Fine Structure of the Spore Sheath in Streptoverticillium Species

By T. CROSS and R. W. ATTWELL
Postgraduate School of Studies in Biological Sciences,
University of Bradford, BD7 1DP, Yorkshire

AND R. LOCCI
Istituto di Patologia Vegetale, Università di Milano, 20133, Milan, Italy

(Received 10 November 1972)

Actinomycetes bearing whorls and umbels of short spore chains at regular intervals on their long aerial hyphae and originally included in the genus *Streptomyces* were later reclassified as a separate genus *Streptoverticillium* (Baldacci, 1958; Baldacci, Farina & Locci, 1966). However, these two genera share a number of common morphological, developmental and physiological characteristics which have prevented several workers from accepting their separate generic status (e.g. Krasilnikov, 1970). The similarities have also appeared to discourage the further study of streptoverticillia and it has been assumed that other properties are shared.

During an extensive scanning electron microscope study of the morphology of Streptoverticillium species (Locci & Petrolini Baldan, 1971) it was noticed that all showed twisted umbel hyphae which later became subdivided into the chains of arthrospores. No true spirals were observed and when viewed in silhouette by means of the transmission electron microscope the individual spores have appeared smooth (Shirling & Gottlieb, 1968a, b, 1969) and lack the conspicuous warts, spines and hairs (Küster, 1955) or knobs (Lyons & Pridham, 1971) which ornament certain Streptomyces species. These surface structures develop from the spore sheath (Arai & Kuroda, 1962; Rancourt & Lechevalier, 1964) which also characteristically bears many short and randomly arranged elements termed fibres or rodlets (Vernon, 1955; Hopwood & Glauser, 1961; Dietz & Mathews, 1962; Wildermuth, 1970, 1972a, b; Enquist & Bradley, 1971; Wildermuth, Wehrli & Horne, 1971; Williams, Bradshaw, Costerton & Forge, 1972). The fine structure of the Streptoverticillium spore sheath was examined to explain the twisted form of the umbel hyphae and the lack of appendages.

METHODS

Early studies concentrated on *Streptoverticillium griseoverticillatus* ISP 5507 but were later extended to include many of the species described by Locci, Baldacci & Petrolini Baldan (1969). The sporulating aerial hyphae grown on inclined coverslips embedded in Czapek's agar were coated with gold palladium under vacuum (Locci & Petrolini Baldan, 1971) and examined with a Stereoscan electron microscope (Mark 2A, Cambridge Instrument Company, Cambridge). Spores were also viewed in silhouette using an AEI EM6B transmission electron microscope and the methods recommended for the International Streptomyces Project (Shirling & Gottlieb, 1966).
RESULTS AND DISCUSSION

The aerial hyphae of *Streptoverticillium griseoverticillatus* showed the characteristic twisted form of the umbel branches prior to the appearance of a beaded spore-chain outline (Fig. 1a). The chain of spores was surrounded by a thin sheath which contained a con-
spicuous and continuous helical thickening (Fig. 1b). Segments of the sheath still invested individual spores when the latter separated. Numerous parallel sheath fibres, in the form of a multiple helix, gave the illusion of basketwork when segments were viewed in transparency (Fig. 1c) after the shrinkage of the enclosed spore. Individual fibres were about 10 nm in diameter and at least 10 such fibres were involved in the helical pattern.

We have seen this regular helically thickened sheath in all representative species chosen from the 12 Streptoverticillium series described by Locci et al. (1969). Careful examination of Streptoverticillium spore electron micrographs in earlier papers confirm this to be a common feature of the genus (e.g. Streptoverticillium baldaccii in Farina & Locci, 1966; S. mashuensis in Shirling & Gottlieb, 1968b).

It is postulated that the amorphous material of the sheath or the fibrous thickening contracts during spore maturation or during preparation for scanning electron microscopy, so imparting the twisted form to the sporulating hyphae. The characteristic appearance of the Streptoverticillium sheath, which is quite unlike that described for the several Streptomyces species already examined, supports the separation of these organisms into distinct genera. The absence of short rodlets from the sheath may also explain the absence of conspicuous surface appendages for it has been suggested that these subunits appear to aggregate to form the spines and hair-like projections (Wildermuth, 1972a; Williams et al. 1972).

This investigation was supported by grants from the Science Research Council and Unilever Limited.

REFERENCES


Short communication


