Mutations Affecting Aromatic Amino Acid Transport in
Escherichia coli and Salmonella typhimurium

By GRACE M. THORNE* AND L. M. CORWIN
Department of Microbiology, Boston University School of Medicine,
Boston, Massachusetts 02118, U.S.A.

(Received 26 September 1974; revised 29 April 1975)

SUMMARY

A genetic locus, aroT, located between chr and the trp operon in Salmonella typhimurium, and similar genes, aroR and aroS, near the trp locus of Escherichia coli, were found to be involved in the transport of aromatic amino acids. Genetic lesions at these loci cause a variable diminution in uptake and accumulation of aromatic amino acids, alanine and glycine compared with the wild type. The F'trp episome carries the aroR locus. Curing an E. coli strain of the F'trp episome which covers a chromosomal deletion from cysB through the trp operon and tonB regions, results in a 60 to 80% decrease in tryptophan uptake. The introduction of F'trp into a trp operon-deleted S. typhimurium of low transport ability restores transport ability, suggesting that aroT in this organism may be homologous with aroR in E. coli. In E. coli, tryptophan accumulation is normally increased by prior growth in L-tryptophan, while in S. typhimurium it is repressed. In both genera, the trpR gene appears to have no effect on the tryptophan transport capabilities in response to changes in the concentration of L-tryptophan in the medium. Tryptophan transport in the S. typhimurium F'trp hybrid was subject to repression, while in the E. coli strain which carries F'trp covering the equivalent chromosomal deletion, an increase in tryptophan accumulation was shown after growth in L-tryptophan-supplemented medium.

INTRODUCTION

In Escherichia coli K12 and Salmonella typhimurium, the amino acid tryptophan is transported by two systems: a general aromatic transport system with a K_m about $1 \times 10^{-7} \text{ M}$, and a specific non-inducible transport system for tryptophan with a K_m of about $1 \times 10^{-8} \text{ M}$ (Ames, 1964; Ames & Roth, 1968; Piperno & Oxender, 1968; Brown, 1970). A third inducible tryptophan transport system was reported in E. coli by Boezi & DeMoss (1961) with a K_m value for tryptophan of $1 \times 10^{-5} \text{ M}$. The latter system was absent under the growth conditions used in our study since it was repressed by the glucose in our growth medium. A genetic locus coding for a component of the general aromatic transport system (aroP) has been located. The relative gene order in the aroP region is leu-aziA-aroP-aceE in both S typhimurium (Langley & Guest, 1974) and E. coli (Guest, 1974). The genetic regions responsible for the three specific aromatic amino acid transport systems have not been found.

Increasing the concentration of tryptophan in the medium from 20 to 100 μg/ml enhances the growth of some slow-growing trp-chr deletion strains of S. typhimurium (Corwin et al. 1966). One possibility, that this effect was due to increased penetration of the required amino acid at the higher concentration, prompted a study of tryptophan transport in these strains. As a result, genetic lesions which result in lowered tryptophan transport were

* Present address: Infectious Diseases and Immunology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29401, U.S.A.
Table 1. *Escherichia coli* strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genetic loci*</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI485</td>
<td>F- wild type</td>
<td>Boezi & DeMoss (1961)</td>
</tr>
<tr>
<td>T3</td>
<td>trpE, tnaA</td>
<td>Indole acrylate-resistant mutant of T3</td>
</tr>
<tr>
<td>DB1</td>
<td>trpE, tnaA, aroS</td>
<td></td>
</tr>
<tr>
<td>DB1/F'trp</td>
<td>trpE, tnaA, aroS/F'trp+</td>
<td>Conjugation with E. coli KY113</td>
</tr>
<tr>
<td>KY113</td>
<td>trp-tonB-cysB-aroR deletion/F'trp+, colI+, V+, B+, cysB+, aroR+, tonB+</td>
<td>L. Baron</td>
</tr>
<tr>
<td>X7700</td>
<td>F- proA, proB, lac, 880delac, ara, thi, malB, StrR</td>
<td>W. Reznikoff</td>
</tr>
<tr>
<td>X7800</td>
<td>F- proA, proB, lac, 880delac, ara, thi, malB, trpR, StrR</td>
<td>W. Reznikoff</td>
</tr>
</tbody>
</table>

* Gene symbols: aroR and aroS denote mutations affecting transport of aromatic amino acids, glycine and alanine. The episome, F'trp+, cysB+, aroR+ tonB+ colI+, V+, B+, is referred to as Ftrp. All other symbols are those recommended by Taylor & Trotter (1972).

