonas aeruginosa . Front Microbiol 2011; 2:89 [View Article][PubMed]
    [Google Scholar]
  23. Morris ER, Hall G, Li C, Heeb S, Kulkarni RV et al. Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNA-binding protein, RsmN. Structure 2013; 21:1659–1671 [View Article][PubMed]
    [Google Scholar]
  24. Yamazaki A, Li J, Zeng Q, Khokhani D, Hutchins WC et al. Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2012; 56:36–43 [View Article][PubMed]
    [Google Scholar]
  25. Kay E, Humair B, Dénervaud V, Riedel K, Spahr S et al. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa . J Bacteriol 2006; 188:6026–6033 [View Article][PubMed]
    [Google Scholar]
  26. Choi D-S, Kim D-K, Choi SJ, Lee J, Choi J-P et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa . Proteomics 2011; 11:3424–3429 [View Article][PubMed]
    [Google Scholar]
  27. Zhu K, Choi K-H, Schweizer HP, Rock CO, Zhang Y-M. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa . Mol Microbiol 2006; 60:260–273 [View Article][PubMed]
    [Google Scholar]
  28. Martínez-Carranza E, Ponce-Soto G-Y, Servín-González L, Alcaraz LD, Soberón-Chávez G. Evolution of bacteria seen through their essential genes: the case of Pseudomonas aeruginosa and Azotobacter vinelandii . Microbiology 2019; 165:976–984 [View Article][PubMed]
    [Google Scholar]
  29. Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S et al. General and condition-specific essential functions of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2015; 112:5189–5194 [View Article][PubMed]
    [Google Scholar]
  30. Juhas M, Eberl L, Glass JI. Essence of life: essential genes of minimal genomes. Trends Cell Biol 2011; 21:562–568 [View Article][PubMed]
    [Google Scholar]
  31. Charlebois RL, Doolittle WF. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res 2004; 14:2469–2477 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000132
Loading
/content/journal/acmi/10.1099/acmi.0.000132
Loading

Data & Media loading...

Most cited Most Cited RSS feed