A New Gene Cluster rfe Concerned with the Biosynthesis of Salmonella Lipopolysaccharide

By P. HELENA MÄKELÄ AND M. JAHKOLA
State Serum Institute, Helsinki, Finland
AND O. LÜDERITZ
Max Planck Institut für Immunbiologie, Freiburg, Germany

(Accepted for publication 8 October 1969)

SUMMARY

A new class of rough mutants has been found in both Salmonella montevideo and S. minnesota. The mutants resemble phenotypically rfb mutants, having a complete lipopolysaccharide core but no O-specific material in lipopolysaccharide or as free hapten. The site of these rfe mutations is near the isoleucine and valine gene ilv, and is thus separate from the known lipopolysaccharide gene clusters rfa for the core, rfb for the O-specific side-chains, and rfc for O side-chain polymerization. The function of the rfe gene(s) is not known. It is suggested that they might participate in the utilization of the antigen carrier lipid for lipopolysaccharide synthesis, or that they might regulate the activity of rfb genes. The gene determining phosphorylation of the heptose in the lipopolysaccharide core of S. minnesota was identified as one within the rfa cluster.

INTRODUCTION

The O-antigenic lipopolysaccharide of Salmonella is thought to have a central core which is common to all Salmonella species. Attached to it in an unknown way are the O side-chains specific for each O-antigenic type (Fig. 1). Mutants in which the synthesis of lipopolysaccharide is defective are culturally rough (R). Three classes of rough mutants have been described (Subbaiah & Stocker, 1964; Naide et al. 1965; Beckmann, Subbaiah & Stocker, 1964). rfa mutants have a defective core, and produce a low molecular weight ‘hapten’ with O specificity. The rfa mutations are located in a part of the chromosome near xyl (Fig. 2). Later many, although not all, of the rfa mutations were shown to be cotransducible with pyrE and cysE between xyl and ilv (Kuo & Stocker, 1968). The hapten is thought to consist of polymerized O-specific repeating units as precursors of O side-chains which cannot be attached to the unfinished core (Kent & Osborn, 1968). rfb mutants on the other hand have a complete core, but produce no O-specific material. Their mutations map in a tight cluster near his. The third class of mutants, rfc, are unable to polymerize the O-specific repeating units. Their sites of mutations are located between trp and gal.

However, some R mutants do not fit into this scheme. These have a complete core with N-acetylglucosamine, and also O-specific hapten (Beckmann, Subbaiah & Stocker, 1964; Gemski & Stocker, 1967), which they apparently cannot attach to the core. Some of these (rfbT) have mutations that map in the rfb cluster. Other mutations
called \textit{rfaL} resemble \textit{rfa} in being cotransducible with \textit{pyrE} \citep{KuoStocker1968}. The LPS core in both cases is also complete in the sense that it can accept O side-chains, when incubated with cell-free preparations of \textit{rfb} bacteria for example. It is therefore assumed that both \textit{rfbT} and \textit{rfaL} mutants might lack a component of a ligase or ‘translocase’ specified by these genes. Cell envelope preparations of \textit{rfaL} mutants have been shown to be unable to catalyse the translocation step \citep{CynkinOsborn1969}.

\begin{align*}
\text{Lipopolysaccharide} & \quad \text{Examples of} \\
\text{structure} & \quad \text{repeating units}\nonumber \\
\text{O side-chain} & \quad (\text{Repeating unit})_n \\
& \quad \downarrow \\
& \quad \text{Repeating unit} \\
& \quad \downarrow \\
& \quad \text{Galactose} \\
& \quad \downarrow \\
& \quad \text{Glucose} \leftarrow \text{N-acetylglucosamine} \\
& \quad \downarrow \\
& \quad \text{Galactose} \\
& \quad \downarrow \\
& \quad \text{Glucose} \leftarrow \text{Galactose} \\
& \quad \downarrow \\
& \quad \text{Heptose} \\
& \quad \downarrow \\
& \quad \text{Heptose} \leftarrow \text{Phosphate} \\
& \quad \downarrow \\
& \quad \text{KDO} \\
& \quad \downarrow \\
& \quad \text{Ethanolamine} \\
& \quad \downarrow \\
& \quad \text{Phosphate} \\
& \quad \downarrow \\
& \quad \text{Lipid A} \\
& \quad \downarrow \\
\text{Core} & \quad \text{Mannose} \leftarrow \text{Abequose} \\
& \quad \downarrow \\
& \quad \text{Rhamnose} \\
& \quad \downarrow \\
& \quad \text{Galactose} \\
\text{S. typhimurium} & \quad \downarrow \\
\text{S. montevideo} & \quad \text{Mannose} \\
& \quad \downarrow \\
& \quad \text{N-acetylglucosamine} \\
\text{S. minnesota} & \quad \downarrow \\
& \quad \text{Galactose} \leftarrow \text{Galactose} \\
& \quad \downarrow \\
& \quad \text{N-acetylglucosamine} \leftarrow \text{N-acetylglucosamin} \\
& \quad \downarrow \\
& \quad \text{N-acetylglucosamin} \\
\end{align*}

Fig. 1. Schematic structure of the Salmonella lipopolysaccharide \citep{LuderitzJannWheat1968, FullerStaub1968, Osborn1969}. The innermost part of lipopolysaccharide contains KDO (= ketodeoxyoctonate), ethanolamine, phosphate and lipid A. To this are attached polysaccharide side-chains composed of a core and an O side-chain. The O side-chain is built up of repeating units, which carry the O-specific antigenic determinants characteristic of each Salmonella O group. Examples of the structure of the repeating unit in different Salmonella species, belonging to different O groups, are shown on the right.