Table 2. *Salmonella typhimurium* strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genetic loci*</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT2</td>
<td>Wild type</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>SUPX11</td>
<td>supX-cysB deletion</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>5</td>
<td>supX, leu-500, ara9</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>2</td>
<td>supX, leu-500, ara9</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>OABE130</td>
<td>trpOABE deletion</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>PM458</td>
<td>trpA512 deletion, cysB529, leu-500</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>PM566</td>
<td>trpABEDC167 deletion, cysB529, leu-500</td>
<td>P. Margolin</td>
</tr>
<tr>
<td>SUPX33</td>
<td>trpOAB-supX deletion</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>BEDC107</td>
<td>trpBEDC-chr-aroT deletion</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>ABEDC101</td>
<td>trpBEDC-chr-aroT deletion</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>BEDC43</td>
<td>trpBEDC deletion</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>A49</td>
<td>trpA49</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>A50</td>
<td>trpA50</td>
<td>Wuesthoff & Bauerle (1970)</td>
</tr>
<tr>
<td>E171</td>
<td>trpE171</td>
<td>Margolin & Bauerle (1966)</td>
</tr>
<tr>
<td>MTR1</td>
<td>trpR782 cysB517</td>
<td>Bauerle & Margolin (1966)</td>
</tr>
<tr>
<td>BEDC107/F'trp</td>
<td>trpBEDC-chr-aroT deletion/F'trp+ cysB+ tonB+ colI+, V+, B+, aroR+</td>
<td>Conjugation with E. coli KY113</td>
</tr>
</tbody>
</table>

* Gene symbols: aroT denotes the mutation affecting transport of aromatic amino acids, glycine and alanine. The episome, F'trp+ cysB+ aroR+ tonB+ colI+, V+, B+, is referred to as F'trp. All symbols are those recommended by Sanderson (1972). The strains from Margolin and his group are all derived from the wild type LT2.

mapped near the trp operon in both *E. coli* and *S. typhimurium* (Thorne & Corwin, 1970). Subsequent studies have shown that the transport of phenylalanine and tyrosine, as well as alanine and glycine, is also lowered. The loci, which may or may not be homologous in the two genera, have been named aroT in *S. typhimurium* and aroR and aroS in *E. coli*. Their effect on aromatic amino acid transport is similar to aroP lesions (Ames, 1964; Brown, 1970). These studies were extended to include the role of tryptophan transport regulation by trpR (Thorne & Corwin, 1971). This report describes the genetic mapping, regulation and kinetics of tryptophan transport by aroT strains of *S. typhimurium* and aroR and aroS strains of *E. coli*.
Amino acid transport in Enterobacteriaceae

METHODS

Bacteria. The *Escherichia coli* K12 and *Salmonella typhimurium* LT2 strains used are listed in Tables 1 and 2 respectively. In comparing results for transport systems that are inducible or repressible, care was taken to delineate the strains used (preferably isogenic ones) and the growth conditions. Of the *E. coli* strains used, T3 and DB1 are isogenic (DB1 being an indole acrylic acid-resistant mutant of T3), and X7700 and X7800 trpR are isogenic *E. coli* K12 strains. All the *S. typhimurium* strains received from P. Margolin were derived from LT2 and are well characterized (Table 2).

Phage. Virulent P↓vir (P↓195) phage was obtained from L. Baron. P↓vir lysates were prepared by a confluent lysis technique (Adams, 1959). Phage T↓1 was prepared by the soft agar method described by Adams (1959). Phage P↓22 lysates were prepared according to the method of Margolin (1963).

Media. Rich medium was the LC broth of Luria & Burrous (1957), Penassay broth or nutrient broth (Difco). The minimal medium (medium A) was modified from Davis & Mingioli (1950), and contained (g/l): K₂HPO₄, 10.5; KH₂PO₄, 4.5; (NH₄)₂SO₄, 1.0; MgSO₄. 7H₂O, 0.1. When 2 g of glucose was added to this medium it was termed minimal glucose (MG) medium. Amino acids were added as required at 20 μg/ml unless otherwise noted. When derepression of transport was sought in tryptophan-requiring strains, 2 μg/tryptophan/ml rather than 20 μg/ml were added.

Genetic methods. Transductions with P↓vir and P↓22 were carried out as described by Lennox (1955) and Margolin (1963), respectively. Sensitivity to phage T↓1 was routinely tested by cross-streaking on LC agar. Mating experiments were done according to the method of Falkow et al. (1964).

