Growth of a Wild Strain and of a Pimelic Acid-utilizing Mutant of *Pseudomonas azelaica* on Aliphatic Dicarboxylic Acids

By L. JANOTA-BASSALIK* AND B. BOHDANOWICZ-STRUCIŃSKA

Institute of Microbiology, University of Warsaw, 00-046 Warszawa, Poland

(Received 18 January 1974; revised 5 April 1974)

SUMMARY

Aliphatic dicarboxylic acids, homologous series C₄ to C₁₉ (except pimelic acid, C₁₆), were utilized as sole carbon and energy sources by *Pseudomonas azelaica*, wild strain. A spontaneous *Ps. azelaica* Pma⁺ mutant, able to utilize pimelic acid, was isolated from the wild strain on pimelate agar medium. Utilization of pimelic acid was the only character that differentiated the wild strain from the mutant. Experiments with Tween 80 showed that the ability to utilize pimelic and suberic acids by both strains of *Ps. azelaica* depended on cell permeability. These results suggest that the aliphatic dicarboxylic acids are metabolized by inducible enzymes and that the induction is not specific.

INTRODUCTION

Long-chain aliphatic dicarboxylic acids are formed when micro-organisms use aliphatic and aromatic hydrocarbons as carbon sources. A bacterial strain able to utilize azelaic acid, a 9-carbon dicarboxylic acid, as the sole source of carbon and energy was isolated and described by Janota-Bassalik & Wright (1964a).

The strain decomposing azelaic acid was classified as a *Pseudomonas* species. On the basis of more careful characterization (Janota-Bassalik, Bohdanowicz-Strucinska & Noras, 1971) it was found to differ from the described species and the name *Pseudomonas azelaica* was proposed.

Previous studies on azelaic acid degradation by micro-organisms have indicated that beta-oxidation is important in the reaction. Pimelic acid was found in the cultures of *Pseudomonas* sp., *Micrococcus* sp., and *Moraxella lwofii* growing on azelate by Janota-Bassalik & Wright (1964b), Koichi, Tochikura, Osugi & Ivahara (1966) and Chapman & Duggleby (1967).

In this paper we investigate the degradation of different dicarboxylic acids by *Ps. azelaica* and by its mutant, *Ps. azelaica* Pma⁺.

METHODS

Organisms. *Pseudomonas azelaica* ATCC27162, wild strain and its mutant, *Ps. azelaica* Pma⁺, were used, both strains being transferred every week. *Pseudomonas azelaica* was grown on nutrient agar and *Ps. azelaica* Pma⁺ on pimelate agar.

Solutions. Salts solution A (g/l distilled water): (NH₄)₂SO₄, 1·0; K₂HPO₄, 0·5; MgSO₄·7H₂O, 0·1; NaCl, 0·1. Salts solution A' contained K₂HPO₄, 12·6 g, and KH₂PO₄, 4·0 g, per 1 salts solution A. Vitamins solution (mg/100 ml distilled water): thiamine hydrochloride, 10·0; calcium pantothenate, 10·0; riboflavin, 10·0; nicotinic acid, 10·0;

* Present address: The Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Jastrzębiec 05-551, Mroków, Poland.
Pseudomonas azelaica did not grow on pimelate alone, on pimelate enriched with small amounts of easily utilisable acids, or on pimelate with casein hydrolysate or vitamins. However, we observed significantly greater turbidity in cultures grown on 0.01% azelate with 0.3% pimelate than on controls with 0.01% azelate alone, suggesting that some cells of Ps. azelaica had acquired the ability to utilize pimelic acid. This was confirmed by the isolation of clones utilizing pimelic acid from colonies grown on pimelate agar inoculated with a dense suspension of Ps. azelaica wild strain. One spontaneously produced mutant named Ps. azelaica Pma+ was shown to be identical with Ps. azelaica, except in its response to pimelic acid. The ability of Ps. azelaica Pma+ to utilize azelate acid after several transfers on auxilic acid was less than that of the parent strain.
Growth of a wild strain of Ps. azelaica

Growth of Ps. azelaica and of Ps. azelaica Pma+ on buffered media with dicarboxylic acids (C₂ to C₁₀)

Media were inoculated with equal numbers of bacteria. The best growth, for both strains, was obtained on succinate (C₄), glutarate (C₅) and adipate (C₆). The rate of growth and the maximum turbidity of cultures grown on all of these acids were similar. The exponential phase of growth was preceded by a moderate lag phase. Both strains grew well on azelate (C₇) and on sebacate (C₁₀) after a 14 h lag phase. Suberic acid (C₈) was utilized after a long lag phase, lasting from 24 to 40 h, and not all cultures grew exponentially. Only Ps. azelaica Pma+ grew on pimelic acid (C₇), and only after a 23 h lag phase. Neither strain grew on oxalate or malonate.