Rough mutants have so far been analysed genetically only in \textit{Salmonella typhimurium} strain LT2. While studying rough mutants in two other Salmonella species, \textit{S. montevideo} (O antigens 6, 7) and \textit{S. minnesota} (O antigen 21), we found a new class of R mutants (\textit{rfe}) which produce a complete core, but no O-specific hapten. Their sites of mutation are located close to \textit{ilv} and are clearly separate from \textit{rfa}, \textit{rfb} and \textit{rfc}. The symbol \textit{rfe} is preferred to \textit{rfd}, which would be similar to the \textit{rouD} used earlier to describe leaky \textit{rfa} mutants \citep{GemskiStocke1967}. Typical \textit{rfa} mutations in these species, as in \textit{S. typhimurium}, occur close to \textit{xyl}.
METHODS

Bacterial and phage strains. Salmonella typhimurium strain LT 2 and various rough (R) mutants of it were obtained from Dr B. A. D. Stocker, Stanford University, California, as were the O- and R-specific phages (Wilkinson & Stocker, 1968)

![chromosome map of Salmonella](image)

Fig. 2. Part of the chromosome map of Salmonella (after Sanderson, 1967; Mäkelä & Stocker, 1969). Positions not accurately known are indicated by arrows, and loci whose order is not known are bracketed. Genes labelled outside circle affect lipopolysaccharide synthesis. Gene symbols as follows: **gal** = galactose utilization, **trp** = tryptophan biosynthesis, **his** = histidine biosynthesis, **str** = resistance to streptomycin, **xyl** = xylose utilization, **pyrE** = orotidylac acid pyrophosphorylase, **cysE** = cysteine biosynthesis, **ilv** = biosynthesis of isoleucine and valine, **pmi** = phosphomannoseisomerase, **rfa**, **rfb**, **rfc**, **rfe** = biosynthesis of the O-antigenic lipopolysaccharide.

Salmonella montevideo was strain no. 129 of Edwards & Bruner (1942), used earlier by Mäkelä (1966); its mutants used are listed in Table 1. *Salmonella minnesota* was strain s99 obtained from Dr F. Kauffmann, State Serum Institute, Copenhagen, Denmark (Lüderitz et al. 1965); its R mutants mR 3 and mR 592 were those described by Lüderitz et al. (1966). It turned out that these mutants had more than one R mutation. Single R-mutant derivatives were therefore isolated from them as recombinants in crosses with the smooth parent strain first made F+; they are listed in Table 1. Nutritional, fermentation or streptomycin-resistant mutants were selected from these strains by standard procedures (Lederberg, 1950). R mutants were selected as morphologically rough colonies on complete media or as clones resistant to the Felix-or phage. Diethylsulphate was the mutagen used (10 mg./ml. added to an overnight broth culture, and incubation continued for 30 min. at 37°, after which the culture was diluted 1/100 in fresh medium and incubated overnight before plating out). The gene symbols are explained in the legend for Fig. 2.

Bacteriological techniques. In the bacterial crosses, F+ strains with the F factor derived from *Escherichia coli* K12 (Mäkelä, Lederberg & Lederberg, 1962) were used as donors. The donors were streptomycin-sensitive and streptomycin (1 mg./ml.) was added to the selective medium. All R strains were identified by cultural
Table 1. *Salmonella* strains used

Gene symbols are described in the legend of Fig. 2; + is the wild type allele for each gene; mutant alleles are described by mutant numbers or by − or R (in the case of *str* indicating mutant allele conferring resistance to streptomycin).

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain no.</th>
<th>Mating type</th>
<th>rfa</th>
<th>rfb</th>
<th>rfe</th>
<th>his</th>
<th>ilv</th>
<th>xyl</th>
<th>str</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. typhimurium line LT 2</td>
<td>SL 1027</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>SL 748</td>
<td>.</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>.</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>SL 758</td>
<td>.</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>SL 1060</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>.</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S. montevideo line 129 (Edwards & Bruner, 1942)</td>
<td>sw 829</td>
<td>F+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>SH 1675</td>
<td>F−</td>
<td>+</td>
<td>3623</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1676</td>
<td>F−</td>
<td>+</td>
<td>3795</td>
<td>3624</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>SH 1679</td>
<td>F−</td>
<td>+</td>
<td>3627</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1688</td>
<td>F−</td>
<td>+</td>
<td>3636</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1711</td>
<td>F−</td>
<td>3646</td>
<td>3610</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1717</td>
<td>F−</td>
<td>3652</td>
<td>3618</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1723</td>
<td>F−</td>
<td>3658</td>
<td>3625</td>
<td>3796</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1724</td>
<td>F−</td>
<td>3659</td>
<td>3626</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 1732</td>
<td>F−</td>
<td>3667</td>
<td>3624</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 3269</td>
<td>.</td>
<td>3652</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td>S. minnesota line s 99 (Lüderitz et al. 1965)</td>
<td>SH 309</td>
<td>F+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>mk 3†</td>
<td>F−</td>
<td>3791, 3792</td>
<td>+</td>
<td>3793</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>mk 592†</td>
<td>F−</td>
<td>3789</td>
<td>+</td>
<td>3790</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>SH 1756</td>
<td>.</td>
<td>+</td>
<td>3793</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>SH 1757</td>
<td>.</td>
<td>+</td>
<td>3790</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>SH 3237</td>
<td>.</td>
<td>3791, 3792</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SH 3264</td>
<td>.</td>
<td>3789</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>R</td>
</tr>
</tbody>
</table>

