Introduction

Micro-organisms are known to produce sophisticated nanomachines, like bacterial flagellar nanomotors, that are made up of several proteins (Chalmeau et al., 2009). Scientists are using peptides and proteins as building blocks for the construction of nanodevices including sensors and drug delivery vehicles (Petrov & Audette, 2012; Rosenman et al., 2011; Scanlon & Aggeli, 2008). Several peptide nanotubes have been built and can be used as a casting module for synthesis of metal nanowires (Reches & Gazit, 2003; Scanlon & Aggeli, 2008).

One desired property of peptide/protein nanotubes is electrical conductivity. Such electrically conductive nanotubes or nanowires are an essential requirement in the field of nanoelectronics. Most proteins made of natural amino acids are insulating (Scanlon & Aggeli, 2008) and thus efforts were made to build electrically conductive protein nanotubes that in turn can act as nanowires (Creasey et al., 2015; Scanlon & Aggeli, 2008). However, Reguera et al. (2005) discovered extracellular electrically conductive protein nanofilaments in Geobacter sulfurreducens and termed them microbial nanowires (MNWs). This discovery opened many new avenues of research in nanotechnology and microbiology. This review deals with MNWs produced by diverse micro-organisms and discusses several important aspects of MNWs including their types, role, mechanism of electron transfer and potential applications.

Discovery of MNWs in different microbes

As a part of anaerobic respiration, some bacteria are capable of transferring electrons to extracellular electron acceptors in a process termed extracellular respiration (Lovley, 2008). Extracellular respiration is commonly found in metal-reducing bacteria like G. sulfurreducens and Shewanella oneidensis. There are three known strategies by which extracellular respiration is carried out by bacteria; first, bacteria transfer electrons directly to metals through proteins present on the cell surface (Fig. 1a); second, metal chelators (citrate and nitritotriacetic acid) deliver metals to intracellular metal oxidoreductases (Fig. 1b) or finally small molecules (humic substances) act as a shuttle to transfer electrons between the cell and the substrate (Fig. 1b) (Gralnick & Newman, 2007; Richardson, 2000). An addition to this list is extracellular MNWs which act as a conduit of electrons between cell and distant substrates (Fig. 1c) (Reguera et al., 2005). The conductivity of proteins has been studied earlier (Xu et al., 2005) but their conductive behaviour and direct role in long-range (up to micrometre distances) extracellular electron transfer had not been reported. Similar studies done on extracellular pili-like structures (PLSs) of S. oneidensis and Pseudomonas aeruginosa indicated PLSs to be non-conductive (Reguera et al., 2005).
MNWs not only were observed in Fe- and SO-lus, and thus the PLSs probed by Reguera (1976) while, lastly, there may be a tendency of some micro-bacterium Desulfovibrio desulfuricans S. oneidensis the failure to detect MNWs in the first time in microbial biofilms which causes bisphosphonate-related osteonecrosis of the jaw (BRONJ) (Wanger et al., 2013). These MNWs were found to interconnect different cells and appeared as PLSs. This biofilm was found to be colonized by around 15 discernible bacterial morphotypes, mostly anaerobic and facultatively anaerobic, constituting genera of Staphylococcus, Bacillus, Fusobacterium, Actinomyces, Streptococcus, Selenomonas and Treponema but the specific MNW-producing micro-organisms among these could not be identified.

Apart from metal-reducing and pathogenic micro-organisms, MNWs have been observed in photosynthetic bacteria. Initial reports showed that Synechocystis, a unicellular cyanobacterium, can produce MNWs in electron acceptor (CO$_3^-$) limiting and high light conditions (Gorby et al., 2006). Taking clues from this study, our group explored the possibility of MNW formations in other cyanobacteria. Some cyanobacteria become electrogenic (transfer electrons extracellularly) under high light intensity. Synechocystis as well as Nostoc sp. have been shown to exhibit such type of electrogenic behaviour (Pisciotta et al., 2010). Further, Microcystis aeruginosa also encounter CO$_3^-$ limitation and get exposed to high light intensity when they form blooms. Thus, Mi. aeruginosa and Nostoc punctiforme might be producing MNWs, which has been confirmed by conductive atomic force microscopy (AFM) analysis (Sure et al., 2015, 2016b). The discovery of MNWs in such diverse micro-organisms ranging from anaerobic, metal-reducing bacteria to photosynthetic, aerobic cyanobacteria strengthens the viewpoint that they may be pervasive in the environment. The MNW-producing micro-organisms discovered to date are shown in Fig. 2 and relevant description is given in Table 1.

