1887

Abstract

is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of replicating within a plethora of eukaryotic cell lines. can remain dormant within host cells without symptoms for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell responses by . Peripheral blood mononuclear cells (1×10 cells/well) isolated by Ficoll Paque (Sigma-Aldrich) density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) (10 ug ml) and heat-killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for surface expression of coinhibitory molecules by flow cytometry. We found that induced the upregulation of programmed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells following exposure to crude CFAs of . This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000110
2020-02-14
2020-02-28
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000110/acmi000110.html?itemId=/content/journal/acmi/10.1099/acmi.0.000110&mimeType=html&fmt=ahah

References

  1. White NJ. Melioidosis. Lancet 2003;361:1715–1722 [CrossRef]
    [Google Scholar]
  2. Currie BJ, Jacups SP, Cheng AC, Fisher DA, Anstey NM et al. Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. Trop Med Int Health 2004;9:1167–1174 [CrossRef]
    [Google Scholar]
  3. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005;18:383–416 [CrossRef]
    [Google Scholar]
  4. Dance DA. Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 1991;4:52–60 [CrossRef]
    [Google Scholar]
  5. Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 2016;1:pii: 15008 [CrossRef]
    [Google Scholar]
  6. Kenny DJ, Russell P, Rogers D, Eley SM, Titball RW. In vitro susceptibilities of Burkholderia mallei in comparison to those of other pathogenic Burkholderia spp. Antimicrob Agents Chemother 1999;43:2773–2775 [CrossRef]
    [Google Scholar]
  7. Bioterrorism Agents/Diseases, by category. http://emergency.cdc.gov/agent/agentlist.asp
  8. Lim C, Peacock SJ, Limmathurotsakul D. Association between activities related to routes of infection and clinical manifestations of melioidosis. Clin Microbiol Infect 2016;22:e1-79.e379.e1–7979 [CrossRef]
    [Google Scholar]
  9. Churuangsuk C, Chusri S, Hortiwakul T, Charernmak B, Silpapojakul K. Characteristics, clinical outcomes and factors influencing mortality of patients with melioidosis in southern Thailand: a 10-year retrospective study. Asian Pac J Trop Med 2016;9:256–260 [CrossRef]
    [Google Scholar]
  10. Pruksachartvuthi S, Aswapokee N, Thankerngpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol 1990;31:109–114 [CrossRef]
    [Google Scholar]
  11. Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderiapseudomallei. Infect Immun 1996;64:782–790 [CrossRef]
    [Google Scholar]
  12. Harley VS, Dance DA, Drasar BS, Tovey G. Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 1998;96:71–93
    [Google Scholar]
  13. Ngauy V, Lemeshev Y, Sadkowski L, Crawford G. Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 2005;43:970–972 [CrossRef]
    [Google Scholar]
  14. Currie BJ, Fisher DA, Anstey NM, Jacups SP. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 2000;94:301–304 [CrossRef]
    [Google Scholar]
  15. Chaowagul W, Suputtamongkol Y, Dance DA, Rajchanuvong A, Pattara-arechachai J et al. Relapse in melioidosis: incidence and risk factors. J Infect Dis 1993;168:1181–1185
    [Google Scholar]
  16. Ireland PM, Marshall L, Norville I, Sarkar-Tyson M. The serine protease inhibitor Ecotin is required for full virulence of Burkholderia pseudomallei. Microb Pathog 2014;67-68:55–58 [CrossRef]
    [Google Scholar]
  17. Stevens MP, Wood MW, Taylor LA, Monaghan P, Hawes P et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 2002;46:649–659 [CrossRef]
    [Google Scholar]
  18. Kang W-T, Vellasamy KM, Chua E-G, Vadivelu J. Functional characterizations of effector protein BipC, a type III secretion system protein, in Burkholderia pseudomallei pathogenesis. J Infect Dis 2015;211:827–834 [CrossRef]
    [Google Scholar]
  19. Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S et al. Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol 2005;187:6556–6560 [CrossRef]
    [Google Scholar]
  20. Sun GW, Lu J, Pervaiz S, Cao WP, Gan Y-H. Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 2005;7:1447–1458 [CrossRef]
    [Google Scholar]
  21. Charoensap J, Utaisincharoen P, Engering A, Sirisinha S. Differential intracellular fate of Burkholderia pseudomallei 844 and Burkholderia thailandensis UE5 in human monocyte-derived dendritic cells and macrophages. BMC Immunol 2009;10:20 [CrossRef]
    [Google Scholar]
  22. Santanirand P, Harley VS, Dance DA, Drasar BS, Bancroft GJ. Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei. Infect Immun 1999;67:3593–3600 [CrossRef]
    [Google Scholar]
  23. Lauw FN, Simpson AJ, Prins JM, Smith MD, Kurimoto M et al. Elevated plasma concentrations of interferon (IFN)-gamma and the IFN-gamma-inducing cytokines interleukin (IL)-18, IL-12, and IL-15 in severe melioidosis. J Infect Dis 1999;180:1878–1885 [CrossRef]
    [Google Scholar]
  24. Ulett GC, Ketheesan N, Hirst RG. Macrophage-lymphocyte interactions mediate anti-Burkholderia pseudomallei activity. FEMS Immunol Med Microbiol 1998;21:283–286 [CrossRef]