Source	

From B. A. D. Stocker	
From B. A. D. Stocker	
From cross sw 829 x SH 1711*	
From cross SH 309 x mk 3	
From cross SH 309 x mk 592	
From cross SH 309 x mk 592	
From cross SH 309 x mk 592	
From SH 1622, *his ilv xyl str* (rfb 3795 is very leaky)	

* Crosses are written as donor × recipient.
† *his, ilv, xyl* and *str* mutations were selected in the original mk 3 or mk 592, checking the phage sensitivity and agglutination pattern of the strains at each step. However, as new R mutations might have accumulated during this selection, the rfx genotype of the original mk 3 and mk 592 was later checked by making them F+ and then using them as donors to a smooth *his ilv xyl str* recipient strain; the same *rfa* and *rfe* mutations were recovered as reported in thr/rfe-3793 may be identical with rfe-3790.
characteristics, slide agglutination (4% saline; anti-O sera diluted in 0.2% saline), and sensitivity to O and R-specific phages (Wilkinson & Stocker, 1968). The methods and media were otherwise as described earlier (Mäkelä, 1966).

Chemical methods. Lipopolysaccharides were prepared by the phenol–water procedure followed by centrifugation at 105,000 g. Lipopolysaccharide was obtained as the sediment, while the supernatant represents the LI fraction and contains the O-specific hapten (Beckmann, Subbaiah & Stocker, 1964). The analyses of these fractions were performed as described previously (Risse et al. 1967). The examination of phosphateless (P−) mutants was performed as described by Dröge, Ruschmann, Lüderitz & Westphal, 1968). Haemagglutination inhibition by lipopolysaccharide was examined according to Beckmann, Lüderitz & Westphal (1964).

RESULTS

Characterization of R mutants with bacteriophages

Wilkinson & Stocker (1968) found that the lysis of rough *Salmonella typhimurium* mutants by selected phages correlated well with the chemical composition of the defective lipopolysaccharide. Some of these phages do not attack *S. montevideo* or *S. minnesota* at all, but others produce lytic patterns comparable to those in *S. typhimurium* (Table 2). We found sensitivity or resistance to the Felix-01 phage (called FO in this paper) particularly useful. In *S. typhimurium* sensitivity to this phage has been shown to depend on the presence of N-acetylglucosamine—that is, the complete core—in the lipopolysaccharide (Lindberg, 1967). Thus smooth bacteria and R mutants that have a complete core are FO-sensitive, while core mutants are FO-resistant.

Table 2. Phage sensitivity patterns of smooth and rough strains of Salmonella typhimurium, S. montevideo and S. minnesota

Action of phage (clear lysis = +; no lysis = −) was determined by applying the phage dilutions (10 plaque-forming units/ml) as drops on nutrient agar plates spread with an overnight broth culture of the bacterial strain and dried for 30 min. (Wilkinson & Stocker, 1968).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mutant</th>
<th>FO-sensitive</th>
<th>Br 60</th>
<th>Ffm</th>
<th>C 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>sl 1027</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>sw 829</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S. minnesota</td>
<td>sh 309</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Rough FO-sensitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>sl 748</td>
<td>rfb</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>sh 1675</td>
<td>rfo†</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. minnesota</td>
<td>sh 1756</td>
<td>rfe†</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FO-resistant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>sl 758</td>
<td>rfa</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>sh 3269</td>
<td>rfa†</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. minnesota</td>
<td>sh 3237</td>
<td>rfa†</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>sl 1060</td>
<td>rfaH</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. minnesota</td>
<td>sh 3264</td>
<td>rfa†</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* According to Wilkinson & Stocker (1968 and personal communication), repeated in this series of experiments.
† Classification according to the data in the present paper.
Table 3. Frequencies of rfe⁺ among different classes of recombinants in crosses between a smooth streptomycin-sensitive F⁺ donor and streptomycin-resistant xyl ilv rfe recipients

Crosses were made between exponentially growing broth cultures of donor and recipient, mixed in equal proportions (sw 829 and sh 309 with S.montevideo and S. minnesota recipients respectively). The mating mixture was kept undisturbed at 37° for 2 hr, then plated for selection of xyl⁺str⁺, ilv⁺str⁺ or xyl⁺ilv⁺str⁺ recombinants, which were recovered at a rate of c. 10⁻⁷ (= 10 recombinants per plate spread with 0.1 ml. of the mating mixture). The recombinants were streaked on nutrient agar plates, from which single colonies were tested for their nutritional characteristics and LPS character. For the latter purpose colony morphology, agglutinability in 4% saline and in the correct anti-O serum, and phage sensitivity pattern (according to Table 2) were determined.

