Immunochemical Studies on Mannans of the Genera
Kluyveromyces and Saccharomyces

By J. ŠANDULA, A. KOCKOVÁ-KRATOCHVILOVÁ AND
D. ŠIKL

Institute of Chemistry of the Slovak Academy of Sciences,
Bratislava, Czechoslovakia

(Received 16 January 1974; revised 13 March 1974)

SUMMARY

Mannans isolated from Kluyveromyces species, from their imperfect forms
Candida pseudotropicalis and Torulopsis sphaerica, and from Saccharomyces species
were examined for their reactivities with Kluyveromyces fragilis and Saccharomyces
cerevisiae antisera. It was found that Kluyveromyces fragilis, K. marxianus,
K. lactis, Candida pseudotropicalis and Saccharomyces chevalieri possessed
a specific antigenic mannan which after acetolysis yielded fragments up to
pentasaccharide. Moreover these mannans showed high cross-reactivity with
S. cerevisiae antisera that could have been caused by the presence of a deter-
minant group common to Kluyveromyces and Saccharomyces species. Poly-
saccharides obtained from K. polysporus and K. drosophilareurum showed different
immunological properties from the former mannans.

INTRODUCTION

The genus Kluyveromyces was established by van der Walt (1956) for a newly discovered
multispored species. The classification by Lodder (1970) altered the definition of the genus
to include all of the species formerly classified as Fabospora, Zygofabospora, Dekkero-
myces, Guilliermondella and Kluyveromyces and also some Saccharomyces species. Thus
the genus is relatively heterogeneous and the species could be divided into several groups
on the basis of various criteria such as number and shape of the ascospores, size and shape
of the cells, assimilatory and fermentative properties (Lodder, 1970), DNA composition
(Nakase & Komagata, 1971; Martini, Phaff & Douglass, 1972; Poncet & Fiol, 1972),
and proton magnetic-resonance (p.m.r.) spectra (Spencer & Gorin, 1969). Recently Campbell
(1972) showed by numerical taxonomy and serological investigation that the genera Kluy-
veromyces and Saccharomyces are closely related and proposed that they be regarded as
a single genus Saccharomyces.

Extensive structural and immunochemical studies have been carried out on cell-wall
mannans which form the principal antigen of various yeasts (Summers, Grollman &
Hasenclever, 1964; Suzuki, Sunayama & Saito, 1968; Ballou, 1970). Recently it has been
shown that distinct taxonomic groups within the genus Saccharomyces possess mannans
differing from each other in structural and immunochemical properties (Šandula, Šikl

This report presents an immunochemical investigation on mannans isolated from some
Kluyveromyces species and their imperfect forms, and compares them with mannans of
Saccharomyces species.
METHODS

Strains. Cultures of the following organisms were obtained from the Czechoslovak Collection of Yeast and Yeast-like Organisms: Kluyveromyces fragilis CCY1-1, K. marxianus CCY21-40-1, K. lactis CCY21-3-1, K. veronae CCY21-34-1, K. drosophilum CCY13-4-1, K. polysporus CCY43-1-1, Candida pseudotropicalis CCY29-8-4, Torulopsis sphaerica CCY26-12-4, Saccharomyces cerevisiae CCY21-4-13, S. italicus CCY21-33-1 and S. chevalieri CCY21-11-3. Morphological, physiological and biological tests were described in detail by Kocková-Kratochvílová et al. (1969).

Isolation of mannan. Each organism was grown in a semisynthetic liquid medium of the following composition (per litre): 30 g glucose, 3 g (NH₄)₂SO₄, 1 g MgSO₄·7H₂O, 0.5 g KH₂PO₄, 1 g yeast autolysate (from immun n.p., Michalany, Czechoslovakia) and 1 ml of a micro-element mixture in solution (Weinfurtner, Eschenbecher & Borges, 1959). Cultivation was carried out for 4 days at 28 °C and the yeasts were harvested by continuous flow centrifugation. The mannans were extracted from the cell paste with 0.2 M-sodium chloride solution in an autoclave at 140 °C (Sikl, Masler & Bauer, 1969) and purified via the insoluble copper complex formed with Fehling solution.