Different modes of AFM including conductive AFM, scanning tunneling microscopy (STM), electrostatic force microscopy and specially designed nanofabricated electrodes are established techniques for identification and electrical characterization of MNWs produced by different micro-organisms and use of these multiple techniques has been advocated to unambiguously confirm the presence of MNWs in micro-organisms (Castro et al., 2014; Gorby et al., 2006; Li & Li, 2014; Malvankar & Lovley, 2014; Reguera et al., 2005; Sure et al., 2015; Venkidusamy et al., 2015; Wanger et al., 2013).

Fig. 1. Strategies by which bacteria can transfer electrons extracellularly to electron acceptors [metals or anode of microbial fuel cell (MFC)]. Bacteria can transfer electrons extracellularly by direct attachment to metal or anode surface of microbial fuel cell (a) or employ metal chelators or small molecules as a mediator for electron transfer (b) or can use MNWs (red lines) for same (c).

MNWs have also been observed in the iron (Fe)-reducing bacterium Rhodopseudomonas palustris strain RP2 (Venkidusamy et al., 2015) and in the sulfate (SO$_4^{2-}$)-reducing bacterium Desulfovibrio desulfuricans (Eaktasang et al., 2016). MNWs not only were observed in Fe- and SO$_4^{2-}$-reducing bacteria as discussed above but also were identified in the Fe-oxidizing bacterium Acidithiobacillus ferrooxidans (Li & Li, 2014; Valdés et al., 2008). With this discovery, it was hypothesized that MNWs may connect cells to extracellular electron donors and acceptors. Considering the role of MNWs in electron transfer, it was hypothesized that such conductive structures might be present in pathogenic microbial biofilms residing in anaerobic zones of oral cavities (Rabaey, 2010). MNWs were observed for the first time in microbial biofilms which causes bisphosphonate-related osteonecrosis of the jaw (BRONJ) (Wanger et al., 2013). These MNWs were found to interconnect different cells and appeared as PLSs. This biofilm was found to be colonized by around 15 discernible bacterial morphotypes, mostly anaerobic and facultatively anaerobic, constituting genera of Staphylococcus, Bacillus, Fusobacterium, Actinomyces, Streptococcus, Selenomonas and Treponema but the specific MNW-producing micro-organisms among these could not be identified.

Apart from metal-reducing and pathogenic micro-organisms, MNWs have been observed in photosynthetic bacteria. Initial reports showed that Synechocystis, a unicellular cyanobacterium, can produce MNWs in electron acceptor (CO$_3^-$) limiting and high light conditions (Gorby et al., 2006). Taking clues from this study, our group explored the possibility of MNW formations in other cyanobacteria. Some cyanobacteria become electrogenic (transfer electrons extracellularly) under high light intensity. Synechocystis as well as Nostoc sp. have been shown to exhibit such type of electrogenic behaviour (Pisciotta et al., 2010). Further, Microcystis aeruginosa also encounter CO$_3^-$ limitation and get exposed to high light intensity when they form blooms. Thus, Mi. aeruginosa and Nostoc punctiforme might be producing MNWs, which has been confirmed by conductive atomic force microscopy (AFM) analysis (Sure et al., 2015, 2016b). The discovery of MNWs in such diverse micro-organisms ranging from anaerobic, metal-reducing bacteria to photosynthetic, aerobic cyanobacteria strengthens the viewpoint that they may be pervasive in the environment. The MNW-producing micro-organisms discovered to date are shown in Fig. 2 and relevant description is given in Table 1.

Different modes of AFM including conductive AFM, scanning tunneling microscopy (STM), electrostatic force microscopy and specially designed nanofabricated electrodes are established techniques for identification and electrical characterization of MNWs produced by different micro-organisms and use of these multiple techniques has been advocated to unambiguously confirm the presence of MNWs in micro-organisms (Castro et al., 2014; Gorby et al., 2006; Li & Li, 2014; Malvankar & Lovley, 2014; Reguera et al., 2005; Sure et al., 2015; Venkidusamy et al., 2015; Wanger et al., 2013).