<table>
<thead>
<tr>
<th>Recombinant classes</th>
<th>S. montevideo</th>
<th>S. minnesota</th>
<th>Recipient strains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SH 1675</td>
<td>SH 1676</td>
<td>SH 1679</td>
</tr>
<tr>
<td>xyl<sup>-</sup> ilv<sup>+</sup></td>
<td>9/18</td>
<td>4/9</td>
<td>2/5</td>
</tr>
<tr>
<td>xyl<sup>-</sup>ilv<sup>-</sup></td>
<td>1/18</td>
<td>1/11</td>
<td>0/27</td>
</tr>
<tr>
<td>xyl<sup>-</sup>ilv<sup>+</sup></td>
<td>4/5</td>
<td>4/5</td>
<td>7/9</td>
</tr>
<tr>
<td>ilv<sup>-</sup></td>
<td>18/39</td>
<td>46</td>
<td>10/102</td>
</tr>
<tr>
<td>xyl<sup>+</sup></td>
<td>11/102</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

For comparison, frequency of xyl⁺ among ilv⁻ 1/39 = 3% 42/342 = 12%
For comparison, frequency of ilv⁺ among xyl⁺ 10/102 = 10% 131/340 = 38%

* rfe strains were culturally rough and agglutinated in 4% saline; rfe⁺ were culturally smooth and agglutinated in the corresponding anti-O serum.
† mr 3 is also rfa⁻; rfe⁺ could be scored only in recombinants that had become rfa⁺, and the figures given for rfe⁺ are only approximate.
‡ mr 592 has an rfa mutation as well as rfe, but the rfa is so leaky that rfe⁺ could be scored by agglutination, although the rfa rfe⁺ recombinants were still resistant to FO.
Salmonella O antigen synthesis

Genetic analysis of rfe mutants

Most randomly isolated rough mutants of Salmonella montevideo were sensitive to FO and rough-specific phages. Most of these mutations mapped near his, as does rfb, but a number did not. All of these mutants whose mutations did not map in the rfb area were isolated from an xyl ilv parent strain which was streptomycin-resistant.

To locate the site of these mutations each mutant was crossed with an F+ streptomycin-sensitive smooth donor strain of S. montevideo (SW 829). The frequency of smooth recombinants among xyl-ilv+, xyl+ilv− and xyl+ilv+ recombinants is given in Table 3. The number of recombinants analysed in each cross is small because of low fertility in F+ crosses with this strain. However, the trend was the same in each case: nearly half the xyl-ilv+ recombinants were smooth, compared with two out of 92 xyl+ilv− recombinants. Of the 30 xyl+ilv+ recombinants 26 were smooth, confirming that the R mutation is in the xyl-ilv region of the chromosome.

In these crosses the unselected xyl+ donor allele appeared in about 3% of the ilv+ recombinants, and the unselected ilv+ donor allele in 10% of the xyl+ recombinants, as shown in the lower part of Table 3. The 45% linkage found between the R mutation and ilv suggests that this R mutation is much closer to ilv than is xyl. We shall call the gene or genes affected in these mutants rfe.

A similar R mutation was found in two Salmonella minnesota strains. The right half of Table 3 shows some results of mapping this mutation. In both mR 3 and mR 592 the mutation had a similar location to rfe in S. montevideo, with 45% linkage to ilv. The mutants mR 3 and mR 592 were originally isolated by a complex procedure (J. Schlosshardt, personal communication), and have turned out to contain rfa mutations in addition to rfe. In mR 592 the rfa mutation was so leaky that rfe+ could be recognized by smooth colony form and smooth-type agglutination in the corresponding anti-O serum, although the recombinants that were still rfa− gave a very slight agglutination in 4% saline, and retained the FO-resistant phage sensitivity pattern of the mR 592 parent. The rfa in mR 3 was not leaky—the strain has been demonstrated to have two separate biochemical defects in core synthesis (see p. 101) and hence probably has two independent rfa mutations. With this strain the rfe genotype could be scored only in recombinants that had become rfa+. The single rfe mutant derivatives obtained in these crosses from mR 3 and mR 592 as xyl+rfa+ were phenotypically similar to rfb mutants, e.g. in sensitivity to FO (Table 2, strain SH 1756). Genetically, however, they were very different, as typical his-linked rfb mutants could be easily isolated in the S. minnesota strain (unpublished observations). Because of the isolation method of mR 3 and mR 592 we do not know whether the rfe mutation occurred independently in these two strains or not.

Genetic analysis of rfa mutants

We studied a number of other rough mutants that were resistant to the phage FO. These included five independent mutations of Salmonella montevideo and two of S. minnesota. As shown in Table 4, all these mutations mapped closer to xyl than to ilv (34 versus 6% linkage for the S. montevideo mutants, 67 versus 8% for the S. minnesota mutants). The rfa+ allele was scored in all recombinants as giving rise to an FO-sensitive phage pattern regardless of the possible presence of an rfe or rfb mutation in the recipients and recombinants.
Table 3. Frequencies of rfe+ among different classes of recombinants in crosses between a smooth streptomycin-sensitive F+ donor and streptomycin-resistant xyl ilv rfe recipients

Croses were made between exponentially growing broth cultures of donor and recipient, mixed in equal proportions (sw 829 and sh 309 with S. montevideo and S. minnesota recipients respectively). The mating mixture was kept undisturbed at 37° for 2 hr, then plated for selection of xyl+str+, ilv+str+ or xyl+ilv+str+ recombinants, which were recovered at a rate of c. 10^{-7} (= 10 recombinants per plate spread with 0.1 ml of the mating mixture). The recombinants were streaked on nutrient agar plates, from which single colonies were tested for their nutritional characteristics and LPS character. For the latter purpose colony morphology, agglutinability in 4% saline and in the correct anti-0 serum, and phage sensitivity pattern (according to Table 2) were determined.