Isolation of mutants resistant to indole acrylic acid. An *E. coli* culture of T3 grown overnight in Penassay broth was diluted 1:15 with fresh broth and allowed to grow to 1 x 10⁷ cells/ml. A 5 ml sample of the culture was centrifuged, washed twice and resuspended in 0.5 ml of 0.1 M-sodium citrate buffer pH 5.0. The cells were then treated with N-methyl-N′-nitro-N-nitrosoguanidine (NTG) according to the method of Adelberg, Mandel & Chen (1965). The NTG-treated cells were spread on MG plates containing 100 μg indole acrylic acid and 1 μg tryptophan/ml. The plates were incubated at 37 °C for 3 to 4 days. Isolated colonies were picked, replica-plated on to fresh analogue-supplemented plates and assayed for tryptophan transporting ability. A representative strain DB1 (trpE, tnaA, aroS) was picked. This strain is not a rapid tryptophan excretor, because supernatant fluid from the mutant culture did not alter the extent of labelled tryptophan uptake by the parental strain T3. During isolation of the mutants the colonies were not surrounded by haloes of ‘feeding’ bacteria.

Ethidium bromide curing of F↓trp episome. Cells harboring the F↓trp episome were grown overnight in nutrient broth and diluted to 10⁴ cells/ml in fresh nutrient broth pH 7.6. Ethidium bromide was added to the diluted cells in a concentration range of 30 to 0.03 μg/ml (modification of the method of Bouanchaud, Scavizzi & Chabbert, 1968). All cultures were allowed to grow overnight at 37 °C. Cultures with 60 to 80 % of the growth of controls grown without ethidium bromide were replated on to nutrient agar plates. Isolated colonies were screened for Cys Trp phenotype by replicating on to single amino acid-supplemented MG plates.

Transport assay. Transport of amino acids was estimated as the amount of radioactively-labelled compound accumulated by cells transferred to medium containing chloramphenicol. Under these conditions, the label was not incorporated to any appreciable extent into protein.
or other trichloroacetic acid-insoluble material, but was accumulated within the cell. This allows direct measurement of the initial rate of uptake. The growth medium contained sufficient glucose to inhibit the formation of tryptophanase by the *E. coli* strains which are tryptophanase positive (Freundlich & Lichstein, 1960). *Salmonella typhimurium* LT2 and its derivatives do not utilize aromatic amino acids either as carbon or as nitrogen sources (Ames, 1964). Therefore, the uptake of radioactivity could be used as a measure of tryptophan transport unaffected by tryptophan metabolism.

The bacteria were grown overnight at 37 °C, with shaking, in MG medium supplemented with 20 µg L-tryptophan/ml. Initially studies were performed using exponentially-growing cells; values obtained were in agreement with those using overnight (16 to 17 h) cells. Derepression of the tryptophan transport system in salmonellae was achieved by omitting L-tryptophan or adding only 2 µg/ml. Cells were harvested by centrifuging at 25 °C, washed and resuspended in medium A to a concentration of 1 x 10⁸ cells/ml. One ml of washed cells (1.5 mg wet mass/ml) was then added to reaction mixture containing 12 µmol MgCl₂, 15 µmol tris-HCl buffer pH 8, and 250 µg chloramphenicol/ml, into a final volume of 7.0 ml. Radioactive amino acid was added at zero time and the mixture incubated at 25 °C. Samples (1 ml) were taken at 15 and 20 s and at 1, 2, 4 and 6 min, or as indicated, and filtered through membrane filters (Millipore type HA, 0.45 µm pore size). The filtered cells were washed immediately with 5 ml medium A (25 °C), dried and counted in a butyl-PBD-toluene mixture (7 g PBD, from CIBA/l toluene) in a Beckman-LS 200B liquid scintillation counter. Controls were included in which 1 ml of cells without radioactive amino acid was filtered, followed by 1 ml of the same radioactive amino acid solution as that used in each transport assay. Filtering took 5 s. The c.p.m. values in the controls, always less than the 15 s experimental values, were taken to represent the amino acid bound to the membrane filter and to the cells, and were subtracted from the experimental values. Data in this paper represent the mean values of three or more experiments, run on different days. The transport data are presented as either the initial rate of transport (30 s to 1 min) expressed as µmol/g cells/min, or the 6 min accumulation level expressed as the concentration of the amino acid in cell water, based on the calculation of Broda (1968) that 10⁸ cells contain 1 x 10⁻⁴ ml of water. A ratio of the radioactivity concentration inside the cell (G₀) to the radioactivity concentration outside the cell (G₀) is presented to demonstrate the accumulation capabilities of the various strains after 6 min incubation.

Chemicals. Analytical reagent grade inorganic chemicals were used throughout. Organic chemicals were the highest grade commercially available. Radioactive amino acids obtained from New England Nuclear Corp., Boston, Massachusetts, U.S.A., included DL-[³H]tryptophan (185 mCi/mmol), L-[³H]tryptophan (33 mCi/mmol), L-[³H]tyrosine (20 mCi/mmol), L-[³H]phenylalanine (135 mCi/mmol), L-[¹⁴C]leucine (5000 mCi/mmol), L-[¹⁴C]isoleucine (250 mCi/mmol), DL-[¹⁴C]lysine (7.1 mCi/mmol), L-[¹⁴C]alanine (11 mCi/mmol), and [¹⁴C]glycine (4 mCi/mmol). Indole acrylic acid was obtained from Sigma, NTG from Aldrich Chemical Co., New Jersey, U.S.A., scintillator butyl-PBD from CIBA Corp., Summit, New Jersey, and filters from Millipore. Ethidium bromide was generously given by Dr R. Herrmann.