Types of MNWs

Diverse micro-organisms have been observed to produce MNWs (Fig. 2) and their composition and structure have
been found to be different from each other. According to available data, MNWs can be categorized into three types (Fig. 3).

Pili

MNWs in *G. sulfurreducens*, *Aci. ferrooxidans* and *Synechocystis* sp. have been found to be type IV pili (TFP) which are the most widespread type of pili present among bacteria (Li & Li, 2014; Pelicic, 2008; Reguera et al., 2005; Sure et al., 2015). Apart from common functions like adhesion and biofilm formation exhibited by most other bacterial pili, TFP possess unique functional characteristics which include twitching motility, uptake of DNA in transformation and phage attachment (Pelicic, 2008; Proft & Baker, 2009). In addition to these functions, their electron carrying capacity further increases their significance as multifunctional extracellular structures. MNWs in *G. sulfurreducens* are polymers of PilA subunit whereas in *Synechocystis* they are composed of PilA1 (Fig. 3a, b) (Reguera et al., 2005; Sure et al., 2015). Though MNWs from both micro-organisms are TFP, the molecular mass of their subunits (~10 kDa for *G. sulfurreducens*, ~22 kDa for *Synechocystis*) and dimensions (width/length: 3–5 nm/
10–20 μm and 4.5–7 nm/2–10 μm for *G. sulfurreducens* and *Synechocystis*, respectively) differ from each other (Lovley et al., 2009; Lovley, 2011; Sure et al., 2015). In *G. sulfurreducens*, cytochromes are found to be associated with MNWs and its role in electron transfer through MNWs is disputed (Malvankar et al., 2011; Strycharz-Glaven et al., 2011; Strycharz-Glaven & Tender, 2012). It needs to be explored whether *Synechocystis* MNWs are embedded with cytochromes and the potential role of the latter in electron transfer. MNWs in *Aci. ferrooxidans* may be made up of PilV and PilW proteins (Li & Li, 2014). The MNWs from different micro-organisms will not always look the same and vary in width and length due to two reasons: (1) TFP have bundle forming ability as a result of which their observed width may vary; (2) length may depend on age of culture and sample preparation methods which may lead to breakage of long, delicate pili.

Table 1. List of MNW-producing micro-organisms

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Micro-organisms</th>
<th>Component protein of MNWs</th>
<th>Physiological role</th>
<th>Conductivity measurement (along width/length)</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G. sulfurreducens</td>
<td>Pilin subunit PilA</td>
<td>Extracellular</td>
<td>Along width as well as length</td>
<td>Metal reducing, anaerobic</td>
<td>Malvankar et al. (2011), Malvankar & Lovley (2014), Reguera et al. (2005)</td>
</tr>
<tr>
<td>2</td>
<td>S. oneidensis MR-1</td>
<td>Periplasmic and outer membrane extensions embedded with cytochromes</td>
<td>Not known yet</td>
<td>Along width as well as length</td>
<td>Metal reducing, facultative anaerobic</td>
<td>El-Naggar et al. (2010), Gorby et al. (2006), Pirbadian et al. (2014)</td>
</tr>
<tr>
<td>3</td>
<td>Synechocystis sp. PCC 6803</td>
<td>Pilin subunit PilA1</td>
<td>Not known yet</td>
<td>Along width as well as length</td>
<td>Photosynthetic, aerobic</td>
<td>Gorby et al. (2006), Sure et al. (2015)</td>
</tr>
<tr>
<td>4</td>
<td>Pe. thermopropionicum</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width as well as length</td>
<td>Anaerobic, thermophilic</td>
<td>Gorby et al. (2006)</td>
</tr>
<tr>
<td>5</td>
<td>Multispecies biofilms observed in BRONJ</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width as well as length</td>
<td>Unknown</td>
<td>Wanger et al. (2013)</td>
</tr>
<tr>
<td>6</td>
<td>Aci. ferrooxidans</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width</td>
<td>Chemolithoautotrophic, acidophilic</td>
<td>Li & Li (2014)</td>
</tr>
<tr>
<td>7</td>
<td>Aer. hydrophila</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width</td>
<td>Facultative anaerobic, heterotroph</td>
<td>Castro et al. (2014)</td>
</tr>
<tr>
<td>8</td>
<td>Mi. aeruginosa</td>
<td>Unknown protein product (GenBank: CAO90693.1)</td>
<td>Not known yet</td>
<td>Along width</td>
<td>Photosynthetic, aerobic, forms toxic blooms</td>
<td>Sure et al. (2015)</td>
</tr>
<tr>
<td>9</td>
<td>No. punctiforme</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width</td>
<td>Photosynthetic, aerobic, filamentous</td>
<td>Sure et al. (2016b)</td>
</tr>
<tr>
<td>10</td>
<td>R. palustris strain RP2</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width as well as length</td>
<td>Anoxic photosynthetic, iron-respiring</td>
<td>Venkidusamy et al. (2015)</td>
</tr>
<tr>
<td>11</td>
<td>D. desulfuricans</td>
<td>Not known yet</td>
<td>Not known yet</td>
<td>Along width</td>
<td>Anaerobic, sulfate reducing</td>
<td>Eaktasang et al. (2016)</td>
</tr>
</tbody>
</table>