Acetolysis of mannan. Acetylation and acetolysis of the mannan was performed according to Kocourek & Ballou (1969). Oligosaccharides were separated on a Sephadex G-25 column (1.6 x 200 cm). The column was eluted with water at a rate of 12 ml/h and 2 ml fractions were collected.

General procedures. Total carbohydrate was measured by the phenol–sulphuric acid method (Dubois et al. 1956). Protein was estimated according to Lowry, Rosebrough, Farr & Randall (1951). The mannans were hydrolysed in 1 N-HCl in a sealed tube for 6 h at 100 °C and hydrochloric acid was removed by azeotropic distillation with water at room temperature. Descending paper chromatography of the hydrolysates was done on Whatman No. 1 in the following system: acetone-n-butanol-water (7:2:1, by vol.) for 24 h. Sugars were detected on paper chromatograms with diphenylamine-aniline-phosphoric acid reagent (10 ml of 1% diphenylamine and aniline in acetone and 1 ml of 85% phosphoric acid).

Immunization of rabbits. Chinchilla rabbits weighing 2.0 to 2.5 kg were injected intravenously with 1 to 2 ml of heat-killed yeast suspension (5 mg wet cells/ml) twice weekly for 4 to 6 weeks. Seven days after the final injection the rabbits were bled and the serum from three rabbits was pooled and stored at −20 °C until used.

Quantitative precipitin reactions. An appropriate amount of mannan dissolved in 0.5 ml buffered saline was added to 0.5 ml antiserum. The mixture was incubated for 2 h at 37 °C and thereafter kept for 5 days at 4 °C. The precipitates were collected by centrifugation at 4 °C, twice washed with cold saline, and dissolved in 1 ml 0.1 N-NaOH and their extinction measured at 280 nm.

Immunodiffusion. Double diffusion in agar gel was performed using 1.0% Noble agar (Difco) in buffered saline (phosphate buffer, pH 7.4). A 0.05% concentration of the mannan antigen (in some cases 0.2%) was placed in the outer wells of the diffusion agar and undiluted antiserum was placed in the central well.

RESULTS

Forty-three strains, representing the genus Kluyveromyces and the imperfect forms Candida pseudotropicalis and Torulopsis sphaerica, were tested for morphological, physiological, biochemical and serological properties (Kocková-Kratochvílová, Blagodatskaja &
Mannans of Kluyveromyces and Saccharomyces

<table>
<thead>
<tr>
<th>No. inv.</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>strains</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>K. polysporus</td>
</tr>
<tr>
<td>7</td>
<td>K. drosophilaram</td>
</tr>
<tr>
<td>1</td>
<td>K. lactis</td>
</tr>
<tr>
<td>3</td>
<td>K. marxianus</td>
</tr>
<tr>
<td>14</td>
<td>K. fragilis</td>
</tr>
<tr>
<td>2</td>
<td>K. veronae</td>
</tr>
<tr>
<td>7</td>
<td>C. pseudotropicalis</td>
</tr>
<tr>
<td>4</td>
<td>T. sphaerica</td>
</tr>
</tbody>
</table>

Fig. 1. Dendrogram of proposed groups of the genus Kluyveromyces and its imperfect forms *Candida pseudotropicalis* and *Torulopsis sphaerica*.

Hronská, 1972). At the 80% similarity level eight distinct clusters were found (Fig. 1). One strain of each cluster was chosen as representative and from each strain a mannan-containing polysaccharide was isolated via its insoluble copper complex and analysed immunochemically with antisera prepared against *K. fragilis* and *S. cerevisiae*.

The quantitative precipitin reactions of mannans with anti-*Kluyveromyces fragilis* serum are given in Fig. 2. The mannans of *K. marxianus* and *K. lactis* were the most reactive. Mannan of *C. pseudotropicalis* precipitated almost the same amount of the antibody as did the homologous mannan, whereas mannans of *K. drosophilaram* and *K. polysporus* showed a very low cross-reactivity with *K. fragilis* serum. *K. veronae* mannan precipitated more than 60% of the antibody, but several times as much mannan was required to reach the point of equivalence than in the homologous reaction.