Influence of the carbon source used to grow the inocula on the subsequent growth rate of Ps. azelaica and of Ps. azelaica Pma+

Cultures grown on glucose, adipate, azelate and sebacate were used in 0.1% volume to inoculate media containing glucose or one of the dicarboxylic acids, adipate, azelate or sebacate. In addition, for experiments with Ps. azelaica Pma+, pimelate medium was inoculated with cultures grown on pimelate.

Growth on dicarboxylic acid media did not depend on the dicarboxylic acid substrate used to grow the inocula. Growth on glucose, however, depended on the substrate; both strains grew on glucose without evident lag phase when the inoculum was grown on glucose, but when it was grown on a dicarboxylic acid medium, the lag phases on glucose were 16 to 18 h. It would seem that the degradation of glucose by both strains of Ps. azelaica depends on the induction of the enzymes active in that process.

Influence of Tween 80 on the growth of Ps. azelaica on suberate, pimelate and azelate

Bacteria were grown on buffered media containing 0.1% Tween 80 and suberate, pimelate or azelate. Media containing no Tween 80 and media containing Tween 80 as the only carbon source were used as controls.

Pseudomonas azelaica did not grow when Tween 80 was the sole carbon source. Tween 80 did not influence the growth of Ps. azelaica on azelate, but stimulated growth on suberate. In the presence of Tween 80 slight growth of Ps. azelaica on pimelate was noted (Fig. 1).

Influence of acrylic acid on the respiratory activity of Ps. azelaica and Ps. azelaica Pma+

Acrylic acid, a specific inhibitor of beta-oxidation (Thijsse, 1964), reduced the oxygen uptake by both strains of Ps. azelaica when dicarboxylic acids were used as oxidation substrates. Under the influence of 14 nmol acrylic acid in the reaction mixture, oxygen uptake by the wild strain, measured after 3 h, was reduced by 55, 60 and 53% in the presence of adipate, azelate, and sebacate respectively. Under the same conditions, oxygen uptake by the Pma+ mutant was reduced by 47, 40, 42 and 30% in the presence of adipate, pimelate, azelate, and sebacate, respectively. Acrylic acid did not influence oxygen uptake by either strain when acetic acid was used as oxidation substrate, or in endogenous respiration (Table 1).
Fig. 1. Growth of *Pseudomonas azelaica* in liquid media with 0.3% dicarboxylic acids ± Tween 80, or Tween 80 alone. △, Pimelic acid; ○, pimelic acid + Tween 80; □, suberic acid; ●, suberic acid + Tween 80; ○, azelaic acid; ◀, azelaic acid + Tween 80; △, Tween 80.

Table 1. Influence of acrylic acid on substrate respiration by resting suspensions of *Ps. azelaica* and *Ps. azelaica Pma*^+^

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Pseudomonas azelaica</th>
<th>Pseudomonas azelaica Pma^+^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endogenous respiration</td>
<td>15.56</td>
<td>16.76</td>
</tr>
<tr>
<td>Endogenous respiration + acrylic acid</td>
<td>20.01</td>
<td>19.05</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>130.10</td>
<td>126.41</td>
</tr>
<tr>
<td>Acetic acid + acrylic acid</td>
<td>128.85</td>
<td>121.98</td>
</tr>
<tr>
<td>Adipic acid</td>
<td>132.98</td>
<td>125.96</td>
</tr>
<tr>
<td>Adipic acid + acrylic acid</td>
<td>60.07</td>
<td>67.07</td>
</tr>
<tr>
<td>Pimelic acid</td>
<td>—</td>
<td>157.50</td>
</tr>
<tr>
<td>Pimelic acid + acrylic acid</td>
<td>—</td>
<td>92.34</td>
</tr>
<tr>
<td>Azelaic acid</td>
<td>180.00</td>
<td>74.25</td>
</tr>
<tr>
<td>Azelaic acid + acrylic acid</td>
<td>73.43</td>
<td>43.10</td>
</tr>
<tr>
<td>Sebacic acid</td>
<td>212.15</td>
<td>66.34</td>
</tr>
<tr>
<td>Sebacic acid + acrylic acid</td>
<td>100.31</td>
<td>41.06</td>
</tr>
</tbody>
</table>