RESULTS

*Tryptophan uptake in *E. coli* K12 and *S. typhimurium* LT2*

Figure 1 illustrates the time course of tryptophan uptake by strains DB1 (an *E. coli* transport-deficient strain), its parental strain T3, the transport-deficient *S. typhimurium* BEDC107, and its parental strain LT2. In order to determine optimal transport and
Amino acid transport in Enterobacteriaceae

Fig. 1. Time-course of tryptophan uptake in E. coli strains (●) T3 and (○) DB1, and S. typhimurium strains (□) LT2 and (●) BEDC107. The E. coli strains were grown overnight in MG medium supplemented with 20 μg/L-tryptophan/ml. The Salmonella strain LT2 was grown overnight in MG without L-tryptophan, and BEDC107 was grown in MG medium supplemented with 2 μg tryptophan/ml. Cells were incubated with L-[3H]tryptophan at a final concentration of 7.1 μM (33 mCi/mmol) and uptake was expressed as the intracellular concentration of radioactive material.

Table 3. Tryptophan uptake in E. coli and S. typhimurium. Comparison of apparent Michaelis constants, maximum reaction velocities, and concentration ratios

<table>
<thead>
<tr>
<th>Cells</th>
<th>Genotype</th>
<th>Genotype</th>
<th>K_m* (μM)</th>
<th>V_max* (µmoles/g cell/min)</th>
<th>G_in/G_ex†</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>WI485</td>
<td>Wild type</td>
<td>1.4</td>
<td>1.19</td>
<td>6820</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>trpE (parent of DB-1)</td>
<td>3.0</td>
<td>1.29</td>
<td>5350</td>
</tr>
<tr>
<td></td>
<td>DB1</td>
<td>trpE aroS</td>
<td>1.4</td>
<td>0.35</td>
<td>2400</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>LT2</td>
<td>Wild type</td>
<td>1.3</td>
<td>0.50</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>BEDC107</td>
<td>trp BEDC, chr, aroT</td>
<td>1.0</td>
<td>0.08</td>
<td>104</td>
</tr>
</tbody>
</table>

* K_m and V_max values were derived from Lineweaver-Burk plots of (V) the initial rate of transport (30 s to 1 min) and (S) the [3H]-L-tryptophan concentrations over the range 0.43 to 19.7 μM.
† Ratio of c.p.m. in bacterial cell water to initial concentration outside; G_in is the c.p.m. accumulated during 6 min incubation; G_ex is the initial external concentration of tryptophan (i.e. 0.43 μM L-[3H]tryptophan).

accumulation by the two genera, the two E. coli strains were grown in media supplemented with L-tryptophan, while the two S. typhimurium strains were grown with 2 μg tryptophan/ml or no amino acid. The maximal rate of tryptophan uptake occurs from 30 s to 1 min, except in the E. coli parental strain T3 which maintains this rate for 4 to 6 min. Under saturating conditions (i.e. radioactive substrate concentration > 2 × K_m of transport for T3) a final level of accumulation was reached in 15 min by T3 and in 6 min by the other three strains. The plateau levels were maintained relatively constant for 1 h.

Saturation kinetics

Lineweaver-Burk plots of the initial rate of uptake at varying L-tryptophan concentrations (a range of 0.43 to 19.7 μM) yielded Michaelis constants for these E. coli and S. typhimurium strains (Table 3). G_in/G_ex ratios were also determined, to indicate the accumulation
ability of each strain. These ratios demonstrate the five-fold difference in accumulation ability of *E. coli* K12 wild type and *S. typhimurium* LT2. Mutation at the *aroT* or *aroS* regions results in an analogous loss of transport activity in both species. *Escherichia coli* DBI accumulated to a level 45% of that of its parent, T3. In *S. typhimurium*, the permease-deficient strain BEDC107 accumulated only 20% of that of wild-type LT2, regardless of the level of tryptophan in the growth medium.

V_{max} values were 4 to 6 times lower in the transport-deficient mutants, DBI and BEDC107, while their apparent dissociation constants (K_m) were in the same range as the parental wild-type strains of their respective genera.

