Biochemical and Physiological Properties of Methionyl-sRNA Synthetase Mutants of *Salmonella typhimurium*

By T. S. GROSS* and R. J. ROWBURY

Department of Botany and Microbiology, University College London, Gower Street, London W.C.1

(Accepted for publication 2 November 1970)

SUMMARY

Two methionine auxotrophs (*metG*) of *Salmonella typhimurium* with the structural genes of the regulon intact have been studied. They possessed abnormal growth kinetics and the effect of the *metG* mutation on protein, ribonucleic acid and DNA synthesis suggested that these strains were impaired in their ability to synthesize protein; since they were able to synthesize methionine, but still required it for growth, they might have been defective in methionine activation for protein synthesis. To test this, the activity of methionyl-sRNA synthetase (L-methionine: sRNA ligase (AMP) EC 6.1.1.10) was determined in enzymic extracts of wild-type and *metG* strains. By using an acylation reaction the activation of methionine for protein synthesis was shown to be very decreased in *metG* extracts and this was reflected *in vivo* by a decreased level of charged methionyl-sRNA in mutant bacteria; in the pyrophosphate exchange assay mutants showed greatly increased K_m (methionine) values. The release of [3H]methionine from [3H]methionyl-sRNA was catalysed by wild-type extract, provided that pyrophosphate was present in the assay mixture, but not by the mutant extract. These results are discussed in relation to the two-part reaction catalysed by methionyl-sRNA synthetase. Mutant and wild-type enzyme behaviour differed at different pH values but not when subjected to chromatography on DEAE-cellulose or gel-filtration on Sephadex-G200. *MetG* mutants grown with limiting methionine had decreased values of all the biosynthetic enzymes except cystathionase, which was apparently de-repressed, suggesting that methionyl-sRNA was not the co-repressor for the methionine biosynthetic pathway.

INTRODUCTION

Recently, bacterial mutants which possess defective aminoacyl-sRNA synthetases for various amino acids have been isolated. Such mutants have been isolated on the basis of temperature sensitivity, e.g. valine (Eidlic & Neidhardt, 1965), alanine (Yanif, Jacob & Gros, 1965), phenylalanine (Eidlic & Neidhardt, 1965); analogue resistance, e.g. histidine (Roth & Ames, 1966), phenylalanine (Fangman & Neidhardt, 1964); as naturally occurring variants, e.g. glycine (Böck & Neidhardt, 1966; Neidhardt, 1966); and as amino acid-requiring auxotrophs, e.g. tryptophan (Hiraga, Ito, Hamada & Yura, 1967). *MetG* mutants of *Salmonella typhimurium* were originally isolated as methionine bradytrophs by Smith & Childs (1966). All the methionine biosynthetic enzymes were shown to be present but at apparently decreased values (Foster, cited by Smith & Childs, 1966) which originally led to the suggestion that

* Present address: Genetics Department, The University, Western Bank, Sheffield, S10 2TN.
metG mutants were super-repressed for the methionine biosynthetic enzymes. The present work shows that the requirement for methionine is due to an altered methionyl-sRNA synthetase.

In recent years, evidence that some amino acids must be attached to their specific sRNAs before they are able to bring about repression of their biosynthetic enzymes has been put forward. Perhaps the best-known example is that of histidine, where mutation in either of two genes, hisS or hisR, results in de-repression of the histidine biosynthetic enzymes (Roth & Ames, 1966; Silbert, Fink & Ames, 1966). In both cases there is a decrease in the amount of histidyl-sRNA formed, due to an increased K_m (histidine) of the histidyl-sRNA synthetase (hisS) or a decrease in the amount of active sRNA$_{hist}$ synthesized by the mutant bacteria (hisR). Since metG mutants have an altered methionyl-sRNA synthetase, the amounts of the methionine biosynthetic enzymes in these strains were studied. Some of these results have previously been reported briefly (Gross & Rowbury, 1969).

METHODS

Organisms. All the strains of *Salmonella typhimurium* used in this work were maintained on slopes of Oxoid nutrient agar, subcultured monthly and stored at 4° after incubation for 18 h. at 37°. The mutants *metG319* and *metG419* were isolated from the wild-type strain LT-2 and an Hfr derivative of LT-2 (HfrBz) was used as wild-type in these experiments. The mutant *metB23* is a methionine auxotroph and lacks the enzyme cystathionine synthetase. All strains were supplied by Dr D. A. Smith.

Growth of organisms. Organisms were grown on the glucose mineral salts medium (MM) of Davis & Mingioli (1950) supplemented with 0·04 mM-DL-methionine for the growth of methionine mutants. Conditions for growth, harvesting and preparation of enzymic extracts were as described by Rowbury & Woods (1961).

