Degradation of Xanthine by *Penicillium chrysogenum*

By A. M. ALLAM AND TAHANY A. ELZAINY

Laboratory of Microbial Chemistry,
National Research Centre, Cairo, Egypt

(Accepted for publication 7 February 1969)

SUMMARY

Penicillium chrysogenum utilized the purines hypoxanthine, xanthine, uric acid and adenine as sole nitrogen sources but not the methylated purines caffeine and theobromine. Cell-free extracts of this organism contained the enzymes xanthine dehydrogenase, uricase, allantoinase, allantoicase and urease. Uric acid was degraded to allantoic acid by way of allantoin; allantoin was degraded to glyoxylic acid by way of allantoic acid. Xanthine dehydrogenase, uricase, allantoinase and urease were constitutive whereas allantoicase was inducible by xanthine or allantoin.

INTRODUCTION

Fungi utilize purines as a nitrogen source (DiCarlo, Schultz & McManus, 1951; Franke, Taha & Krieg, 1952; Wolf, 1955; Taha, Krieg & Franke, 1955; Taha & Sharabash, 1956; Sukhenko & Podgainaya, 1958; Kim & Wolf, 1961; Fukumoto, Watanabe & Yano, 1968; LaRue & Spencer, 1968). The utilization of these compounds presumably requires enzymes that catalyse the degradation of the purine skeleton to simpler compounds. Taha et al. (1955) reported xanthine oxidase in extracts of some fungal species. The enzyme uricase, which catalyses the degradation of uric acid to allantoin, has been shown to be present in many fungi (Brunel, 1937; Franke et al. 1952; Roush & Domnas, 1956; Laboureur & Langlois, 1967). The enzyme allantoinase, which catalyses the hydrolysis of allantoin to allantoic acid, was demonstrated in basidiomycetes (Brunel, 1937). *Aspergillus niger* (Brunel, 1931; 1939), *Candida utilis* and *Saccharomyces cerevisiae* (Lee & Roush, 1964). Allantoicase, catalysing the conversion of allantoic acid to glyoxylic acid and urea, was shown in *A. niger* (Brunel, 1939), *C. utilis* and *S. cerevisiae* (Domnas, 1962; Lee & Roush, 1964) and in *Penicillium notatum* and *P. citreo-viride* (Trijbels & Vogels, 1966). These enzymic studies do not give a complete picture of the degradation of purines in one single organism. The present work aims to elucidate the enzymic steps in the degradation of xanthine by extracts of *P. chrysogenum*.

METHODS

Organism. *Penicillium chrysogenum* was obtained from the centre of cultures of the National Research Centre of Egypt.

Media. The organism was cultivated and kept on slants of solid Czapek-Dox medium. This medium contained (% w/v): glucose, 3; K$_2$HPO$_4$, 0.1; MgSO$_4$.7H$_2$O, 0.05; KCl, 0.05; NaNO$_3$, 0.2; agar 2.0. The liquid medium used for growing the
organism was the same with the appropriate purine replacing NaNO₃ on an equivalent nitrogen basis. Purines and related compounds were sterilized by filtration but all other ingredients of the medium were autoclaved.

Culture and harvest of mycelium. Conidia were scraped from mycelium which had been grown on slopes for 7 days at 28° and suspended in cold sterile distilled water. One ml. samples of this suspension were used to inoculate 250 ml. Erlenmeyer flasks each containing 50 ml. sterile medium. The inoculated flasks were incubated at 28° for 3 to 4 days, then the mycelium was harvested by filtration, washed thoroughly with distilled water and finally blotted dry with absorbent paper.

Preparation of cell-free extracts. The blotted-dry mycelium was ground with about twice its weight of washed cold sand and extracted with 0.05 M potassium phosphate buffer (pH 7.4). The slurry was centrifuged at 8,000 rev./min. for 20 min. and the supernatant liquid used as the crude enzyme preparation. During this operation the containers and solutions were kept at 0°.

Preparation of potassium allantoate. This was prepared by the alkaline hydrolysis of allantoin (Young & Conway, 1942).