<table>
<thead>
<tr>
<th>Recombinant classes</th>
<th>S. montevideo</th>
<th>S. minnesota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SH 1675</td>
<td>SH 1676</td>
</tr>
<tr>
<td>rfe+</td>
<td>rfe+</td>
<td>rfe+</td>
</tr>
<tr>
<td>xyl- ilv+</td>
<td>9/18</td>
<td>4/9</td>
</tr>
<tr>
<td>xyl+ilv+</td>
<td>1/18</td>
<td>1/11</td>
</tr>
<tr>
<td>xyl+ilv+</td>
<td>4/5</td>
<td>4/5</td>
</tr>
<tr>
<td>ilv+</td>
<td>18/39</td>
<td>1/102</td>
</tr>
<tr>
<td>xyl†</td>
<td>0/21</td>
<td>0/21</td>
</tr>
</tbody>
</table>

For comparison, frequency of xyl+ among ilv+ 1/39 = 3% 42/342 = 12%
For comparison, frequency of ilv+ among xyl+ 10/102 = 10% 131/340 = 38%

* rfe strains were culturally rough and agglutinated in 4% saline; rfe+ were culturally smooth and agglutinated in the corresponding anti-O serum.
† MR 3 is also rfu-; rfe+ could be scored only in recombinants that had become rfu+, and the figures given for rfe+ are only approximate.
‡ MR 592 has an rfu mutation as well as rfe, but the rfu is so leaky that rfe+ could be scored by agglutination, although the rfu-rfe+ recombinants were still resistant to FO.
Salmonella O antigen synthesis

Relative order of the xyl, rfa, ilv and rfe genes

The relative position of the loci xyl, rfa, ilv and rfe could be more closely examined in the two Salmonella minnesota mutants mR 3 and mR 592 that have mutations in both rfa and rfe genes. (It is probable that mR 3 has two separate mutations, in two

Table 5. Frequencies of different recombinant classes in crosses between a smooth streptomycin-sensitive F+ donor and xylrfa-ilv-rfe+ recipients of S. minnesota

Crosses were made as in Table 3, rfe and rfa characterized as in Tables 3 and 4. Numbers of recombinants belonging to each class are listed in columns 5 and 6 (N.D. = not determined). In the last four columns are given numbers of the recombinants whose genotype could be produced only by four or more cross-overs. (The + after some numbers means that there might be a few more recombinants belonging to these groups which were not identified. Their number is certainly small—less than five—and would affect all columns nearly equally.) Different recombinant classes fall into this category when different orders of the four relevant genes are assumed, permitting conclusions of the most likely gene order. This appears to be the first one, xyl-rfa-ilv-rfe, which would necessitate quadruple cross-overs in not more than eleven recombinants.

<table>
<thead>
<tr>
<th>Genetic constitution of recombinants</th>
<th>Recipient strain</th>
<th>Minimum number of quadruple crossovers required to produce the recombinants observed, assuming gene order</th>
</tr>
</thead>
<tbody>
<tr>
<td>xyl</td>
<td>rfa</td>
<td>ilv</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Totals</td>
<td>239</td>
<td>249</td>
</tr>
</tbody>
</table>

Recombinants with at least two donor markers (excluding ilv+rfe+ with the recipient mR 3) 222 164

different rfa genes. In this genetic analysis they were never separated, and we feel justified in treating them as a single mutation.) These mutants were crossed with SH 309 (smooth, F+), and all xyl+ or ilv+ recombinant classes analysed (Table 5). Taking into account the fairly close linkage between ilv and rfe, and between xyl and rfa, the four loci can be assigned four different orders as shown in the last four columns of Table 5. Assuming the gene order xyl-rfa-ilv-rfe we see that most of the recombinant classes can be produced through a double cross-over, integrating the donor alleles in the recipient chromosome as a single block. The four classes xyl+rfa-ilv+rfe+, xyl+rfa-ilv+rfe+, xyl+rfa-ilv-rfe+ and xyl+rfa-ilv-rfe+, however, cannot be produced in this simple way but require at least four cross-overs. Eleven representatives of these classes were found among the 386 recombinants that had at least two donor alleles and therefore could contribute to the analysis. Assuming any of the other three gene orders, a larger number of recombinants (48, 29 and 61
Table 6. Composition of the lipopolysaccharide of \(rfa \) and \(rfe \) mutants of \(S. \) montevideo and \(S. \) minnesota

Lipopolysaccharide was isolated by phenol-water extraction followed by centrifugation at 105,000 g (Beckmann, Subbaiah & Stocker, 1964). Polysaccharide was prepared from lipopolysaccharide by removing the lipid A (Dröge et al. 1968); phosphate and glucosamine were determined from the polysaccharide. The analyses followed previously described methods (Risse et al. 1967) and the results were calculated as moles/2 (or 1) moles of heptose. For the expected lipopolysaccharide structure see Fig. 1.