Phage propagation and assay. Phage P22.L4 is a virulent mutant of phage P22 (Smith & Levine, 1967) and was provided by Dr D. A. Smith. It was propagated on strain *metG319*. Phage (5 x 104 infective particles/ml.) were added to organisms growing exponentially in nutrient broth. Incubation was for 120 min. at 37°, after which cultures were shaken with a few drops of chloroform. Cell debris was removed by centrifugation (3000 g for 10 min.) and the preparations stored over chloroform. For phage assay, samples were diluted in phosphate buffer (0·05 M, pH 7·4) and portions added to tubes of 4 ml. soft agar (0·2% MgCl$_2$, 1% Oxoid broth no. 2, o·3% NaCl, 0·75% Difco Bacto agar). After adding 3 x 107 indicator bacteria (strain *metG319*) the soft agar was poured on to a basal agar (25 ml.) consisting of 1% Trypticase agar base, 1·4% Difco Bacto agar, 0·5% NaCl. Plates were incubated at 37° overnight.

Incorporation of [14C]phenylalanine into protein. This was followed by a method based on that of Neale & Tristram (1963). Exponentially growing cultures in MM medium, supplemented where necessary, were harvested and washed with two culture volumes of MM medium. The washed bacteria were resuspended in 10 ml. fresh MM medium at equivalents of 125 μg. dry weight bacteria/ml. and incubated with aeration at 37°. Incorporation was initiated by addition of [14C]phenylalanine (1·25 μCi, 7 mCi/mm) and 1 ml. samples were transferred at intervals into an equal volume of 10% trichloroacetic acid and allowed to stand for 30 min. at room temperature. Samples were
heated at 100° for 30 min. to remove nucleic acids, cooled and filtered through a Millipore filter (type HA). The precipitate was washed with two 2 ml. quantities of 5 % trichloroacetic acid (TCA), followed by a few drops of ether, mounted on an aluminium planchet and counted with a thin end-window Geiger–Müller tube (I.D.L. Ltd, Reading, Berkshire).

Incorporation of $^{[\text{14}C]}\text{uracil into RNA.}$ The method was essentially similar to that used to follow incorporation of $^{[\text{14}C]}\text{phenylalanine into protein}$ except that samples were not heated. The incubation mixture contained 0·6 μCi, $^{[\text{14}C]}\text{uracil}$ (50 mCi/mm). After standing for 30 min. at room temperature, samples were filtered and counted as before.

Incorporation of $^{[\text{3H}]}\text{thymidine into DNA.}$ Organisms growing logarithmically in MM medium + L-methionine (mm)+ uridine (1·5 mm)+ $^{[\text{3H}]}\text{thymidine}$ (2 μg./ml; 0·1 μCi/μg.) were rapidly harvested and washed with cold MM medium. They were then resuspended at equiv. 50 μg. dry wt/ml. in an incubation mixture which contained in 5 ml. of MM medium, 7·5 μmoles uridine and 10 μg. $^{[\text{3H}]}\text{thymidine}$ (0·1 μCi/μg.) with L-methionine and/or chloramphenicol (100 μg./ml) added as required. Incubation was with shaking at 37° and samples were removed at 15 min. intervals into equal volumes of cold 10 % TCA. After standing overnight samples were filtered on Millipore filters (type HA), and after washing the filters with 5 % TCA containing 100 μg./ml. thymidine and drying they were placed in 10 ml. of scintillation fluid (0·6 % butyl PBd in toluene + methanol, 3 + 1, v/v) and counted.

Induction of D-serine deaminase (D-serine hydrolase (deaminating), EC 4.2.1.14). Overnight cultures of organisms were used to inoculate 300 ml. MM medium with or without 0·1 mm-DL-methionine and incubated at 37°. Once bacteria had attained the logarithmic phase of growth a sample was removed and a cell-free extract made, D-serine was then added to the culture flask to 3 mm. Extracts were made after 1, 2 and 3 h. and assayed for D-serine deaminase activity. The reaction mixture contained, in a total volume of 2 ml., 133 μmoles phosphate buffer (pH 7·5), D-serine (12 μmoles) and enzyme extract. Incubation was for 20 min. at 37° and the reaction then stopped by adding 0·5 ml. 25 % trichloroacetic acid. Precipitated protein was removed by centrifugation and pyruvate present in the supernatant fluid estimated by the method of Wijesundera & Woods (1962).