Uptake of aromatic and other amino acids by *E. coli*

In the presence of a 20-fold excess of each of 17 amino acids, only phenylalanine and tyrosine interfered markedly with the uptake of DL-[3H]tryptophan in *E. coli* T3 (Thorne, 1972). The aromatic amino acid uptake of DBI, the transport-deficient strain, and its parental strain T3 were compared using eight radioactively-labelled L or DL amino acids (Fig. 2). Strain DBI showed the greatest impairment in tryptophan transport of the amino acids tested, as reflected in a G_m/G_{ex} ratio of 28% compared with control strain T3. The initial rates of transport and G_m/G_{ex} ratios as compared to control T3 were all below 50% for
Amino acid transport in Enterobacteriaceae

Fig. 4. Effect of growth in L-tryptophan-containing media on tryptophan transport. Cells grown overnight in MG medium alone, or MG medium supplemented with 2 or 20 μg tryptophan/ml, were assayed as described in Methods using L-[3H]tryptophan (7-1 μM, 33 mCi/mmol). Initial rates and accumulation levels were calculated. The solid bars represent percentage change in initial rate (μmol/g cells/min) and the open bars represent percentage change in accumulation (μmol/g cells).

Escherichia coli data given are percentages relative to a value for E. coli K12 W1485 of 100% (initial rate when grown without tryptophan was 1.11 μmol/g cells/min, accumulation was 3.60 μmol/g). Salmonella typhimurium data given are percentages relative to a value for S. typhimurium LT2 of 100% (initial rate when grown without tryptophan was 0.39 μmol/g cells/min, accumulation was 1.31 μmol/g cells).

phenylalanine, tyrosine, alanine and glycine. The initial rates and G_{in}/G_{ex} ratio of DB1 for isoleucine and lysine were similar to the parental strain T3. Although a low concentration of leucine was used in these assays (0.01 μM), the low initial rate for leucine uptake by DB1 was consistently found. The G_{in}/G_{ex} ratio for leucine uptake of DB1, however, appears similar to parental T3.

Uptake of aromatic and other amino acids by S. typhimurium

In S. typhimurium, the transport defects of strain BEDC107 were examined (Fig. 3). Comparison of strain BEDC107 with wild-type LT2 revealed defects in transport of the aromatic amino acids and glycine. Rates and accumulation ratios, expressed as percentages of those of the control strain LT2, were all well below 50%.

Study of leucine transport by various trp-chr deletion strains of S. typhimurium revealed the presence of a locus affecting leucine transport on the side of the chr marker distal to the trp operon (Thorne & Corwin, 1972). This locus is thought not to be involved in aromatic amino acid transport. L-[3H]alanine transport assays showed this amino acid to be poorly transported in all Salmonella strains tested compared with E. coli (Thorne, 1972).

Regulation of aromatic transport in E. coli

In E. coli the aromatic permease is not controlled by the tryptophan regulator gene, since the presence or absence of the trpR gene has no effect on permease regulation. This was shown by the identical uptake of DL-[3H]tryptophan by the two isogenic E. coli K12 strains X7700 and X7800, which differ only by a trpR mutation. Maximal rates of uptake after growth in the presence of 20 μg tryptophan/ml were 0.34 and 0.36 μmol/g cells/min, while the accumulations inside the cells after 6 min incubation were 1.63 and 1.72 μmol/g cells respectively. Thus the trpR gene does not play a role in the regulation of tryptophan transport.
Following growth with tryptophan, *E. coli* strains KYI13/F'trp and w1485 showed 50% increases and T3 a 33% increase in the amounts of tryptophan accumulated after 6 min incubation (Fig. 4). The initial uptake rates were only slightly affected by growth on tryptophan, thus appearing constitutive. These results suggest that tryptophan accumulation can be increased by growth in the presence of this amino acid.

Regulation of aromatic transport in *S. typhimurium*

Transport by the wild-type *S. typhimurium* LT2 was regulated by prior growth in the presence of tryptophan (Fig. 4). Repression of tryptophan uptake resulted after growth in tryptophan-supplemented media. The accumulation of tryptophan by the trpR strain MTR1 was still significantly repressed and therefore regulated by tryptophan. Thus, as in *E. coli*, the *trp* operon regulator system of *S. typhimurium* does not appear to control tryptophan uptake.