Extended periplasmic and outer membranes

S. oneidensis possess three different types of extracellular proteinaceous appendages: (1) Msh pili, (2) TFP and (3) flagella (Bouhenni et al., 2010), but it was not clear which one of these acts as MNWs. Msh pili have been shown to be necessary for extracellular electron transfer (Fitzgerald et al., 2012), while TFP and flagella have been shown to be dispensable (Bouhenni et al., 2010). However, MNWs in *S. oneidensis* are made up of outer membrane vesicle chains which subsequently elongate and become MNWs (Fig. 3c) (Pirbadian et al., 2014). Unlike pili and flagella, which are mostly homopolymers of a single subunit type, MNWs in *S. oneidensis* are a concoction of different cytochromes and periplasmic as well as outer membrane components. The formation of outer membrane vesicle chains and tubes has been reported in *Myxococcus xanthus* (Remis et al., 2014; Wei et al., 2014). Also, the ability of peptide nanotubes to convert into vesicles and vice versa is well known (Scanlon et al., 2014).
& Aggeli, 2008). Thus, it would not be surprising to know that MNWs in *S. oneidensis* are formed in a similar manner.

As discussed earlier, *S. oneidensis* is known to produce pili/flagella and it is puzzling why it employs a completely different strategy to produce MNWs. The role of MNWs in *S. oneidensis* physiology and metabolism is still largely unknown and deciphering it may help us understand the reason behind its completely different make-up from other MNWs. However, so far, it was not ruled out that other extracellular structures (pili and flagella) in *S. oneidensis* cannot conduct electrons. Also in their study, electrical conductivity measurements of extended membrane extensions were not done (Pirbadian *et al.*, 2014). All extracellular structures produced by *S. oneidensis* should be isolated and studied independently for their conductive behaviour. Only then it would be appropriate to claim that MNWs produced by *S. oneidensis* are outer and periplasmic membrane extensions only and not pili or flagella.

Unknown type — MNWs whose identity needs to be confirmed

Pili-like conductive structures have been identified in *Aer. hydrophila, R. palustris, D. desulfuricans* and *No. punctiforme* but their identity has not been confirmed so far (Castro *et al.*, 2014; Eaktasang *et al.*, 2016; Sure *et al.*, 2016b; Venkidusamy *et al.*, 2015). Two distinct types of MNWs (first, short/thin MNWs of size 6–7.5 nm in diameter and 0.5–2 µm in length and second, long/thick MNWs...
of size ~20–40 nm in diameter and >10 µm long) were observed in *No. punctiforme* (Sure et al., 2016b). The identity of MNWs from multispecies biofilms observed in BRONJ could also not be confirmed (Wanger et al., 2013). MNWs in *Mi. aeruginosa* have been found to be composed of a protein similar to an unnamed protein (GenBank: CAO90693.1) whose amino acid sequence does not match with any known protein (Sure et al., 2015). Unlike others, MNWs in *Mi. aeruginosa* are wider and may be made of two subfilaments or contain central channel inside it (Fig. 3d–f) (Sure et al., 2015). More elaborate studies are needed to further confirm the identities of above mentioned MNWs.