Assay for amino acid-dependent ATP-pyrophosphate exchange. The activation of methionine was measured by this method and the reaction mixture contained in a volume of 1 ml., 50 μmoles tris-HCl buffer (pH 7·5), 80 μmoles MgCl₂, 2 μmoles ATP, 3 μmoles. β-mercaptoethanol, 2 μmoles $^{[\text{32P}]}\text{pyrophosphate}$ (100 to 200 counts/min./nmole), limiting enzyme and various amounts of methionine. Reaction was started by adding extract and after incubation for 15 min. at 37° protein was precipitated by adding 2 ml. 7·5 % TCA. After removal of the precipitate, 0·5 ml. charcoal suspension (10 % Darco G20 in 0·10 m-Na₄P₂O₇) and 4 ml. 1 % H₃PO₄ in 0·10 m-Na₄P₂O₇ was added to each tube. The charcoal was collected by filtration, washed six times with 4 ml. quantities of 0·05 m-sodium acetate buffer (pH 4·5), and radioactivity assayed by using a mica end-window Geiger–Müller tube.

Assay for aminoacyl-sRNA formation. The method used to follow methionyl-sRNA formation was based on that of Fangman & Neidhardt (1964). The reaction mixture contained, in a final volume of 0·5 ml., 25 μmoles tris-HCl buffer (pH 7·5), 1·5 μmole ATP, 1·5 μmole β-mercaptoethanol, 4 μmoles MgCl₂, 0·5 μCi $^{[\text{3H}]}$methionine (30 mCi/
mM), 1.7 mg. sRNA and a limiting amount of enzyme. Reaction was started by adding enzymic extract, and after incubation for 5 to 20 min. at 37° a 0.3 ml. sample was withdrawn on to a rectangle of Whatman's 120-drop reaction paper impregnated with casein, and dropped into ice-cold 10% TCA. Papers were then treated by the method of Mans & Novelli (1961) to remove lipid, dried and counted by scintillation in a mixture of 0.6%, 2,5-diphenyloxazole, and 0.01% 1,4-bis-(2,5-phenyloxazolyl) benzene in sulphur-free toluene.

AMP-dependent release of methionine from methionyl-sRNA. The release of [3H]methionine from [3H]methionyl-sRNA was followed by the technique of Hervé & Chapeville (1963). The reaction mixture contained, in a total volume of 0.5 ml., 50 μmoles tris-HCl buffer (pH 7.5), 8 μmoles MgCl₂, 2.5 μmoles AMP, 2.5 μmoles Na₃P₂O₇, [3H]methionyl-sRNA and limiting enzyme. Incubation was at 37° and 0.1 ml. samples were withdrawn at intervals on to Whatman 120-drop reaction paper and treated as above.

Assay of the methionine biosynthetic enzymes. The methionine biosynthetic enzymes were assayed as described previously (Rowbury & Woods, 1966; Rowbury, Lawrence & Smith, 1968).

Estimation of in vivo charged sRNA. The fraction of methionyl-sRNA existing in a charged form was determined by the method of Böck, Faiman & Neidhardt (1966), which uses the periodate method to destroy the amino acid-accepting capacity of uncharged sRNA.

DEAE-cellulose chromatography. Crude enzymic extract (5 ml., 10 mg. protein/ml.) was added to a column (25 x 1 cm.) of DEAE-cellulose (Whatman DE11) and eluted with 400 ml. of a linear gradient of NaCl (0.05 to 0.5 M) at a flow rate of approximately 30 ml./h. Eighty 5 ml. fractions were collected and assayed for protein and synthetase activity.

Gelfiltration on Sephadex G-200. One ml. crude extract (10 mg. protein) was added to the top of a column (80 x 1 cm.) of Sephadex-G200 and eluted with 0.01 M-tris-HCl buffer (pH 7.5). Eighty 1 ml. fractions were collected and assayed for protein and synthetase activity. The void volume of the column was determined by measuring the exclusion of blue dextran; bovine serum albumin was used as a marker protein.

Chemicals. These were usually obtained from British Drug Houses Ltd, Poole, Dorset, and were of 'Analar' grade. Radioactive chemicals were obtained from the Radiochemical Centre, Amersham, Buckinghamshire, and the sRNA used in the assay of methionyl-sRNA synthetase was a gift from the Microbiological Research Establishment, Porton.

Protein determinations. The spectrophotometric method of Layne (1957) was used.

RESULTS

Growth kinetics of metG mutants. The growth of the metG mutants metG319 and metG419 on different concentrations of DL-methionine was followed in MM medium; the results obtained are presented in Fig. 1(b) and 1(c) respectively. For comparison, the growth of a methionine auxotroph, metB23, on different methionine concentrations is shown in Fig. 1(a). As expected, the growth rate of metB23 did not vary significantly at different methionine concentrations and continued until the exogenous methionine supply had been exhausted. Growth then ceased and the final bacterial
MetG mutants of Salmonella typhimurium

Concentration was approximately proportional to the original concentration of DL-methionine. In contrast, the growth rate of *metG* mutants varied with methionine concentration.