Mapping of the aroR, aroS and aroT loci affecting aromatic amino acid uptake in *E. coli* and *S. typhimurium*

Escherichia coli strain KYI13 contains a very large chromosomal deletion of the cysB-trp-tonB region. This genetic lesion is compensated for in this cell by the presence of the episome F'coli, V, B+ cysB+ trp+ tonB+ (referred to below as F'trp) which covers the genetic gap on the chromosome. Ethidium bromide removal of the episome results in an endogenote with a deletion extending through the *trp* operon and neighbouring *ton B* and *cys B* regions. Curing of the episome was assessed easily, since these strains upon curing regained a requirement for cysteine and tryptophan, and became resistant to phage T1 and indole acrylic acid (IA),
Amino acid transport in Enterobacteriaceae

<table>
<thead>
<tr>
<th>chr</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>B</th>
<th>A</th>
<th>O</th>
<th>supX</th>
<th>cysB</th>
</tr>
</thead>
<tbody>
<tr>
<td>e171</td>
<td>A50</td>
<td>5</td>
<td>O17</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A50</td>
<td>0.36</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDEC43</td>
<td>A458</td>
<td>supX</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14(0.32)</td>
<td>0.22</td>
<td>0.18(0.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>supX</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OABE130</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. The chr-trp-supX-cysB portion of the S. typhimurium chromosome. The lines below the chromosome represent the approximate extent of the deletions in the mutant strains listed above the line except where an × through the line denotes a point mutation. Below the line are the initial rates of L-tryptophan uptake of each strain, expressed as μmol/g cells/min (30 s to 1 min values). The rates in parentheses are for cells grown overnight in MG medium supplemented with 2 μg L-tryptophan/ml; otherwise, cells were grown in media with 20 μg tryptophan/ml. Assays were performed with L-[3H]tryptophan at a final concentration of 7-1 μM (33 mCi/mmol). Each value is the average of two or more experiments run on separate days. Symbols: chr, chromium ion sensitivity; trp, tryptophan operon; supX, suppressor of leucine-500 operator mutation; cysB, cysteine regulation.

the latter suggesting that the gene for aromatic amino acid uptake might lie within the chromosomal deletion.

Transport of tryptophan in KY113 before and after curing provided the first clue to the location of aroR (Fig. 5a). After curing the strain of the F' trp episome, the amount of tryptophan transported by the cells was reduced by 80% compared with the hybrid. The initial rate of uptake and intracellular level after 6 min in the cured strain were the same whether the cells had been grown with 2 or 20 μg tryptophan/ml. Thus the decrease in rate of uptake and accumulation in the cured strains is not the result of repression of transport by growth in tryptophan, but is due to the alteration of a component required for tryptophan transport that is coded for by a gene on the F' trp episome. This gene has been termed aroR.

To determine the location of the aroR gene of E. coli more precisely we made use of various deletion mutants of S. typhimurium LT2 that had been isolated and identified by Margolin and his group (Table 2). This is a feasible approach because the genetic map in S. typhimurium is analogous to that of E. coli in the region of the trp operon. The five genes of the trp operon are aligned in the same sequence in both genera. Although the operons show opposite orientation with respect to other chromosomal markers, the relationship of the trp operon to closely linked genes is identical in the two genera (Sanderson, 1972; Taylor & Trotter, 1972). The E. coli tonB locus is also analogous to the chr locus in S. typhimurium since tonB point mutants WD38 and 169 are also sensitive to chromium ion (Thorne, 1972).

The genetic map of the Salmonella strains studied is shown in Fig. 6 together with the initial rates of L-[3H]tryptophan uptake in these strains. The various strains with point mutations and deletions which cover the trp operon and extend through supX and cysB all have initial rates of tryptophan uptake which are similar to that of wild-type LT2 (0.32 μmol/g cells/min). The lowest initial rates of transport were exhibited by BDEC107 and ABEDC101, even under derepressed conditions (growth in 2 μg tryptophan/ml). Both ABEDC101 and
BEDC107 carry deletions extending through the chr locus (Corwin et al. 1966). These results suggest that a locus exists, on the chr side of the trp operon, which is involved in aromatic amino acid transport; we have termed this gene aroT.

To determine the location of the aroT region in relation to the chr (chromium ion sensitivity) and trp loci, strain BEDC107 (trpBEDC, chr, aroT) was transduced to chromium resistance (chr) with a P22 lysate from wild-type strain LT2. Chr transductants were tested for tryptophan requirement and rate of uptake of this amino acid. All 20 Chr Trp+ transductants tested were able to take up tryptophan at rates identical to wild type, LT2. Chr Trp- transductants were also found, indicating that either the recipient strain actually possesses a double deletion or that partial diploids were formed. Nineteen of the 20 Chr Trp- transductants tested retained low transport ability. This result, coupled with the normal rate of uptake of the various chr-trp-supX-cysB deletion strains (Fig. 6), suggest that in S. typhimurium the aroT region lies between chr and the trp operon. However, as the transduction data cannot be interpreted with certainty, the exact location of aroT remains unknown.