Enzyme assays. Xanthine dehydrogenase was assayed either by estimating the uric acid formed during the incubation of cell-free extracts with xanthine (Blauch & Koch, 1939), or by the anaerobic reduction of 2,3,5-triphenyltetrazolium chloride by the Thunberg tube technique and estimating the formazan formed (Kun & Abood, 1949). Uricase was assayed by measuring the disappearance of uric acid and the formation of allantoin during the incubation of extracts + uric acid; the allantoin formed was estimated by the method used by Franke et al. (1952). Allantoinase activity was measured by following the formation of allantoic acid when allantoin was incubated with extracts. Allantoic acid was estimated by the same procedure used for allantoin with the omission of alkaline hydrolysis. Allantoicase was assayed by following glyoxylic acid formation when potassium allantoate was incubated with the extracts. Glyoxylic acid was estimated by the procedure used for allantoin with the omission of alkaline and acid hydrolysis. Urease activity was determined by estimating the ammonia formed from urea using Nessler's reagent.

Protein determination. This was done by the method of Sutherland, Cori, Haynes & Olsen (1949).

Identification of products. Allantoin and allantoic acid were recognized by ascending paper chromatography on Whatman No. 1 paper and two different solvent systems: n-butanol + ethanol + water (4 + 1 + 1 by vol.) with Rₚ values of 0.13 and 0, respectively (the yellow spot of sprayed allantoic acid was located on the start line); phenol + 10 % sodium citrate (5:1, w/v), Rₚ values 0.41 and 0.17 (Sukhenko & Podgainaya, 1958). After drying the chromatograms at room temperature they were sprayed with Ehrlich's reagent (Smith, 1960); identifications were checked by co-chromatography with authentic standards. Glyoxylic acid was converted to the 2,4-dinitrophenylhydrazone (Smith & Smith, 1960), chromatographed on Whatman No. 1 paper with two different ascending solvent systems: n-butanol + ethanol + water (70 + 10 + 20 by vol.) where the Rₚ was 0.35 and n-butanol + ethanol + 0.5 N-NH₂OH (70 + 10 + 20 by vol.), Rₚ = 0.39 (Smith & Smith, 1960). The hydrazone of the authentic acid was prepared and run as control.
RESULTS

Growth of *Penicillium chrysogenum* on different purines and other nitrogenous compounds. Table 1 demonstrates that allantoin yielded the best growth followed by hypoxanthine and adenine. Xanthine and uric acid supported growth which was more or less equal to that obtained on sodium nitrate. The methylated purines caffeine and theobromine were not utilized. Kim & Wolf (1961) found that methylated purines were not utilized by *P. chrysogenum* Q-176. The feeble growth obtained when ammonium chloride was sole nitrogen source might be attributed to the decrease of pH value of the culture medium due to utilization of the ammonium ions.

Table 1. Growth of *Penicillium chrysogenum* on different purines and other nitrogenous compounds

<table>
<thead>
<tr>
<th>Nitrogen source</th>
<th>Mean mycelium dry weight (mg./flask)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine</td>
<td>338.9</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>345.0</td>
</tr>
<tr>
<td>Xanthine</td>
<td>249.9</td>
</tr>
<tr>
<td>Uric acid</td>
<td>274.5</td>
</tr>
<tr>
<td>Caffeine</td>
<td>0</td>
</tr>
<tr>
<td>Theobromine</td>
<td>0</td>
</tr>
<tr>
<td>Allantoin</td>
<td>392.3</td>
</tr>
<tr>
<td>Urea</td>
<td>220.0</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>276.7</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>187.7</td>
</tr>
</tbody>
</table>

Table 2. Xanthine dehydrogenase in extracts of *Penicillium chrysogenum* mycelium

Duplicate Thunberg tubes under vacuum contained xanthine (where indicated), 45 to 50 μmoles; 2,3,5-triphenyltetrazolium chloride, 1.0 μmole; sodium pyrophosphate buffer, pH 8.6, 140 μmoles; extract, equiv. 3 to 4.4 mg. protein; total volume, 3.1 ml. (Expt. 1), 4.0 ml. (Expt. 2); temp. 37°C; reaction time, 120 min.