These results are very like those obtained by Doolittle & Yanofsky (1968) with a tryptophanyl-sRNA synthetase mutant of *Escherichia coli* and suggested that *metG* mutants might be defective in their ability to activate methionine for protein synthesis. It was also possible that *metG* mutants were altered in the synthesis of S-adenosyl-methionine (SAM) so that SAM synthesis was decreased in the absence of methionine.

The behaviour of the *metG* mutants in the presence of the methionine analogues ethionine and norleucine did not support this view. Most methionine-requiring auxotrophs can grow and make protein for some time when ethionine or norleucine replace the methionine supplement, since the analogues can replace methionine in proteins. *MetG* mutants, however, showed no growth at all in the presence of the analogues, indicating that a process which can utilize the analogues was altered. Since these analogues are not utilized in SAM synthesis (Gross, 1969) it seemed likely that the process altered was protein synthesis.

Protein synthesis in *metG319* and *metB23* mutants: incorporation of [14C]phenylalanine into the hot TCA-insoluble fraction. Since *metG* mutants appeared to be abnormal in their growth kinetics it was decided to examine the effect of methionine starvation on protein synthesis in *metG* mutants. Protein synthesis was observed by following...
the incorporation of \[^{14}C\]phenylalanine into a hot TCA-insoluble fraction and by following the synthesis of the inducible enzyme D-serine deaminase. Results presented in Fig. 2 show that in the absence of methionine, incorporation of \[^{14}C\]phenylalanine by metG319 and metB23 was very much decreased when compared with incorporation by wild-type organisms. In the presence of 5 \(\mu\)M-DL-methionine the rate of incorporation by metG319 was stimulated for about 30 min. but reached a maximum considerably lower than that for metB23 and wild type.

Protein synthesis in metG319 and metB23 mutants: Induction of D-serine deaminase. Protein synthesis was also estimated by following the induction of the enzyme D-serine

Fig. 2

Incorporation of \[^{14}C\]phenylalanine into protein by metB23 and metG319 mutants. Exponentially growing bacteria were harvested, washed and used to inoculate MM medium containing the indicated supplements. Cultures were shaken at 37\(^\circ\) and 1 ml. samples taken at intervals into an equal volume of 10\% trichloroacetic acid. Samples were treated as described in Methods and assayed for radioactivity. Plotting \[^{14}C\]phenylalanine incorporation against time gave the following curves: \(\Delta\), wild-type (MM); \(\blacksquare\), wild-type (5 \(\mu\)M-L-methionine); \(\triangledown\), metB23 (MM); \(\blacktriangle\), metB23 (5 \(\mu\)M-L-methionine); \(\blacklozenge\), metG319 (MM); \(\blacktriangleleft\), metG319 (5 \(\mu\)M-L-methionine).

Fig. 3

Induction of D-serine deaminase synthesis in wild-type and metG319 strains. D-serine (3 \(\text{mM}\)) was added to exponentially growing cultures, samples taken at intervals and assayed for D-serine deaminase activity. Assay procedure and growth conditions are given in Methods. Plotting D-serine deaminase activity (\(\mu\)moles pyruvate formed/min./mg. protein) against time gave the following curves: \(\square\), metG319 (MM); \(\Delta\), wild-type (MM); \(\blacksquare\), metG319 (0.1 \(\text{mM}-\text{DL-methionine}\)); \(\blacksquare\), wild-type (0.1 \(\text{mM}-\text{DL-methionine}\)); \(\blacktriangle\), wild-type (MM, in absence of D-serine).
MetG mutants of Salmonella typhimurium

deaminase, following addition of the inducer d-serine. Results presented in Fig. 3 show that in the absence of added methionine, metG319 did not synthesize the enzyme even after addition of the inducer, whereas wild-type organisms began rapid synthesis of the enzyme directly after addition of the inducer. In the presence of 0.1 mM-dL-methionine, metG319 synthesized d-serine deaminase at a rate somewhat less than that of the wild-type. These results confirmed that the metG mutation very much decreased the overall rate of protein synthesis unless exogenous methionine were present.

![Fig. 4](image)

Fig. 4. Incorporation of [14C]uracil into RNA by metB23 and metG319. Overnight cultures were used to inoculate fresh MM medium containing [14C]uracil and supplemented with methionine where indicated. Cultures were shaken at 37°C and 1 ml. samples taken at intervals into an equal volume of cold 10% TCA and treated as described in Methods. Plotting [14C]uracil incorporation against time gave the following results: A, wild-type (MM); Δ, wild-type (5 µM-L-methionine); ▽, metB23 (MM); ▽, metB23 (5 µM-L-methionine); □, metG319 (MM); ■, metG319 (5 µM-L-methionine).