The results of the following intergeneric mating give added evidence for the presence of a gene coding for a transport component in the F'trp episome. The BEDC107 strain of S. typhimurium has a low derepressed rate of transport and low steady-state accumulation of tryptophan when grown on 2 μg tryptophan/ml. After conjugation with E. coli cells harbouring the F'trp episome, the S. typhimurium F'trp hybrid had increased transport ability (Fig. 5b). This suggests that the E. coli aroR gene is homologous with the S. typhimurium aroT gene. As mentioned previously, in S. typhimurium transport was repressed by prior growth in MG–tryptophan medium. This regulation exerted control over the expression of the E. coli F'trp aroR gene, because prior growth in MG–tryptophan medium caused repression of both the transport rate and accumulation level. Even under derepressed conditions (no tryptophan supplement) the S. typhimurium F'trp hybrid had a transport rate and an accumulation level which was considerably below the normal E. coli range (note the difference in scale between Fig. 5a and Fig. 5b and c). This result may indicate the presence of a tryptophan transport regulator gene in S. typhimurium which causes repression of transport after prior growth in tryptophan, and controls the expression of the E. coli episomal genetic message.

The results of the intra-generic mating are more difficult to interpret (Fig. 5c). When F'trp was transferred into DB1, the early transport rates were changed very little. It seems very likely therefore that the genetic lesion (aroT) in S. typhimurium BEDC107 and the probably homologous region aroR in the cured E. coli KY113, which are correctable by the F'trp episome, are different from the lesion (aroS) in E. coli DB1 which is not so correctable. Thus the genetic lesion in DB1 must lie outside the range of DNA covered by the F'trp episome.

Evidence that the mutational locus in E. coli DB1 lies near the trp operon was supplied by PI transduction. The indole acrylic acid (IA)-resistant strain DB1 (trpE, tnaA, aroS) was transduced to Trp+ with a PI lysate from the wild-type E. coli K12 strain W1485. Of the 57 Trp+ transductants tested, 22 were IA sensitive. Therefore the frequency of co-transduction of IA sensitivity with tryptophan requirement was 38%. The exact location of DB1 relative to the trp region in E. coli remains to be determined, for although aroS is co-transducible with trp it lies outside the region contained in F'trp.

The possibility that the uptake-deficiency of E. coli DB1 and/or S. typhimurium BEDC107 is due to a cell wall defect caused by a mutation involving galU (linked to trp) can be ruled out, since these strains are galactose positive and in addition DB1 can absorb phage PI;
Amino acid transport in Enterobacteriaceae

neither of these characters can be shown by galU mutants (Shapiro, 1966; Rapin & Kalckar, 1971).

DISCUSSION

This study presents evidence that general aromatic amino acid transport and uptake of glycine and alanine is impaired in aroR, aroS and aroT strains of *E. coli* and *S. typhimurium*, respectively, caused by genetic lesions near the *trp* operon and the *tonB* or *chr* loci. The transport defects displayed by these mutations are similar to the aroP mutations in *E. coli* (Brown, 1970) and *S. typhimurium* (Ames, 1964). In *E. coli*, mutation in *aroP* results in roughly a 75% decrease in transport of labelled aromatic amino acids by whole cells. Inhibition studies indicate that in *E. coli*, the general aromatic transport system aroP has a high affinity for phenylalanine, tyrosine and tryptophan and lower affinity for cysteine, leucine, alanine, methionine, histidine and aspartic acid.

In our study, aromatic amino acid transport by aroT, aroR, aroS strains appears similar to that of aroP. Of the other neutral and basic amino acids which were directly tested, uptake of alanine and glycine were also impaired.

Both the cured *E. coli* KYII3 and *S. typhimurium* BEDC107 deletions termed aroR and aroT respectively have their tryptophan transport and IA phenotype restored to normal by the presence of the F' *trp* episome. Transduction studies and rates of uptake of various chr-trp-sup X-cysB deletion strains suggests that the transport defect of *S. typhimurium* aroT strain BEDC107 is located between *trp* and *chr*. Thus the aroT and aroR mutation can be located on the *tonB* or *chr* side of the *trp* operon, and results in impaired transport of labelled aromatic amino acids in *E. coli* K12 and *S. typhimurium*. The IA* character of *E. coli* strain DB1 (aroS) is co-transduced with *trp*, and if the transport defect of DB1 (which is similar to the cured IA* KY113 deletion strain) is directly related to its IA resistance, then the genetic locus aroS is also close to the *trp* operon although outside the region contained in F' *trp*. Exact correlation of the resistance phenotype with the transport defect was not made. The possibility remains of DB1 being a double mutant, especially since it was produced by NTG mutagenesis (Guerola, Ingraham & Cerdá-Olmedo, 1971). Location of the aroT, aroR and possibly aroS regions near the *trp* operon raises the question of whether there are two or more genetic loci coding for separate components functioning in general aromatic amino acid transport. This may be so, since the aroP mutations and the aroS mutation were isolated on the basis of resistance to three different analogues.