Mole content of the various lipopolysaccharide constituents, with heptose normalized as 2 or 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Relevant genotype</th>
<th>(rfa)</th>
<th>(rfe)</th>
<th>KDO</th>
<th>Heptose</th>
<th>Phosphate in LPS†</th>
<th>Phosphate in PS</th>
<th>Glucose</th>
<th>Galactose</th>
<th>Glucosamine* or mannose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S.) montevideo</td>
<td>SH 3269</td>
<td>+</td>
<td>3652</td>
<td>+</td>
<td>1,3</td>
<td>2</td>
<td>1,8</td>
<td>1,2</td>
<td>0,7</td>
<td><0,15</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>SH 1675</td>
<td>+</td>
<td>3623</td>
<td>1,4</td>
<td>2</td>
<td>3,4</td>
<td>2,3</td>
<td>1,2</td>
<td>1,2</td>
<td>0,99</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SH 1679</td>
<td>+</td>
<td>3627</td>
<td>1,3</td>
<td>2</td>
<td>3,1</td>
<td>2,4</td>
<td>1,0</td>
<td>1,1</td>
<td>0,78</td>
<td>0</td>
</tr>
<tr>
<td>(S.) minnesota</td>
<td>SH 3237</td>
<td>3791, 3792</td>
<td>+</td>
<td>2,4</td>
<td>1</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MR 3</td>
<td>3791, 3792</td>
<td>3793</td>
<td>1,4</td>
<td>1</td>
<td>2,2</td>
<td>0,7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MR 592</td>
<td>3789</td>
<td>3790</td>
<td>2,3</td>
<td>2</td>
<td>2,3</td>
<td>0,8</td>
<td>1,3</td>
<td>0,6</td>
<td>0,09</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SH 1756</td>
<td>+</td>
<td>3793</td>
<td>1,3</td>
<td>2</td>
<td>3,1</td>
<td>0,5</td>
<td>0,73</td>
<td>1,2</td>
<td>0,29</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SH 1757</td>
<td>+</td>
<td>3790</td>
<td>1,7</td>
<td>2</td>
<td>3,1</td>
<td>2,1</td>
<td>1,4</td>
<td>1,6</td>
<td>1,4</td>
<td>0</td>
</tr>
</tbody>
</table>

Expected of a strain with a complete core (Fig. 1)

* The O-specific sugars are mannose in \(S. \) montevideo and galactosamine in \(S. \) minnesota (Fuller & Staub, 1968; Lüderitz et al. 1966).
† LPS, lipopolysaccharide; PS, polysaccharide.
Salmonella O antigen synthesis

respectively) would require quadruple cross-overs, and therefore the first-mentioned order appears the most likely one.

These results thus locate the rfa cluster of Salmonella minnesota between xyl and ilv, as it is in S. typhimurium. To make its homology with the rfa in S. typhimurium more certain one would like to test its cotransducibility with, for example, pyrE, which is between xyl and ilv and cotransducible with rfa in S. typhimurium. The rfe locus remains clearly separated.

Chemical composition of the lipopolysaccharide and LI fraction of the mutants

For studying the chemical composition of the mutant lipopolysaccharide we prepared separate rfa or rfe mutant strains from the original double or triple mutants by crossing these with smooth donors of the same species. Thus SH 3269 (Table 6) is a recombinant from the cross between sw 829 as the smooth donor and SH 1717 as the recipient; it was selected as his+rfb+, and has the rfa-3652 mutation of SH 1717. Similarly, a cross between SH 309, the smooth F+ Salmonella minnesota strain and MR 3 gave the rfa mutant SH 3237 as an ilv+rfe+ recombinant, and the rfe mutant SH 1756 as an xyl+rfa+ recombinant. The other single rfe mutant SH 1757 was prepared as xyl+rfa+ from a similar cross between SH 309 and MR 592.

The monosaccharide composition of the lipopolysaccharide prepared from these mutants was determined, and the results are given in Table 6. N-acetylglucosamine was analysed from the polysaccharide (PS) obtained from lipopolysaccharide after removal of lipid A (Dröge et al. 1968) because lipid A also contains glucosamine. Phosphate was determined in both lipopolysaccharide and polysaccharide. The molar proportions of these constituents found in strains with the complete lipopolysaccharide core are given as the bottom line of the Table (see also Fig. 1, for the structure of the core).

Let us first examine the rfe mutants. Two of these were studied in each species: SH 1675 and SH 1679 of Salmonella montevideo and SH 1756 and SH 1757 (which may or may not represent the same rfe mutation—see p. 97) of S. minnesota. The sensitivity of these mutants to the phage FO strongly suggests that they contain the complete lipopolysaccharide core. All the core constituents were indeed found in the lipopolysaccharide prepared from them, and the polysaccharide contained the expected amount of N-acetylglucosamine. SH 1756 was the only exception, with a lower value for N-acetylglycosamine.

The serological specificity of the rfe lipopolysaccharide was studied by a haemagglutination inhibition technique (Beckmann, Lüderitz & Westphal, 1964). When red blood cells are coated with lipopolysaccharide of various R mutants they become agglutinable by the specific anti-R serum prepared against this sort of R lipopolysaccharide; this agglutination can be specifically inhibited by the same sort of lipopolysaccharide but not by others. In this test the rfe lipopolysaccharide could inhibit the haemagglutination by anti-rfaL of cells coated with rfaL lipopolysaccharide and by anti-rfb of cells coated with lipopolysaccharide from several rfb mutants. The rfe lipopolysaccharide thus resembles that of rfaL and rfb mutants, both of which are known to contain the complete core (see Introduction).

Two rfa mutants SH 3269 and SH 3237 were examined. They had no or very little N-acetylglucosamine in the polysaccharide, indicating deficient synthesis of the core. The defect in SH 3269 is apparently leaky, permitting some core stubs to be completed
and then capped by the O-specific side-chains, as indicated by the presence of some
N-acetylglucosamine and traces of O-specific sugars. This strain behaves like a leaky
R mutant also in its reactivity with the specific anti-O serum.