Fig. 5. Effect of chloramphenicol on [14C]uracil incorporation in metG319. Experimental details were as described above, and chloramphenicol (150 µg/ml) was added where indicated. Plotting [14C]uracil incorporation against time gave the following results; A, wild-type (+chloramphenicol); ■, metG319 (+chloramphenicol); □, metG319 (no chloramphenicol).

RNA synthesis in metG319. Strains of bacteria which are ‘stringent’ in their synthesis of RNA are unable to synthesize RNA if starved of an amino acid. Chloramphenicol allows RNA synthesis under these conditions (Aronson & Spiegelman, 1961). Results presented in Fig. 4 indicate that in the absence of methionine, incorporation of [14C] uracil into a cold TCA-insoluble fraction was much decreased in metG319 as compared with wild-type. Some incorporation occurred in metB23 in the absence of methionine, possibly due to utilization of an existing methionine pool which, because of its defec-
tive methionyl-sRNA synthetase, could not be used by metG319. In the presence of a low concentration of DL-methionine (5 \(\mu \)M), incorporation of \([^{14}C]\)uracil was greatly increased in metG319 and metB23. In metB23 the rate and final degree of incorporation of \([^{14}C]\)uracil was indistinguishable from wild-type, whereas that of metG319 was still slightly less, probably due to the altered synthetase which prevented full utilization of the proffered methionine. These results indicate that RNA synthesis in metG319 was stringently controlled. In the presence of 100 \(\mu \)g/ml chloramphenicol, incorporation of \([^{14}C]\)uracil was allowed in metG319 even in the absence of added methionine and to an extent comparable to wild-type (Fig. 5).

Table 1. The effect of methionine-limitation on multiplication of phage P22.L4 in Salmonella typhimurium metG319

<table>
<thead>
<tr>
<th>Time</th>
<th>L-Methionine absent</th>
<th>L-Methionine present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>2.5 \times 10^{4}</td>
<td>2.2 \times 10^{4}</td>
</tr>
<tr>
<td>1/2 h.</td>
<td>4.6 \times 10^{4}</td>
<td>3.1 \times 10^{7}</td>
</tr>
<tr>
<td>4 h.</td>
<td>1.2 \times 10^{6}</td>
<td>2.5 \times 10^{11}</td>
</tr>
</tbody>
</table>

Synthesis of DNA in metG mutants. The results so far described suggest that in the absence of methionine, protein synthesis rather than SAM synthesis was affected primarily in metG319. Measurements of DNA synthesis in the presence and absence of methionine supported this view. When protein synthesis is inhibited in bacteria, e.g. by adding chloramphenicol or limiting a required amino acid, any rounds of DNA synthesis at present in progress are completed but new rounds do not begin (Maaloe & Hanawalt, 1961). For organisms growing in minimal medium with no gap between rounds of replication, there is generally about a 40% increase in DNA on amino acid starvation (Donachie, 1969). Limitation of SAM, on the other hand, allows a 100% increase in DNA (Lark 1968).

When Salmonella typhimurium metG319 was shifted from minimal medium containing methionine (mm) to methionine-free medium there was an increase in DNA of 47% as compared with 41% in presence of chloramphenicol. Clearly, the lesion in metG319 allowed only very limited re-initiation of DNA synthesis and therefore affected protein synthesis rather than SAM synthesis. In addition, the formation of phage was completely inhibited in methionine-starved metG319; the multiplication of P22.L4 was prevented unless methionine is added (Table 1).

Methionyl-sRNA formation in wild-type and metG319. To test the theory that the metG phenotype resulted from decreased ability to catalyse the formation of methionyl-sRNA, the formation of methionyl-sRNA by extracts of wild type and metG319 was followed over a period of 20 min.; the results obtained are presented in Fig. 6. It can be seen that although the wild-type extract catalysed the rapid formation of methionyl-sRNA, the metG319 extract was practically devoid of activity.
MetG mutants of Salmonella typhimurium

