1887

Abstract

is the bacterial genus of Gram-negative bacteria with the highest number of recognized species. It is divided phylogenetically into three lineages and at least 11 groups of species. The group of species is one of the most versatile and best studied. It comprises 15 species with validly published names. As a part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project, we present the genome sequences of the type strains of five species included in this group: (DSM 14164), (DSM 17497), (DSM 15088) (DSM 21245) and (DSM 16006). These strains represent species of environmental and also of clinical interest due to their pathogenic properties against humans and animals. Some strains of these species promote plant growth or act as plant pathogens. Their genome sizes are among the largest in the group, ranging from 5.3 to 6.3 Mbp. In addition, the genome sequences of the type strains in the taxonomy were analysed via genome-wide taxonomic comparisons of ANIb, gANI and GGDC values among 130 strains classified within the group. The results demonstrate that at least 36 genomic species can be delineated within the phylogenetic group of species.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000067
2019-10-29
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000067/acmi000067.html?itemId=/content/journal/acmi/10.1099/acmi.0.000067&mimeType=html&fmt=ahah

References

  1. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12: 1513– 1530 [CrossRef]
    [Google Scholar]
  2. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 2012;35: 455– 464 [CrossRef]
    [Google Scholar]
  3. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6: 214 [CrossRef]
    [Google Scholar]
  4. Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer J-M et al. Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 2002;52: 363– 376 [CrossRef]
    [Google Scholar]
  5. Elomari M, Coroler L, Verhille S, Izard D, Leclerc H. Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 1997;47: 846– 852 [CrossRef]
    [Google Scholar]
  6. Palleroni NJ. Pseudomonas In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology2, 2nd edition. New York: Springer; 2005; pp 323– 379
    [Google Scholar]
  7. Peter S, Oberhettinger P, Schuele L, Dinkelacker A, Vogel W et al. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC Genomics 2017;18: 859 [CrossRef]
    [Google Scholar]
  8. Rebolledo PA, Vu CCL, Carlson RD, Kraft CS, Anderson EJ et al. Polymicrobial ventriculitis involving Pseudomonas fulva. J Clin Microbiol 2014;52: 2239– 2241 [CrossRef]
    [Google Scholar]
  9. Mulet M, Gomila M, Ramírez A, Cardew S, Moore ERB et al. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation. Eur J Clin Microbiol Infect Dis 2017;36: 351– 359 [CrossRef]
    [Google Scholar]
  10. Peña A, Busquets A, Gomila M, Mulet M, Gomila RM et al. High quality draft genome sequences of Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T) type strains. Stand Genomic Sci 2016;11: 55 [CrossRef]
    [Google Scholar]
  11. Gao J, Li B-Y, Wang H-H, Liu Z-Q, Li B. Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Curr Microbiol 2014;69: 19– 24 [CrossRef]
    [Google Scholar]
  12. Kyrpides NC, Woyke T, Eisen JA, Garrity G, Lilburn TG et al. Genomic encyclopedia of type strains, phase I: the one thousand microbial genomes (KMG-I) project. Stand Genomic Sci 2014;9: 628– 634
    [Google Scholar]
  13. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017;35: 676– 683 [CrossRef]
    [Google Scholar]
  14. Nishimori E, Kita-Tsukamoto K, Wakabayashi H. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of Ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 2000;50: 83– 89 [CrossRef]
    [Google Scholar]
  15. Wang L-T, Tai C-J, Wu Y-C, Chen Y-B, Lee F-L et al. Pseudomonas taiwanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010;60: 2094– 2098 [CrossRef]
    [Google Scholar]
  16. Tvrzová L, Schumann P, Spröer C, Sedlácek I, Pácová Z et al. Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 2006;56: 2657– 2663 [CrossRef]
    [Google Scholar]
  17. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A et al. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PLoS One 2012;7: e48837 [CrossRef]
    [Google Scholar]
  18. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18: 821– 829 [CrossRef]
    [Google Scholar]
  19. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I et al. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 2009;10: R103 [CrossRef]
    [Google Scholar]
  20. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11: 119 [CrossRef]
    [Google Scholar]
  21. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015;10: 86 [CrossRef]
    [Google Scholar]
  22. Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009;25: 2271– 2278 [CrossRef]
    [Google Scholar]
  23. Chen I-MA, Markowitz VM, Palaniappan K, Szeto E, Chu K et al. Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genomics 2016;17: 30 [CrossRef]
    [Google Scholar]
  24. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007;10: 504– 509 [CrossRef]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106: 19126– 19131 [CrossRef]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  27. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43: 6761– 6771 [CrossRef]
    [Google Scholar]
  28. Ø H, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001;4: 9pp
    [Google Scholar]
  29. Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY et al. Gold) v.7: updates and new features. Nucleic Acids Res 2019;47: D649– D659
    [Google Scholar]
  30. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;47: D666– D677 [CrossRef]
    [Google Scholar]
  31. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2: 117– 134 [CrossRef]
    [Google Scholar]
  32. Gomila M, Busquets A, Mulet M, García-Valdés E, Lalucat J. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Front Microbiol 2017;8: 2422 [CrossRef]
    [Google Scholar]
  33. Mulet M, Gomila M, Gruffaz C, Meyer J-M, Palleroni NJ et al. Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int J Syst Evol Microbiol 2008;58: 2309– 2315 [CrossRef]
    [Google Scholar]
  34. Meyer JM. Pyoverdine siderophores as taxonomic and phylogenic markers In Ramos JL, Filloux A. (editors) Pseudomonas: Molecular Microbiology, Infection and Biodiversity6 Netherlands: Springer; 2010; pp 201– 232
    [Google Scholar]
  35. Siefert JL. Defining the mobilome. Methods Mol Biol 2009;532: 13– 27 [CrossRef]
    [Google Scholar]
  36. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003;6: 417– 424 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000067
Loading
/content/journal/acmi/10.1099/acmi.0.000067
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error