Strain SH 3237 (and its parent mr 3) has a more defective core lacking the second
heptose and all other constituents distal to it. Strain mr 3 has been described as a
mutant deficient in the transfer of the second heptosyl residue to the first heptose of
the core (Risse et al. 1967). Later experience (unpublished observations) has shown
that it also lacks the ability to phosphorylate lipopolysaccharide heptose. These two
defects probably have their basis in two separate mutations, provisionally designated
as rfa-3791 for the defect in heptosyl transfer, and rfa-3792 for the defect in phos-
phorylation. In the genetic analysis we have so far been unable to separate the two hypo-
thetical mutations, which might indicate that they represent a deletion encompassing
at least parts of two genes; however, no deletion mutations have so far been found in
the rfa cluster (Mäkelä & Stocker, 1969). Strain mr 3 has been shown to possess at
least one enzyme participating in core synthesis, namely the transferase for the first
glucose residue (Risse et al. 1967), which in Salmonella typhimurium is determined by
a gene rfaG in the rfa cluster (Wilkinson & Stocker, 1968; Osborn, 1968). The hypo-
thetical deletion could thus not extend to this gene. The presence of either two separate
mutations or a deletion would also account for the apparent non-leakiness of the defect
in core synthesis.

The rfa-3789 of the Salmonella minnesota mutant mr 592 was not examined chemi-
cally because of its leakiness. rfa-3789 rfe+ derivatives of mr 592 were nearly
smooth in cultural behaviour and O-specific agglutination although they retained a
rough FO-resistant phage sensitivity pattern (SH 3264 in Table 2). A conspicuous feature of the rfa rfe double mutant mr 592 itself is the decreased amount of phosphate
in both lipopolysaccharide and polysaccharide, indicating a lack of the phosphate
normally attached to the core (Table 6). This type of mutant lipopolysaccharide has
been described as P- as opposed to the normal P+ (Dröge et al. 1968). The P-
lipopolysaccharide is characterized by (1) less phosphate in the lipopolysaccharide
and polysaccharide than in P+ strains; (2) no heptosephosphate obtained on
hydrolysis of lipopolysaccharide performed according to Stein & Schnell (1953); and
(3) a peak of methylated heptoses obtained after methylation and methanolysis, not
seen with P+ lipopolysaccharide. The lack of phosphorylation prevents the com-
pletion of the core by preventing the transfer of galactose (Mühlradt, Risse,
Lüderitz & Westphal, 1968). The defect in phosphorylation in mr 592 is probably
very leaky, as high amounts of glucose and galactose and even some N-acetylglucos-
amine are found in the lipopolysaccharide and polysaccharide. The absence of O-
specific sugars in the lipopolysaccharide preparation is probably accounted for by the
rfe mutation in mr 592.

When the rfa of either mr 3 or mr 592 was replaced by the rfa+ allele, the resulting
rfe recombinants SH 1756 and SH 1757 had, as shown above, gained the ability to
synthesize the complete core. The P+ character of their lipopolysaccharide was
specifically confirmed by all the three criteria mentioned above. Thus it has been
demonstrated that the phosphorylation of lipopolysaccharide heptoses is determined
by a gene belonging to the rfa cluster.

As rfa mutants synthesize an incomplete core, they are unable to attach O-specific
side-chains to their lipopolysaccharide. In Salmonella typhimurium rfa mutants the
Table 7. *Paper chromatographic analysis of the monosaccharide constituents in the L1 (hapten) fraction of the rfa and rfe mutants*

The L fraction was obtained as the supernatant after centrifugation (100,000 g) of the phenol-water extract to precipitate the lipopolysaccharide (Beckmann, Subbaiah & Stocker, 1964). This fraction is expected to contain the O-specific hapten.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>rfa</th>
<th>rfe</th>
<th>Relevant genotype</th>
<th>Monosaccharides in the L1 fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. montevideo</td>
<td>SH 3269</td>
<td>3652</td>
<td>+</td>
<td></td>
<td>Heptose</td>
</tr>
<tr>
<td></td>
<td>SH 1675</td>
<td>+</td>
<td>3623</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SH 1679</td>
<td>+</td>
<td>3627</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>S. minnesota</td>
<td>SH 3237</td>
<td>3791</td>
<td>3792</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MR 3</td>
<td>3791</td>
<td>3792</td>
<td>3793</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MR 592</td>
<td>3789</td>
<td></td>
<td>3790</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SH 1756</td>
<td>+</td>
<td>3793</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SH 1757</td>
<td>+</td>
<td>3790</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

* The O-specific sugars are mannose in *S. montevideo*, galactosamine in *S. minnesota* (Fuller & Staub, 1968; Lüderitz et al. 1966).
† Stands for a large amount of the sugar detected, - for none; no intermediate amounts were detected.
O-specific material is found as haptenic polysaccharide in the so-called L\textsubscript{1} fraction after phenol-water extraction and high-speed centrifugation, which removes lipopolysaccharide (Beckmann, Subbaiah \& Stocker, 1964). We isolated the L\textsubscript{1} fraction from our \textit{S. montevideo} and \textit{S. minnesota} mutants in the same way, and analysed its monosaccharide content by paper chromatography (Table 7). The L\textsubscript{1} fraction of the \textit{S. montevideo rfa} mutant SH 3269 contained large amounts of glucose, mannose and glucosamine, which are sugars constituting the O-specific side-chains in this species (Fuller \& Staub, 1968). Of these sugars mannose is 'O-specific', occurring only in the O side-chains in the bacterium. Similarly the \textit{rfa} mutant SH 3237 of \textit{S. minnesota} contained in its L\textsubscript{1} fraction galactose, glucosamine and galactosamine, which are the constituents of its O side-chains (Luderitz, Jann \& Wheat, 1968), and of which galactosamine is O-specific. None of the four \textit{rfe} mutants contained O-specific sugars in the L\textsubscript{1} fraction. Glucose was found in most of the L\textsubscript{1} fractions; it probably derives from cell-wall glucans. The original \textit{S. minnesota} mutants mR 3 and mR 592 have no hapten no doubt because of their \textit{rfe} mutation—when the \textit{rfe} was replaced by the \textit{rfe+} allele (to obtain SH 3237 from mR 3), the strain gained the ability to synthesize hapten as expected of an \textit{rfa} mutant.