Methionyl-sRNA formation by a mixture of wild-type and metG319 extracts. The inability of metG319 extract to catalyse methionyl-sRNA formation may mean that the metG gene specifies methionyl-sRNA synthetase and that mutation leads to a decrease in enzymic activity, but there are two other possible explanations. First, the metG gene may be involved in the synthesis of a cofactor required for methionyl-sRNA synthetase activity; secondly, mutation in metG may result in accumulation of an inhibitor of methionyl-sRNA synthetase activity. To investigate these latter two possibilities, the formation of methionyl-sRNA by a mixture of the two extracts was followed. The rationale behind this experiment was that if metG specified methionyl-sRNA synthetase, then the combined activity of the two extracts would be equal to the sum of their individual activities when each was assayed alone. If the difference in activities were due to the presence of a cofactor in the wild type or an inhibitor in metG, then their combined activities would be greater or less than their individual activities unless the cofactor were limiting. The results presented in Fig. 7 show that the amount of methionyl-sRNA formed by a mixture of equal quantities of the two extracts was equal to the sum of the activities of the wild-type and metG319 when assayed separately. It must therefore be concluded that the metG gene of Salmonella typhimurium is the structural gene for methionyl-sRNA synthetase.

Amounts of in vivo charged sRNA_m in wild-type and metG319. In vitro studies on the formation of [3H]methionyl-sRNA provide good evidence that metG mutants
possess a methionyl-sRNA synthetase with decreased activity. To support this evidence, sRNA was extracted from mutant and wild-type bacteria and the percentage of sRNA\textsubscript{m+f} charged with methionine determined. Samples of extracted sRNA were subjected to periodate oxidation to destroy the amino acid-accepting capacity of 'uncharged' sRNA, and after removal of attached amino acids from oxidized and unoxidized samples they were recharged in vitro with \[^3H\]methionine. By comparing the amounts of \[^3H\]methionine attached to treated and untreated samples, the percentage of charged sRNA\textsubscript{m+f} was calculated (Table 2). sRNA\textsubscript{m+f} from wild-type organisms was approximately 100 % charged, whereas that from \textit{metG319} was

Table 2. In vivo amounts of charged sRNA\textsubscript{m+f}

<table>
<thead>
<tr>
<th>Strain</th>
<th>Low methionine</th>
<th>High methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type (HfrB2)</td>
<td>99-9</td>
<td>99-8</td>
</tr>
<tr>
<td>\textit{metG319}</td>
<td>60-1</td>
<td>98-1</td>
</tr>
<tr>
<td>\textit{metG419}</td>
<td>59-5</td>
<td>97-2</td>
</tr>
</tbody>
</table>

Table 3. \(K_m\) (methionine) values of methionyl-sRNA synthetases from wild-type and mutant strains of \textit{Salmonella typhimurium} as measured by pyrophosphate exchange

The assay procedure was that described in the Methods, and the reaction mixture contained the following ranges of concentrations of L-methionine: 5 to 250 \(\mu\text{M}\) for HfrB2, 1-0 to 2-5 \(\mu\text{M}\) for \textit{metG319}, and 1-0 to 5-0 \(\mu\text{M}\) for \textit{metG419}.

<table>
<thead>
<tr>
<th>Strain</th>
<th>(K_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type (HfrB2)</td>
<td>(1.8 \times 10^{-4}\text{M})</td>
</tr>
<tr>
<td>\textit{metG319}</td>
<td>(1.0 \times 10^{-2}\text{M})</td>
</tr>
<tr>
<td>\textit{metG419}</td>
<td>(1.0 \times 10^{-3}\text{M})</td>
</tr>
</tbody>
</table>

approximately 60 % charged. Taking into account the very much decreased activity of the mutant enzyme, it is surprising that this figure was not lower. However, Martin, Yegian & Stent (1963) found that under conditions of methionine starvation most of the methionine-accepting capacity of sRNA\textsubscript{m+f} was protected against periodate oxidation. These authors later proposed (Yegian, Stent & Martin, 1966) that this protection might stem from \(N\)-formylmethionine which became trapped on its sRNA\textsubscript{f} due to cessation of growth of polypeptide chains.

\textit{AMP-dependent releases of methionine from methionyl-sRNA.} The above results show that extracts of \textit{metG319} were very low in their ability to form methionyl-sRNA. However, the formation of this compound occurred in two stages:

1. methionine + ATP + enzyme \(\rightleftharpoons\) methionine-AMP-enzyme + PP\(_3\);
2. methionine-AMP-enzyme + sRNA\textsubscript{m} \(\rightleftharpoons\) methionyl-sRNA\textsubscript{m} + AMP + enzyme.

To determine whether reaction (2), the 'transfer' step, was affected, the release of methionine from methionyl-sRNA, catalysed by extracts of wild-type and \textit{metG319} organisms, was followed. The results (Fig. 7) showed that only the wild-type extract catalysed the release of methionine to any extent. This would suggest that \textit{metG319}}
lacks transfer reaction activity; but it can be seen that wild-type extract was unable to catalyse this reaction when pyrophosphate was not present in the reaction mixture. This suggests that reversal of the transfer step also required reversal of reaction (1) so that lack of activity with metG319 extract may reflect an alteration in either partial reaction.