<table>
<thead>
<tr>
<th>Expt. no.</th>
<th>Additions</th>
<th>Xanthine formed</th>
<th>μg. Formazan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Xanthine-grown</td>
<td>145.3 ± 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mycelial extract</td>
<td>53.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nitrate-grown</td>
<td>122.1 ± 3.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mycelial extract</td>
<td>72.6 ± 6.6</td>
<td></td>
</tr>
</tbody>
</table>

Xanthine dehydrogenase. Table 2 shows xanthine dehydrogenase activity in extracts of *Penicillium chrysogenum* grown with xanthine or sodium nitrate. In the absence of xanthine the formazan formed ranged from 36 to 59% of that produced when xanthine was present. Xanthine dehydrogenase was constitutive since it was present when the organism was grown with nitrate as sole nitrogen source. The data in Table 2 indicate that enzymic dehydrogenation of xanthine by extracts of the experimental organism is a slow process. This could be due to the partial loss of a certain requirement of the enzyme in the preparation of the extract. This point was tested by observing the formation of uric acid from xanthine: in comparable conditions to
those in Table 2 (but only 20 μmoles xanthine), only 0.25 μmole of uric acid was detected after 1.5 hr and 0.45 μmole after 3 hr. No significant uric acid was detected at the beginning of the reaction.

Uricase and combined uricase-allantoinase activities. Figure 1 shows the disappearance of uric acid catalysed by extracts of mycelia grown with xanthine or with nitrate; this shows that 7.9 μmoles of uric acid had almost disappeared in 150 min. with xanthine-grown mycelium. Analysis of this reaction mixture showed 7.12 μmoles

![Fig. 1](image1)

Fig. 1. Disappearance of uric acid catalysed by extracts of *Penicillium chrysogenum* grown with xanthine (○) or nitrate (●). Reaction mixture contained uric acid, 7.9 to 12.0 μmoles; sodium pyrophosphate buffer, pH 8.6, 60 μmoles; extract, 9 to 10 mg. protein; total volume, 4 ml.; temp. 37°.

![Fig. 2](image2)

Fig. 2. Allantoinase in extracts of *Penicillium chrysogenum* grown with xanthine (○), allantoin (△) or nitrate (●). Reaction mixture contained allantoin, 2 to 2.5 μmoles/ml.; extract, equiv. 0.85 mg. protein/ml. (○), 1.1 mg./ml. (△), 2.25 mg./ml. (●); volume 4 to 8 ml.; temp. 37°.

allantoin, 1.05 μmoles allantoate, no uric acid or glyoxylate. The formation of allantoic acid indicated the presence of allantoinase which hydrolysed part of the allantoin formed to allantoic acid. Hence allantoin is an intermediate in the degradation of uric acid to allantoic acid. Glyoxylic acid was not detected; it seems that this acid was formed only when higher concentrations of allantoic acid were present. Figure 1 indicates that uricase is a constitutive enzyme in *Penicillium chrysogenum* since extracts prepared from mycelia grown on nitrate were active. Franke et al. (1952) showed that uricase is a constitutive enzyme in *Aspergillus niger* and *Alternaria porri*. On the other hand, Roush & Domnas (1956) reported that uricase is an inducible enzyme in *Torulopsis utilis* and Fukumoto et al. (1968) demonstrated that uricase was induced by uric acid in a Streptomyces species.

Allantoinase. Figure 2 shows the hydrolysis of allantoin to allantoic acid by extracts of mycelia grown with xanthine, with allantoin or with nitrate. The different rates were probably due to variations of the amounts of extract protein present in the
reaction mixture. These results indicate that the enzyme is constitutive in *Penicillium chrysogenum*. Lee & Roush (1964) reported that allantoinase was induced by uric acid, allantoin or allantoic acid in *Candida utilis* whereas this enzyme was constitutive in *Saccharomyces cerevisiae*.

Allantoicase. Figure 3 demonstrates the presence of this enzyme in extracts of xanthine-grown and allantoin-grown *Penicillium chrysogenum*. Urea, which is the other expected product of this reaction, was not determined because of a very active urease (see below).

![Graph 3](image3)

Fig. 3. Allantoicase in extracts of *Penicillium chrysogenum* grown with xanthine (○) or allantoin (●). Reaction mixture contained potassium allantoate 32 μmoles; potassium phosphate buffer, pH 7.4, 100 μmoles; extract, equiv. 7.2 to 9.0 mg. protein; total volume, 3 ml.; temp. 37°.