To investigate the antigenic relationship between the genera *Kluyveromyces* and *Saccharomyces*, mannans of various Saccharomyces species were tested with *K. fragilis* antiserum (Fig. 3). Only mannan of *S. chevalieri* was highly cross-reactive with this serum. *S. cerevisiae* and *S. italicus* mannans precipitated approximately 40% of the antibody compared with the homologous reaction. The mannans of other species belonging to the group of *Saccharomyces* (sensu stricto) species, e.g. *S. bayanus* and *S. uvarum*, gave similar precipitin curves to those of *S. cerevisiae*. The precipitating activity of *S. fermentati* mannan, representing the Torulaspora species, was very low. On the other hand the mannans of *K. fragilis*, *K. lactis*, *K. marxianus* and *C. pseudotropicalis* showed high cross-reactivity with *S. cerevisiae* serum, precipitating almost the same amount of antibody as did the homologous mannan.

Absorption of *K. fragilis* serum with *Saccharomyces cerevisiae* mannan removed a part

Fig. 3. Precipitin curves showing the cross-reaction of anti-*Kluyveromyces fragilis* 51-1-1 serum with Saccharomyces mannans: ○, *Saccharomyces chevalieri*; □, *S. italicus*; ▲, *S. cerevisiae*; ●, *S. fermentati*.

Fig. 5. Agar-gel diffusion pattern of anti-Kluyveromyces fragilis 51-1-1 serum and mannans. Peripheral wells contain mannans: 1, *K. fragilis*; 2, *Saccharomyces chevalieri*; 3, *K. veronae* (2 mg/ml); 4, *S. cerevisiae*; 5, *S. italicus*; 6, *Torulopsis sphaerica* (2 mg/ml). Centre well contains *K. fragilis* 51-1-1 antiserum.
of the antibodies corresponding to *S. cerevisiae* determinant, the serum then becoming specific for mannans of *K. fragilis* and related species.

Immunodiffusion results in Fig. 4 present further evidence for antigenic similarities of *K. fragilis*, *K. lactis*, *K. marxianus* and *C. pseudotropicalis* mannans, which formed a sharp, completely fused precipitin line with *K. fragilis* antiserum. Mannans of *K. drosophilurum* and *K. polysporus* failed to give any precipitin bands.

Mannan from *S. chevalieri* showed a complete fusion with the line formed by mannan of *K. fragilis*. Mannans of *S. cerevisiae*, *S. italicus* and other *Saccharomyces* (sensu stricto) species also formed one precipitin line but not identical with that of the mannan of *K. fragilis* and related mannans. Mannans of *K. veronae* and *Torulopsis sphaerica* at higher concentration (0.2%) formed only two faint lines, one of them being identical with the specific antigen of Kluyveromyces species, whereas the second showed a partial fusion and spur formation with the line formed by *S. cerevisiae* and *S. italicus* antigens (Fig. 5). Figure 6 shows immunodiffusion patterns of mannans tested with *S. cerevisiae* antiserum.

To investigate the length of the side chains the backbone of the mannans was specifically split by the controlled acetolysis method (Kocourek & Ballou, 1969) and the fragments separated by column chromatography on Sephadex G-25. All mannans giving high cross-reactivity with *Kluyveromyces fragilis* antiserum showed five peaks corresponding to those of mannose, mannobiose and oligosaccharides up to mannopentaose, whereas mannans of *Saccharomyces* (sensu stricto) species yielded acetolysates only up to mannotetraose (Sandula & Vojtková-Lepšiková, 1974). Acetolysis patterns for *K. fragilis*, *K. marxianus* and *S. chevalieri* are given in Fig. 7.