\(K_m \) (methionine) determinations for methionyl-sRNA synthetases from wild-type and metG319. Preliminary attempts to determine the affinity of the metG319 enzyme for methionine by using the acylation reaction were largely unsuccessful for technical reasons. It was therefore decided to use the methionine-dependent \(^{32}P\)pyrophosphate exchange assay which allowed much higher concentrations of methionine to be used. This assay measures reaction (1) above, the 'activation' step, so that it was also possible to see whether this stage of the reaction was affected by the metG mutation. The results (Table 3) show that both metG319 and metG419 had greatly increased \(K_m \) (methionine) values as compared with wild-type.

Effect of pH on the activity of methionyl-sRNA synthetase from wild-type and metG319. It was of interest to investigate whether the decreased activity of methionyl-sRNA synthetase from metG mutants was associated with an alteration in its pH optimum. The rate of pyrophosphate exchange was determined with a range of buffers of different pH values. The results are presented in Fig. 8. The activities of wild-type and metG319 enzymes showed little activity below pH 5 but increased with pH until pH 7.0 was reached. At pH values greater than 7.0, activity decreased until pH 7.2 was reached. From this point on the behaviour of wild-type and metG319 differed considerably. At pH values greater than 7.2 the activity of metG319 continued to decrease whereas that of the wild-type increased to a new maximum at pH 7.5 and remained fairly constant until pH 8.5. With metG319 only a shoulder of activity remained between pH 7.9 and 8.8, suggesting that in the wild-type organisms the bulk of methionyl-sRNA synthetase activity was associated with a broad pH optimum and that metG organisms largely lacked this component.

Chromatography of wild-type and metG319 extracts on DEAE-cellulose. The different behaviour of metG319 and wild-type methionyl-sRNA synthetase when measured over a range of pH values reflected the difference in enzymic activities of the two strains. To investigate the possibility that this difference was reflected in other physico-chemical properties, enzymic extracts were subjected to chromatography on DEAE-cellulose. The results in Fig. 9(a) for the wild-type and Fig. 9(b) for metG319 show that both enzymes had very similar elution profiles, the slight displacement of the metG319 peak in Fig. 9(b) being within the limits of variation imposed by the experimental technique.

However, enzyme from both strains was eluted in two more or less equal peaks of activity. The reason for this may be that, as suggested by Cerhová & Rychlífík (1967) for Escherichia coli, Salmonella typhimurium contains two species of methionyl-sRNA synthetase, one catalysing the attachment of methionine to sRNA, and the other to sRNA. If this be so, then this must reflect a species difference between S. typhimurium and E. coli, because Hartley & Heinrikson (1967), Cassio & Waller (1968) and Bruton & Hartley (1968) have all shown that in E. coli a single enzyme catalyses the attachment of methionine to both types of sRNA. In view of these results it seems unlikely that there are two species of methionyl-sRNA synthetase in S. typhimurium. Alternatively, it may be that the smaller pH peak and one of the elution peaks represents a
breakdown product or a precursor of the mature enzyme, or it may represent active subunits of an oligomeric protein. The fact that native methionyl-sRNA synthetase can exist as active subunits is suggested by the results of Hartley & Heinrikson (1967) and Bruton & Hartley (1968).

![Fig. 9. DEAE-cellulose chromatography of wild-type and metG3rg methionyl-sRNA synthetase. Fractions were assayed for enzyme activity by the pyrophosphate exchange assay. Results obtained for wild type and metCj-19 are presented in (a) and (b) respectively. Enzyme activity expressed as μmoles pyrophosphate exchanged/15 min./mg. protein for wild-type and μmoles pyrophosphate exchanged/15 min./mg. protein for metG319; □, enzyme activity; ●, protein concentration.](image-url)
MetG mutants of Salmonella typhimurium

Gel-filtration on Sephadex G-200. The behaviour of methionyl-sRNA synthetase on DEAE-cellulose at a range of pH values might be expected to reflect the ionic properties of the enzyme molecule. To investigate the possibility of a difference in the molecular sizes of wild-type and mutant enzymes, they were subjected to gel-filtration