The similarities in *K_m* of wild-type and aroT and aroS strains suggest that the mutations do not alter the structure of a binding protein involved in transport. The decrease in the *V_max* of DB1 (aroS) and BEDC107 (aroT) may be associated with loss of transport components or with alterations in the cell wall around the transport components which cause the transport reactions to proceed more slowly. Binding proteins may play a role in aromatic amino acid transport. Guroff & Bromwell (1970) have reported the isolation of a phenylalanine-binding protein from *Comamonas* sp. Such structural defects may lead to loss of transport components from the periplasmic space due to an incomplete cell wall, thereby contributing to a smaller number of transport proteins capable of reacting with the substrate.

A preliminary study of *S. typhimurium* strains possessing different defects in their lipopolysaccharide structure (SL1181, SL896, SL1197, SL1034, HN300 and HN308; see Gemski & Stocker, 1967; Nakae & Nikaido, 1971) indicated that strains with rfbT, rfaL and galU mutations had 14 to 38% lower initial rates and accumulation levels of tryptophan uptake than the wild-type LT2 (Thorne, 1972). While only the tryptophan transport ability of these rough strains was assayed, one might suspect that such lipopolysaccharide defects may have
a generalized effect involving other transport systems as well. It may be noted that DBI transports glycine and alanine poorly and B6DC107 has a deficient glycine uptake. The presence of galU mutations was ruled out in both strains, although other cell-wall defects cannot be precluded.

Other studies have shown that the area around the trp-tonB loci in *E. coli* contains genes for a number of bacterial cell-surface components. Mutations in these regions lead to deficiencies in transport of iron (Cox *et al.*, 1970; Wang & Newton, 1969a, b, 1971) and resistance to phages T1, φ80 and colicins B, I, and V (Gratia, 1966; Signer, 1966; Yanofsky & Lennox, 1959). Our mapping data have revealed regions in both *E. coli* and *S. typhimurium* in this same area concerned with the ability to transport the aromatic amino acids, glycine, and alanine. There is also evidence of a different region affecting leucine transport ability on the side of the *chr* locus distal to the trp operon (Thorne & Corwin, 1972).

An example of a mutation with a missing surface component associated with a pleiotropic transport effect has been demonstrated in ctr strains of *E. coli* (Wang, Morse & Morse, 1969; Dahl, Wang & Morse, 1971). These are defective in the uptake of various carbohydrates and of tryptophan, and are located 20 min from the trp-tonB area. The ctr mutational effect on tryptophan uptake was confined to the specific inducible transport system for tryptophan.

Comparison of tryptophan transport by *E. coli* and *S. typhimurium*. The ability to transport tryptophan is lower in wild-type *S. typhimurium* than in wild-type *E. coli* K12, even under conditions of maximal transport activity. Either the salmonella normally contain a mechanism responsible for maintaining a relatively low level of tryptophan transport by regulating the number of transport carriers, or perhaps differences in the cell envelope of the salmonellae are sufficient to provide more of a physical barrier to passage of amino acids (Robbie & Wilson, 1969), or there could be a different amount of metabolic energy made available for active transport. Significantly, the capacity for tryptophan transport in *S. typhimurium* harbouring the F′trp episome from *E. coli* never achieved levels found in *E. coli* harbouring the episome, but remained at the lower level of wild-type salmonellae.

Comparison of regulation of tryptophan transport and trp operon. Somerville (1966) reported the regulation of expression of episomal *E. coli* tryptophan biosynthetic enzymes in strains of *S. typhimurium* whose chromosomes were deleted through the trp operon. The response to regulation in the *S. typhimurium* F′trp hybrid was the same as that in the *E. coli* wild type. Thus, although regulation of trp operon structural genes is similar in the two genera, this is not the case with the aromatic transport system. Our findings indicate that the trpR locus, which regulates the trp structural genes, appears to have no effect on tryptophan transport in *E. coli* and *S. typhimurium*. The two genera differ in their response to L-tryptophan supplementation. In *E. coli*, accumulation of tryptophan is normally enhanced by growth in tryptophan, while in *S. typhimurium*, accumulation is depressed by such growth conditions.

We thank Drs S. A. Broitman, E. Kashket and P. Gemski for invaluable assistance during the course of this work and preparation of the manuscript, and Dr P. Margolin for his guidance in selection of strains as well as for donating them. We also thank Drs W. Renzikoff, B. A. D. Stocker and H. Nikaido for supplying stock strains, and Mrs Irene Burr for incredible patience and excellent secretarial assistance. G.M.T. was supported by a predoctoral fellowship from the National Aeronautics and Space Administration.
REFERENCES

216

G. M. THORNE AND L. M. CORWIN