Antiserum to *K. fragilis* agglutinated very weakly the whole cells of Kluyveromyces species which possessed homologous polysaccharide antigen, although their mannans reacted very strongly in precipitin reactions.
Mannans of Kluyveromyces and Saccharomyces

K. *fragilis*, *K. marxianus* and *S. cereulicri*.

DISCUSSION

Kluyveromyces fragilis, *K. marxianus* and *K. lactis* possess a specific polysaccharide antigen differing from the antigens of the other yeast species, as proved by immunochemical analysis of their mannans presented here.

In a recent study, Raschke & Ballou (1972) demonstrated that *Kluyveromyces lactis* mannan contains two immunodominant groups. One is a mannotetraose side chain which is also present in the *S. cerevisiae* mannan and the other a pentasaccharide formed by a mannotetraose unit substituted with N-acetyl-D-glucosamine, and specific for this species.

The occurrence of tetra- and pentasaccharide fragments after controlled acetolysis of *K. fragilis* and *K. marxianus* mannans, and their immunochemical identity with *K. lactis* mannan, suggest that mannans of these micro-organisms possess identical immunodeterminant groups.

During immunization of two rabbits with intact cells of *K. fragilis*, antibodies with two different specificities were formed, part of the activity being specific for related Kluyveromyces species while the other part, which represents about 40% of all precipitable antibody, caused cross-reactivity with Saccharomyces species. The fact that these mannans form only one precipitin line in immunodiffusion tests suggests that both determinants were part of the same polysaccharide molecule.

It was found that the mannotetraose side chain was the main antigenic determinant in *S. cerevisiae* (Ballou, 1970) and in other Saccharomyces (sensu stricto) species (Sandula & Vojtková-Lepšiková, 1974). High cross-reactivity of Kluyveromyces mannans with anti-*S. cerevisiae* serum showed that the above mentioned determinant should be present also in Kluyveromyces mannans.

Kluyveromyces veronae shows low taxonomical similarity with the other species of the genus Kluyveromyces, being related only at 73% matching. Our results, based on immunohematological studies of wall polysaccharides, show antigenic relationship of *K. veronae* to *K. fragilis* and related species as well as to Saccharomyces (sensu stricto) species. The weaker reactivity of *K. veronae* mannan with *K. fragilis* antiserum than with the other Kluyveromyces mannans could be caused by the lower concentration of determinant groups in *K. veronae* mannan.

We have found that only *S. chevalieri* possessed mannan identical with specific Kluy-
veromyces antigen. Spencer & Gorin (1969) on the basis of similarity of p.m.r. spectra classified mannans of K. fragilis, K. marxianus and S. chevalieri into one group. Comparison of these species showed 80.4% matching coefficients.

Campbell’s (1972) serological classification of the genera Saccharomyces and Kluyveromyces agrees well with the results presented here except for K. lactis. He placed K. fragilis, K. marxianus and S. chevalieri into the ‘B’ serological group, while K. lactis was placed in the ‘C’ group with S. cerevisiae. Likewise Spencer & Gorin (1969) reported that according to the p.m.r. spectra, K. lactis mannans differs from that of the previous group. On the other hand, according to Raschke & Ballou (1972), K. lactis mannans possesses the same determinant groups as mannans of K. marxianus. These discrepancies could be the result of the use of antigenically different strains of the same species.

It is apparent that in culture collections there exist various strains of K. lactis with different origins. The original type cultures described by Dombrowski in 1910 (Guilliermond, 1912) were three: Zygosaccharomyces lactis α, Saccharomyces lactis α and Saccharomyces lactis β, all being different in their phenotype. Dombrowski considered the last strain to be very similar to S. fragilis. Therefore strains used by different authors cannot be compared while their origins remain unknown.

Candida pseudotropicalis was classified by Lodder (1970) as the imperfect form of K. fragilis. We have found that the mannan of C. pseudotropicalis is antigenically very similar to mannann of K. fragilis. On the other hand T. sphaerica, the imperfect form of K. lactis, possesses a mannan which shows a relatively low cross-reactivity with K. fragilis antiserum. This observation is supported by Spencer & Gorin (1969), who also found differences in the p.m.r. spectra of the latter two mannans.

REFERENCES

Mannans of Kluyveromyces and Saccharomyces