The main Warburg vessels, agitated at the rate of 140 strokes/min with a 2.5 cm span, contained, per 2.0 ml: 100 nmol phosphate buffer, pH 7.0; bacterial cell suspension equivalent to 1.2 mg dry wt; 14 nmol acrylic acid; and substrate equivalent to 27 nmol organic carbon. Acrylic acid was added to the main vessel from the side-arm after 30 min. Mixtures without acrylic acid served as controls.

Products of dicarboxylic acid degradation by *Ps. azelaica* and by *Ps. azelaica Pma*^+^

Suberic acid was repeatedly detected by paper chromatography in the cultures of both *Ps. azelaica* strains growing on sebacic acid. In cultures of *Ps. azelaica*, wild strain, growing exponentially on azelaic acid, azelaic, suberic, pimelic, glutaric and succinic acids were found by gas chromatography; the amount of pimelic acid, the carbon...
Growth of a wild strain of *Ps. azelaica* 83

A compound not used by this strain, increased during the stationary growth phase. In cultures of *Ps. azelaica* Pma+ grown on azelaic acid, only suberic acid was detected during logarithmic and stationary growth phases. Trace amounts of adipic, glutaric and succinic acids were present in cultures of *Ps. azelaica* Pma+ growing on pimelic acid.

DISCUSSION

Some dicarboxylic acids are not used as growth substrates by *Pseudomonas azelaica*. The most interesting in this respect is pimelic acid, a by-product of azelaic acid degradation. Similar observations were made by Koichi *et al.* (1966) on another bacterium which utilized azelaic acid, *Micrococcus A133*. The isolation and characteristics of *Ps. azelaica* Pma+ indicate that the ability to decompose pimelic acid may be acquired by mutation. Other mutants are known which differ from their parent strain in ability to utilize some monocarboxylic acids. For example, ability to grow on butyric and valeric acids was observed for a mutant of *Escherichia coli K12* (Vandervinkel, Furmanski, Reeves & Ajl, 1968), and ability to grow on capric (decanoic) acid was observed for a mutant of *E. coli SR258* (Weeks, Shapiro, Burns & Wakil, 1969), although neither parent strain used these substrates. Weeks and his coworkers suggested that induction of the *E. coli* enzymes which degrade carboxylic acids occurred. This hypothesis was based on observations on the length of the lag phase preceding the growth of *E. coli* on media containing carboxylic acids. Hoet & Stanier (1970) showed that the enzymes of *Pseudomonas fluorescens* which decompose long-chain aliphatic dicarboxylic acids are inducible and that this induction is not specific for a given acid. The fact that the lengths of the lag phases of both strains of *Ps. azelaica* grown on dicarboxylic acids were independent of the kind of acid used to grow the inocula suggests the same conclusion. Our experiments with Tween 80 indicate that the induction of the enzymes metabolizing dicarboxylic acids might be observed under conditions which facilitate the entry of substrates into the cells.

Hoet & Stanier (1970) suggested that the oxidation by *Ps. fluorescens* of the dicarboxylic acids having an odd number of carbon atoms needs the synthesis of the enzymes of alpha-oxidation. According to these authors, *Ps. fluorescens* synthesizes the enzymes of beta-oxidation during the degradation of dicarboxylic acids having an even number of carbon atoms.

We have confirmed the accumulation of suberic acid in cultures of *Ps. azelaica* and *Ps. azelaica* Pma+ growing on sebacic acid and the accumulation of pimelic acid in the culture of *Ps. azelaica* growing on azelaic acid, reported by Janota-Bassalik & Wright (1964b). These results indicate that beta-oxidation is the mechanism active during the degradation of dicarboxylic acids, independent of the number of carbon atoms in the chains. The accumulation of suberic acid in cultures of *Ps. azelaica* and *Ps. azelaica* Pma+ growing on azelaic acid, and the accumulation of traces of adipic acid in the culture of *Ps. azelaica* Pma+ growing on pimelic acid, indicate that alpha-oxidation is a parallel reaction to beta-oxidation in the degradation process.
REFERENCES