DISCUSSION

Mutations at two separate locations in the \textit{xyl, ilv} region of \textit{Salmonella montevideo} and \textit{S. minnesota} resulting in defects in the synthesis of lipopolysaccharide were demonstrated. One group corresponds to the \textit{rfa} gene cluster described in \textit{S. typhimurium}, which determines the synthesis of the lipopolysaccharide core, including its phosphorylation. The other group, the \textit{rfe} mutants, has not been detected in \textit{S. typhimurium}, and its function is unknown. The \textit{rfe} mutants resemble phenotypically the \textit{rfb} and \textit{rfal} mutants of \textit{S. typhimurium}. All of these are sensitive to FO and several rough-specific phages, and they all synthesize a core lipopolysaccharide with N-acetylglucosamine. The \textit{rfal} mutants contain O-specific hapten and the \textit{rfal} gene is apparently concerned with the translocation of the O side-chain from its lipid carrier to the lipopolysaccharide core (Osborn, 1969). The \textit{rfb} mutants are defective in the synthesis of O-specific sugars or in their assembly into the O side-chains, and therefore have no hapten (Beckmann, Subbaiah \& Stocker, 1964; Nikaido, Nikaido, Subbaiah \& Stocker, 1964; Nikaido, Levinthal, Nikaido \& Nakane, 1967).

The \textit{rfe} mutants of \textit{Salmonella montevideo} and \textit{S. minnesota} synthesize no hapten either (Table 7), and therefore it seems most likely that their mutation interferes with the biosynthesis of O-specific material. The \textit{rfb} cluster is generally known to harbour most of the genes whose products participate in the synthesis of O-specific repeating units (Stocker, Wilkinson \& Mäkelä, 1966), both the genes for the synthesis of the O-specific monosaccharides and the genes for the transferases assembling the repeating units. This was specifically shown to be true of the \textit{rfb} cluster of \textit{S. montevideo}. When the \textit{rfb} region of the \textit{S. montevideo} chromosome was introduced, by conjugation, into the cells of \textit{S. typhimurium}, these started synthesizing a lipopolysaccharide of the \textit{S. montevideo} type (Mäkelä, 1966; Nikaido, Nikaido \& Mäkelä, 1966). It was concluded that all the information necessary for the synthesis of \textit{S. montevideo}-specific lipopolysaccharide, and not shared by \textit{S. typhimurium}, was located in the \textit{rfb} gene cluster. Thus if the \textit{rfe} gene(s), remote from \textit{rfb}, specify a product necessary for the
Salmonella O antigen synthesis

Salmonella O antigen synthesis of O side-chains, this function must be common to S. montevideo and S. typhimurium. What could such a common function be? The only monosaccharide found in the O side-chains of both these species is mannose (Fig. 1). However, the enzymes participating in the synthesis of mannose (as its guanosine-diphosphate nucleotide) are specified by rfb genes, or by a gene pmi (for phosphomannoseisomerase) between trp and gal (Stocker, Wilkinson & Mäkelä, 1966; Nikaido et al. 1967). Furthermore, mannose is not present in the O side-chains of S. minnesota, in which rfe gene(s) were also identified. The antigen carrier lipid (Wright, Dankert & Robbins, 1965) on which the O side-chains are assembled, is very likely to be common to all Salmonella species. The possible role of rfe in antigen carrier lipid synthesis now seems to deserve serious investigation. There are, however, immediate objections to this hypothesis: a similar antigen carrier lipid is involved in the synthesis of the cell-wall peptidoglycan (Higashi, Strominger & Sweeley, 1967). Bacteria with an impaired synthesis of peptidoglycan would not be viable under the normal growth conditions used in the isolation and study of all our R mutants. Therefore we might rather think that the antigen carrier lipid will have to be modified in a certain way to mark it for either peptidoglycan or lipopolysaccharide (or some other) synthesis. This modification could be a slight chemical change or perhaps rather a fixed localization of the lipid in association with the enzymes participating in the relevant synthesis. On the other hand, the rfe gene(s) might have a regulatory function, e.g. for the rfb genes. So far no genetic regulation of the rfb genes has been found, and the rfb-determined enzymes have shown the same levels of activity whatever the growth conditions of the bacteria (Nikaido, 1968).

The work in Helsinki was supported by the Finnish Medical Research Council and by U.S. Public Health Service grant GM-12046. The assistance of Miss Marianne Hovi is gratefully acknowledged. One of us (O.L.) thanks the Deutsche Forschung.

REFERENCES

MÄKELÄ, P. H. (1966). Genetic determination of the O antigens of Salmonella groups B (4, 5, 12) and C (6, 7). *Journal of Bacteriology* 91, 1115.