![Graph 4](image4)

Fig. 4. Combined allantoinase and allantoicase activities in extracts of *Penicillium chrysogenum* grown with xanthine. Reaction mixture contained allantoin, 200 μmoles; potassium phosphate buffer, pH 7.0, 100 μmoles; extract, equiv. 7.2 mg. protein; total volume, 5 ml.; temp. 37°. ●, Allantoate formed; ○, glyoxylate formed.

Trijbels & Vogels (1966) demonstrated allantoicase activity in extracts of *Penicillium notatum* and *P. citreo-viride* grown in an allantoin + yeast extract medium. The two penicillia were reported to be urease negative. These authors reported that ureidoglycollic acid is an intermediate in the degradation of allantoic acid to glyoxylic acid and urea. We tried to detect this intermediate in the reaction by their procedure making use of a neutral hydrolysis of ureidoglycollic acid to glyoxylic acid but unreproducible results were obtained.

Growing the experimental organism on nitrate yielded extracts lacking allantoicase activity. This shows that allantoicase is an inducible enzyme. Lee & Roush (1964) showed that, while allantoicase was induced by uric acid, allantoin or allantoic acid in *Candida utilis*, the same enzyme was constitutive in *Saccharomyces cerevisiae*.

Combined allantoinase and allantoicase activities. In this experiment allantoin was incubated with extracts of mycelia grown with xanthine as sole nitrogen source and
both allantoic and glyoxylic acids were determined. As shown in Fig. 4, glyoxylic acid started to appear in significant amounts after the formation of substrate amounts of allantoic acid. This experiment shows that allantoic acid is an intermediate in the degradation of allantoin to glyoxylic acid.

Urease. Figure 5 shows urease activity in extracts of this organism grown with xanthine. The enzyme is very active since about 90 μmoles of ammonia were formed in 12 min. Comparable urease activity was found in extracts of mycelia grown with allantoin or nitrate. Hence the enzyme is constitutive. The enzyme tolerated high concentrations of urea; in one experiment 300 μmoles of urea were added initially and fairly good enzymic activity was obtained.

![Graph showing urease activity](image)

DISCUSSION

Penicillium chrysogenum 65 grown on Czapek-Dox medium with xanthine as sole nitrogen source degraded xanthine by a multiple enzyme system as follows:

\[
\text{Xanthine} \xrightarrow{\text{xanthine dehydrogenase}} \text{uric acid} \\
\text{Uric acid} \xrightarrow{\text{uricase}} \text{allantoin} \\
\text{Allantoin} \xrightarrow{\text{allantoinase}} \text{allantoic acid} \\
\text{Allantoic acid} \xrightarrow{\text{allantoicase}} \text{glyoxylic acid + urea} \\
\text{Urea} \xrightarrow{\text{urease}} \text{ammonia + CO}_2
\]
Xanthine degradation

From uric acid onwards, this degradation sequence is similar to that demonstrated in aerobic bacteria (Franke & Hahn, 1955; Campbell, 1955). The fate of glyoxyllic acid, which is the other product of this degradation, needs further investigation; it could be further oxidized to oxalic acid by a system similar to that reported by Franke & Hahn (1955) in Pseudomonas aeruginosa or to formic acid and CO₂ as demonstrated by Campbell (1955), with extracts of an unidentified Pseudomonas sp. However, the possibility exists that this two-carbon compound could also be utilized in the synthesis of cellular compounds, e.g. the formation of glycine by the reductive amination of glyoxyllic acid. It might also be utilized through the glyoxylate cycle if it is operating in this organism.

Xanthine dehydrogenase, uricase and allantoinase were constitutive enzymes but allantoicase seems to be inducible, being induced by xanthine or allantoin. The constitutive enzymes are presumably important to the organism; their combined activities may play a central role in the control of the concentration of free purines in the cell pool. On the other hand, when the organism is grown on the purine as its sole nitrogen source, all the enzymes, including allantoicase, are required to catalyse the complete degradation of the purine to glyoxylic acid and ammonia.

Sincere appreciation is expressed for the facilities offered by the National Research Centre, Cairo, Egypt, which enabled the authors to accomplish this work.

REFERENCES

