What's fast, automatic and does 60 protein hydrolysate runs at weekends?

The Rank Chromaspek makes other amino acid analysers look expensive, slow, labour intensive and time wasting.

With Chromaspek, a single protein hydrolysate run takes less than 35 minutes from Aspartate to Arginine. As far as we know, it's the fastest amino acid analyser in the business. Chromaspek is so sensitive that you can quantitate 500 picomole peaks.

The sample disc accommodates 60 separate samples and will analyse each in succession automatically, without attention, and record the results. So you can set up Chromaspek on Friday, let it work all weekend, and check the finished results on Monday morning.

And Chromaspek is so simple. It uses only 2 buffer solutions and no near-neutral pH solutions. So there's no need for refrigeration, virtually no risk of bacterial contamination, and an end to tedious buffer preparation. One peristaltic pump controls all reagent and sample lines. And Chromaspek has only 1 column, for acids, neutrals and basics.

We'd like to put Chromaspek on your bench, in your lab, and show you how it performs.

Why not send the coupon and ask us to fix a date?
The Journal of Applied Bacteriology
edited for the Society for Applied Bacteriology
by F. A. Skinner
and G. Sykes
Long-established as an international medium for original papers embracing the many aspects of applied bacteriology, the Journal serves the widening interests of microbiologists in all fields of research.

Contents of Volume 36 Number 2 include:
D. Coates and G. Richardson: Relationships between estimates of binding of antimicrobial agents by macromolecules, based on physicochemical and microbiological data: benzoic acid and a nonionic surfactant. E. A. Schwinghamer and W. F. Dudman: Evaluation of spectinomycin resistance as a marker for ecological studies with rhizobium. J. T. Patterson: Comparison of plating and most probable number techniques for the isolation of Staphylococci from foods.

PARASITOLOGY
Volume 67, Part 3, December 1973

Contents
J. F. A. Sprent. Studies on ascaridoid nematodes of pythons: two new species from New Guinea
Victoria Bryant. Growth and respiration throughout the life-cycle of Nematospiroides dubius Baylis, 1926 (Nematoda: Heligmosomidae). The free-living stages
R. J. S. Beer. Studies on the biology of the life-cycle of Trichuris suis Schrank, 1788
R. J. S. Beer. Morphological descriptions of the egg and larval stages of Trichuris suis Schrank, 1788
R. B. Williams. Effects of different infection rates on the oocyst production of Eimeria acervulina or Eimeria tenella in the chicken
L. H. Chappell and C. P. Read. Studies on the free pool of amino acids of the cestode Hymenolepis diminuta
I. K. Barker. Scanning electron microscopy of the duodenal mucosa of lambs infected with Trichostrongylus colubriformis
G. A. M. Cross and J. C. Manning. Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media
L. P. Joyner and C. C. Norton. The immunity arising from continuous low-level infection with Eimeria tenella
R. A. Matthews. The life-cycle of Bucephalus haimeanus Lacaze-Duthiers, 1854 from Cardium edule L.
A. J. Bruce. Prophyxus globicaudatus gen. nov., sp. nov., a hemiarthrinid bopyrid parasite of pontoniid shrimps of the genus Coralliocaris Stimpson
J. S. Gray. Studies on host resistance to secondary infections of Raillietina cesticillus Molin, 1858 in the fowl

£5.00 net (US $14.50 in USA and Canada)
1973 subscription £22.00 net (US $70.00 in USA and Canada)

CAMBRIDGE UNIVERSITY PRESS
Bentley House, 200 Euston Road, London NW1 2DB
American Branch: 32 East 57th Street, New York, N.Y.10022

Cytochalasin (Greek CYTOS, cell; CHALASIS, relaxation)

Since their discovery in 1964 in the laboratories of the Pharmaceutical Division of Imperial Chemical Industries Limited, the CYTOCHALASINS (Greek cytos, cell- chalasis, relaxation) have become increasingly important as research probes in cytology. These CYTOCHALASINS, a group of structurally related fungal metabolites (CYTOCHALASINS A and B from Helminthosporium dematiodium, CYTOCHALASIN E from Rosellinia necatrix), share a number of unusual, interesting and characteristic biological effects, though varying greatly in potency in certain aspects. To date, CYTOCHALASIN B has been used in the vast majority of reported experiments.

Major biological effects observed with the CYTOCHALASINS include:

1. Inhibition of the division of cytoplasm. Total inhibition of cytoplasmic cleavage is obtained without interference with division of the nucleus resulting in binucleate cells. If cultured cells are allowed to remain in the active medium, nuclear division continues and large multinucleate cells are observed.

2. Reversible inhibition of cell movement. When moving L cells on a glass surface are treated with CYTOCHALASIN B, peripheral and internal cell movements disappear, but are readily restored by washing the cells with normal medium. This effect is best observed by time-lapse cinematographic studies.

3. Induction of nuclear extrusion. In this very interesting phenomenon, it is remarkable that a cell can be induced to entirely eject its nucleus within minutes of treatment with a chemical compound. Most noteworthy is the fact that CYTOCHALASIN E rarely produces nuclear extrusion. However, it is unique in producing a "halo" around the nucleus.

The CYTOCHALASINS also exert inhibitory effects on the following biological processes: phagocytosis; platelet aggregation and clot retraction; glucose transport; thyroid secretion and release of growth hormone.

Continued research on these interesting compounds will undoubtedly uncover new effects and help elucidate their hitherto unknown mechanism of action. Space does not allow us to cite well over one hundred references from the literature, but a data sheet and comprehensive bibliography are available upon request. The CYTOCHALASINS are made in England by Imperial Chemical Industries Limited and distributed by the Aldrich Chemical Company.

Aldrich Chemical Company, Inc.
Craftsmen in Chemistry