Implications of climate change for terrestrial microbiomes and global cycles

Soil microbiomes are highly diverse ecosystems that play a central role in ecosystem functioning and regulating global biogeochemical cycles. Through these processes, soil microbes make major contributions to the production and consumption of greenhouse gases. They also regulate the availability of essential nutrients, such as nitrogen and phosphorous, thereby influencing plant growth and global primary productivity. As such, soil microbial communities are intimately involved in climate feedback processes.
Predicting the contribution and response of soil microbiomes to future climate change represents a major research challenge. For example, uncertainties remain around the extent to which soils will act as a source or sink of carbon under future climate scenarios. A greater understanding of the microbial molecular pathways involved in biogeochemical cycling will be essential if we are to predict these outcomes. Similarly, further insight is needed into the response of soil microbial communities to climate extremes, such as drought, floods and increasing salinity, so that we can predict and mitigate changes to vital ecosystem services.
The special collection ‘Implications of climate change for terrestrial microbiomes and global cycles’ guest-edited by Drs Michael Macey (Open University), Sarah Worsley (UEA), and Geertje van Keulen (Swansea University), aims to highlight key research investigating the role of soil microbiomes in climate feedback processes, and their response to global change. It will also include articles on the characterisation of biogeochemical cycles and terrestrial microbiomes. We would also like to invite contributions on advances made in affordable and sustainable research methods, e.g. focussing on in situ activities where access to energy and/or data sources may be unreliable or unavailable.
This collection is open for submissions – please submit your article here, stating that your manuscript is part of the ‘Implications of climate change for terrestrial microbiomes and global cycles’ collection.
Image credit: Guido Gerding - external homepage, CC BY-SA 3.0, via Wikimedia Commons
Collection Contents
-
-
Using genome comparisons of wild-type and resistant mutants of Methanococcus maripaludis to help understand mechanisms of resistance to methane inhibitors
More LessMethane emissions from enteric fermentation in the ruminant digestive system generated by methanogenic archaea are a significant contributor to anthropogenic greenhouse gas emissions. Additionally, methane produced as an end-product of enteric fermentation is an energy loss from digested feed. To control the methane emissions from ruminants, extensive research in the last decades has been focused on developing viable enteric methane mitigation practices, particularly, using methanogen-specific inhibitors. We report here the utilization of two known inhibitors of methanogenic archaea, neomycin and chloroform, together with a recently identified inhibitor, echinomycin, to produce resistant mutants of Methanococcus maripaludis S2 and S0001. Whole-genome sequencing at high coverage (> 100-fold) was performed subsequently to investigate the potential targets of these inhibitors at the genomic level. Upon analysis of the whole-genome sequencing data, we identified mutations in a number of genetic loci pointing to potential mechanisms of inhibitor action and their underlying mechanisms of resistance.
-
-
-
Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps)
The warming-induced thawing of permafrost promotes microbial activity, often resulting in enhanced greenhouse gas emissions. The ability of permafrost microorganisms to survive the in situ sub-zero temperatures, their energetic strategies and their metabolic versatility in using soil organic materials determine their growth and functionality upon thawing. Hence, functional characterization of the permafrost microbiome, particularly in the underexplored mid-latitudinal alpine regions, is a crucial first step in predicting its responses to the changing climate, and the consequences for soil–climate feedbacks. In this study, for the first time, the functional potential and metabolic capabilities of a temperate mountain permafrost microbiome from central Europe has been analysed using shotgun metagenomics. Permafrost and active layers from the summit of Muot da Barba Peider (MBP) [Swiss Alps, 2979 m above sea level (a.s.l.)] revealed a strikingly high functional diversity in the permafrost (north-facing soils at a depth of 160 cm). Permafrost metagenomes were enriched in stress-response genes (e.g. cold-shock genes, chaperones), as well as in genes involved in cell defence and competition (e.g. antiviral proteins, antibiotics, motility, nutrient-uptake ABC transporters), compared with active-layer metagenomes. Permafrost also showed a higher potential for the synthesis of carbohydrate-active enzymes, and an overrepresentation of genes involved in fermentation, carbon fixation, denitrification and nitrogen reduction reactions. Collectively, these findings demonstrate the potential capabilities of permafrost microorganisms to thrive in cold and oligotrophic conditions, and highlight their metabolic versatility in carbon and nitrogen cycling. Our study provides a first insight into the high functional gene diversity of the central European mountain permafrost microbiome. Our findings extend our understanding of the microbial ecology of permafrost and represent a baseline for future investigations comparing the functional profiles of permafrost microbial communities at different latitudes.