Fig. 10. Gel-filtration of wild type and metG319 methionyl-sRNA synthetases on Sephadex G-200. Fractions were assayed for enzyme activity by the pyrophosphate exchange assay. Results obtained for wild type and metG319 are presented in (a) and (b) respectively. Enzymic activity, □, as mmoles pyrophosphate exchanged/15 min./mg. protein, and protein concentration, ●, are plotted for both strains, and the elution profile of serum albumin, ○, is included in (a).
on Sephadex G-200. The results (Fig. 10(a) for wild-type, Fig. 10(b) for metG319) showed that there was no significant difference between the elution patterns of wild-type and metG mutants, the slight displacement of the metG319 peak in Fig. 10(b) being within the limits of variation imposed by the experimental technique. Amounts of the methionine biosynthetic enzymes in Salmonella typhimurium metG319 and metG419. Since protein synthesis in strain metG319 is limited by the supply of methionyl-sRNA, it was interesting to measure the amounts of the methionine biosynthetic enzymes under conditions where growth was limited by methionine supply, since it is the aminoacyl-sRNA rather than the free amino acid which acts as co-repressor in some biosynthetic pathways (Neidhardt, 1966). Table 4 shows representative results for organisms grown at 30° with 0.02 mM-L-methionine (low methionine) or mM-L-methionine (high methionine). Enzyme assays as described in Methods.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Methionine</th>
<th>Cystathionine synthetase (µmole/mg. dry wt/h.)</th>
<th>Cystathionase (µmole pyruvate/mg. dry wt/h.)</th>
<th>Homocysteine methylase (µmole methionine formed/mg. dry wt/h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfrB2</td>
<td>Low</td>
<td>0.200</td>
<td>0.53</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.061</td>
<td>0.40</td>
<td>0.08</td>
</tr>
<tr>
<td>metG319</td>
<td>Low</td>
<td>0.030</td>
<td>0.93</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.015</td>
<td>0.45</td>
<td>0.09</td>
</tr>
<tr>
<td>metG419</td>
<td>Low</td>
<td>0.018</td>
<td>0.93</td>
<td>0.09</td>
</tr>
</tbody>
</table>

DISCUSSION

The present study investigated the effect of the metG mutation on the growth characteristics and protein, RNA and DNA synthesis in Salmonella typhimurium. Auxotrophic mutants of Escherichia coli analogous to metG have also been isolated with requirements for tryptophan (Doolittle & Yanofsky, 1968; Kano, Matsushiro & Shimura, 1968), histidine (Nass & Neidhardt, 1966) and glycine (Folk & Berg, 1968).
MetG mutants of Salmonella typhimurium

Of these, the tryptophanyl-sRNA synthetase mutants have been shown to possess growth characteristics similar to those of metG mutants (Doolittle & Yanofsky, 1968; Ito, Hiraga & Yura, 1969). It was possible that the metG mutants were altered in SAM synthetase rather than in methionyl-sRNA synthetase. However, the very low rate of incorporation of [14C]phenylalanine into protein in MM medium (Fig. 2), lack of synthesis of d-serine deaminase in the presence of inducer (Fig. 3), and decrease of DNA (Table 1) and RNA (Fig. 4) synthesis in metG mutants all establish that protein synthesis is affected in metG mutants. Further experiments on the synthesis of methionyl-sRNA in vitro showed that metG mutants possessed a methionyl-sRNA synthetase with much decreased affinity for methionine. Results obtained using the pyrophosphate exchange assay support this conclusion and show that the K_m (methionine) values of methionyl-sRNA synthetases from metG mutants are greatly increased.

The release of [3H]methionine from [3H]methionyl-sRNA was catalysed by a wild-type extract but not by metG319, suggesting that the latter is very restricted in its ability to catalyse this reaction. However, since removal of methionine from sRNA appears to require reversal of both partial reactions, this may reflect only the defective first step. Clarification of this problem might result from a study of the transfer of radioactive methionine from chemically synthesized methionyl-adenylate to sRNA.

Evidence that methionyl-sRNA is not the co-repressor of methionine biosynthesis is presented in Table 4; further support comes from studies of methionine-analogue resistant strains in which the biosynthetic enzymes are de-repressed in two groups of resistant strains but in neither are there obvious alterations in amounts of methionyl-sRNA synthetase or in sRNA (T. S. Gross & R. J. Rowbury, unpublished). Since limitation of methionine will inevitably limit N-formyl-methionyl-sRNA also, it seems unlikely that this compound is involved in repression. Methionine may either act directly as co-repressor or, as in Escherichia coli (Greene, Su & Holloway, 1970), SAM may have a role. So far no evidence for altered SAM metabolism has been obtained in de-repressed strains of Salmonella typhimurium.

The experiments on the multiplication of P22. L4 phage in metG319 demonstrate that the phage is dependent on the host methionyl-sRNA synthetase and does not produce its own specific enzyme or an active altered host enzyme. In at least one case, an inactive synthetase is activated by the presence of phage in Escherichia coli (Neidhardt, 1966).

This work was done whilst one of us (T. S. G.) was in receipt of a Science Research Council Studentship.

REFERENCES

MetG mutants of Salmonella typhimurium