    [Google Scholar]
  25. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J Immunol 2001;166:1097–1105 [CrossRef]
    [Google Scholar]
  26. Tanphaichitra D, Srimuang S. Cellular immunity (T-cell subset using monoclonal antibody) in tuberculosis, melioidosis, pasteurellosis, penicilliosis; and role of levamisole and Isoprinosine. Dev Biol Stand 1984;57:117–123
    [Google Scholar]
  27. Ramsay SC, Ketheesan N, Norton R, Watson A-M, LaBrooy J. Peripheral blood lymphocyte subsets in acute human melioidosis. Eur J Clin Microbiol Infect Dis 2002;21:566–568 [CrossRef]
    [Google Scholar]
  28. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996;8:765–772 [CrossRef]
    [Google Scholar]
  29. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–1034 [CrossRef]
    [Google Scholar]
  30. Brown KE, Freeman GJ, Wherry EJ, Sharpe AH. Role of PD-1 in regulating acute infections. Curr Opin Immunol 2010;22:397–401 [CrossRef]
    [Google Scholar]
  31. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007;8:239–245 [CrossRef]
    [Google Scholar]
  32. Singh A, Mohan A, Dey AB, Mitra DK. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis 2013;208:603–615 [CrossRef]
    [Google Scholar]
  33. Urbani S, Amadei B, Tola D, Massari M, Schivazappa S et al. Pd-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 2006;80:11398–11403 [CrossRef]
    [Google Scholar]
  34. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES et al. Pd-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006;443:350–354 [CrossRef]
    [Google Scholar]
  35. Shankar EM, Che KF, Messmer D, Lifson JD, Larsson M. Expression of a broad array of negative costimulatory molecules and Blimp-1 in T cells following priming by HIV-1 pulsed dendritic cells. Mol Med 2011;17:229–240 [CrossRef]
    [Google Scholar]
  36. See J-X, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM. Persistent infection due to a small-colony variant of Burkholderia pseudomallei leads to PD-1 upregulation on circulating immune cells and mononuclear infiltration in viscera of experimental BALB/c mice. PLoS Negl Trop Dis 2017;11:e0005702 [CrossRef]
    [Google Scholar]
  37. Buddhisa S, Rinchai D, Ato M, Bancroft GJ, Lertmemongkolchai G. Programmed death ligand 1 on Burkholderiapseudomallei-infected human polymorphonuclear neutrophils impairs T cell functions. J Immunol 2015;194:4413–4421 [CrossRef]
    [Google Scholar]
  38. Sarkar-Tyson M, Smither SJ, Harding SV, Atkins TP, Titball RW. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders. Vaccine 2009;27:4447–4451 [CrossRef]
    [Google Scholar]
  39. Cuccui J, Milne TS, Harmer N, George AJ, Harding SV et al. Characterization of the BurkholderiapseudomalleiK96243 capsular polysaccharide I coding region. Infect Immun 2012;80:1209–1221 [CrossRef]
    [Google Scholar]
  40. Elvin SJ, Healey GD, Westwood A, Knight SC, Eyles JE et al. Protection against heterologous Burkholderiapseudomallei strains by dendritic cell immunization. Infect Immun 2006;74:1706–1711 [CrossRef]
    [Google Scholar]
  41. Collins FM, Lamb JR, Young DB. Biological activity of protein antigens isolated from Mycobacterium tuberculosis culture filtrate. Infect Immun 1988;56:1260–1266 [CrossRef]
    [Google Scholar]
  42. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–254 [CrossRef]
    [Google Scholar]
  43. See J-X, Samudi C, Saeidi A, Menon N, Choh L-C et al. Experimental persistent infection of BALB/c mice with small-colony variants of Burkholderia pseudomallei leads to concurrent upregulation of PD-1 on T cells and skewed Th1 and Th17 responses. PLoS Negl Trop Dis 2016;10:e0004503 [CrossRef]
    [Google Scholar]
  44. Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH et al. Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 2005;6:174 [CrossRef]
    [Google Scholar]
  45. Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010;34:415–425 [CrossRef]
    [Google Scholar]
  46. Inglis TJJ, Sagripanti J-L. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol 2006;72:6865–6875 [CrossRef]
    [Google Scholar]
  47. McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M et al. Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 2010;120:4546–4557 [CrossRef]
    [Google Scholar]
  48. Zhang Z-N, Zhu M-L, Chen Y-H, Fu Y-J, Zhang T-W et al. Elevation of Tim-3 and PD-1 expression on T cells appears early in HIV infection, and differential Tim-3 and PD-1 expression patterns can be induced by common γ -chain cytokines. Biomed Res Int 2015;2015:91693611 [CrossRef]
    [Google Scholar]
  49. Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M et al. PD-1 expression on Mycobacterium tuberculosis – specific CD4 T cells is associated with bacterial load in human tuberculosis. Front Jmmunol 1995;2018:9
    [Google Scholar]
  50. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL et al. TIM3 mediates T cell exhaustion during Mycobacterium tuberculosis infection. PLoS Pathog 2016;12:e1005490 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000110
Loading
/content/journal/acmi/10.1099/acmi.0.000110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error