-
-
-
Bacteria-induced mineral precipitation: a mechanistic review
More LessMicro-organisms contribute to Earth’s mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.
-
-
-
Facultative methanotrophs – diversity, genetics, molecular ecology and biotechnological potential: a mini-review
More LessMethane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
-
-
-
Microbial metabolism of isoprene: a much-neglected climate-active gas
More LessThe climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.
-
-
-
Microbial genomics amidst the Arctic crisis
The Arctic is warming – fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
-
-
-
Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria–host interactions, which are compromised under conditions of elevated temperature and CO2 levels
Plants are simultaneously exposed to a variety of biotic and abiotic stresses, such as infections by viruses and bacteria, or drought. This study aimed to improve our understanding of interactions between viral and bacterial pathogens and the environment in the incompatible host Nicotiana benthamiana and the susceptible host Arabidopsis thaliana, and the contribution of viral virulence proteins to these responses. Infection by the P otato virus X (PVX)/P lum pox virus (PPV) pathosystem induced resistance to Pseudomonas syringae (Pst) and to drought in both compatible and incompatible bacteria–host interactions, once a threshold level of defence responses was triggered by the virulence proteins P25 of PVX and the helper component proteinase of PPV. Virus-induced resistance to Pst was compromised in salicylic acid and jasmonic acid signalling-deficient Arabidopsis but not in N. benthamiana lines. Elevated temperature and CO2 levels, parameters associated with climate change, negatively affected resistance to Pst and to drought induced by virus infection, and this correlated with diminished H2O2 production, decreased expression of defence genes and a drop in virus titres. Thus, diminished virulence should be considered as a potential factor limiting the outcome of beneficial trade-offs in the response of virus-infected plants to drought or bacterial pathogens under a climate change scenario.
-
-
-
Alginate genes are required for optimal soil colonization and persistence by Pseudomonas fluorescens Pf0-1
More LessPseudomonas fluorescens strains are important candidates for use as biological control agents to reduce fungal diseases on crop plants. To understand the ecological success of these bacteria and for successful and stable biological control, determination of how these bacteria colonize and persist in soil environments is critical. Here we show that P. fluorescens Pf0-1 is negatively impacted by reduced water availability in soil, but adapts and persists. A pilot transcriptomic study of Pf0-1 colonizing moist and dehydrated soil was used to identify candidate genetic loci, which could play a role in the adaptation to dehydration. Genes predicted to specify alginate production were identified and chosen for functional evaluation. Using deletion mutants, predicted alginate biosynthesis genes were shown to be important for optimal colonization of moist soil, and necessary for adaptation to reduced water availability in dried soil. Our findings extend in vitro studies of water stress into a more natural system and suggest alginate may be an essential extracellular product for the lifestyle of P. fluorescens when growing in soil.
-
-
-
Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding
More LessMicrobial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis – and potentially assimilatory sulfate pathways – relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.
-
-
-
Azotobacter vinelandii: the source of 100 years of discoveries and many more to come
More LessAzotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers – bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
-
-
-
Relationship of environmental disturbances and the infectious potential of fungi
More LessFungi are critical organisms for the environment and offer many benefits to modern society through their application in the pharmaceutical, beverage and food industries. In contrast, fungal pathogens are emerging threats to humans, animals, plants and insects with potential to cause devastating mortality, morbidity and economic loss. Outbreaks associated with anthropogenic alterations of the environment, including climate change-related events such as natural disasters, are responsible for human, animal and plant disease. Similarly, fungi and their metabolites also have a negative impact in agriculture, posing a serious threat to our food supplies. Here, we describe the existing knowledge and importance of understanding the relationship of fungi and the environment in the context of human, animal and plant disease. Our goal is to encourage communication between scientists and the general public to create informed awareness about the impact of fungi in their daily lives and their environment.
-
-
-
Microbial nanowires: an electrifying tale
More LessElectromicrobiology has gained momentum in the last 10 years with advances in microbial fuel cells and the discovery of microbial nanowires (MNWs). The list of MNW-producing micro-organisms is growing and providing intriguing insights into the presence of such micro-organisms in diverse environments and the potential roles MNWs can perform. This review discusses the MNWs produced by different micro-organisms, including their structure, composition and mechanism of electron transfer through MNWs. Two hypotheses, metallic-like conductivity and an electron hopping model, have been proposed for electron transfer and we present a current understanding of both these hypotheses. MNWs not only are poised to change the way we see micro-organisms but also may impact the fields of bioenergy, biogeochemistry and bioremediation; hence, their potential applications in these fields are highlighted here.
-
-
-
The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment
More LessThe soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO2 enrichment microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.
-