Pe. thermopropionicum produces electrically conductive flagellum-like appendages (10–20 nm in diameter) in monoculture as well as in coculture with *Me. thermoautotrophicus* (Gorby et al., 2006). These flagellum-like appendages may be indeed flagella as subsequent study by other group has shown that *Pe. thermopropionicum* in cocultures with *Me. thermoautotrophicus* produce flagella which are involved in symbiosis (Shimoyama et al., 2009). *G. sulfurreducens* is also known to produce flagella which were found to be non-conductive (Malvankar & Lovley, 2014).

Physiological role of MNWs

As discussed in the previous sections, each type of MNW has unique structure and composition and they may have evolved as per the physiological requirements of the microorganisms. Some of the observed and hypothesized functions of MNWs are discussed below.

MNWs can act as a conduit between cell and extracellular electron acceptor/donors thereby mediating to and fro electron transfer. For instance, in metal-reducing microorganisms like *G. sulfurreducens*, it was observed that MNWs can help bacteria to transfer electrons to electron acceptors (metals) available at a distance without the need of direct cell attachment or dissolved electron shuttles (Reguera et al., 2005). Also in metal-oxidizing microorganisms like *Ac. ferrooxidans*, MNWs may have the ability to transfer electrons to the cell surface, thus greatly helping cells to access electron donors at a distance (Li & Li, 2014).

In anaerobic environments, photosynthetic microorganisms can use arsenic (As) as electron donor (Kulp et al., 2008) and here MNWs can play an important role to bridge the gap between the cells and any available electron donor like As. Our preliminary studies have shown that *Synechocystis* MNWs can bind and immobilize As and thus may act as a conduit of electrons between cells and As (Sure et al., 2016a). Due to their ability to interact with metals, MNWs can act as a protective cellular mechanism against toxic metals (Fig. 4) (Cologgi et al., 2011).

Apart from extracellular electron acceptor/donor, MNWs can also act as conduit of electrons between two different cells. For instance, occurrence of interspecies electron transfer in *Geobacter metallireducens* and *G. sulfurreducens* was observed in coculture (Summers et al., 2010). Such interspecies electron transfer was also investigated in methanogenic wastewater aggregates where it was hypothesized that micro-organisms can directly transfer electrons to each other, rather than use hydrogen and formate as intermediate electron carriers (Morita et al., 2011). It is hypothesized

Fig. 4. Potential role of TFP in cell–metal interaction. Schematic representation of how TFP/MNWs can reduce interaction between cell membrane and toxic metals and can act as a protective barrier against latter.
that MNWs may be involved in such type of interspecies electron transfer. Apart from interspecies electron transfer, MNWs have also been implicated in electron transfer between bacteria and archaea (Wegener et al., 2015). Further, cyanobacteria are an important constituent of the microbial mat and it is hypothesized that cyanobacterial MNWs can transfer electrons to other micro-organisms present in the microbial mat (Gorby et al., 2006; Lea-Smith et al., 2015). Such MNW-mediated electron transfers between two micro-organisms can also be part of cell communication/signalling (Reguera, 2011). For instance, it has been observed that MNWs of G. sulfurreducens lead to the formation of electronic networks which interconnect individual cells (Reguera, 2011). MNWs in G. sulfurreducens have been found to be conductive even at low voltage which is in accordance with the electronic communication occurring between cells (Reguera et al., 2005; Reguera, 2011). Furthermore, a recent study has shown that MNW production in G. sulfurreducens is necessary for the formation of optimum electroactive and thick (more than 10 μm) biofilms (Steidl et al., 2016).

Apart from these general roles, MNWs might be involved in specific functions. For example, in carbon limiting conditions, the component of photosynthetic apparatus plastoquinone gets over reduced due to unavailability of carbon to sink electrons. It is hypothesized that MNWs may help cyanobacteria to release these extra electrons present on plastoquinone so as to restrict cell damage (Gorby et al., 2006; Lea-Smith et al., 2015; Pisciotta et al., 2010). MNWs produced in Mi. aeruginosa might be important for bloom formation while those of No. punctiforme may be involved in plant symbiosis (Duggan et al., 2007; Sure et al., 2015).

Mechanism of electron transfer through MNWs

With the discovery of MNWs, efforts to understand the mechanism of electron flow were commenced. The mechanism of electron transfer in MNWs has been extensively studied in G. sulfurreducens and S. oneidensis and two major mechanisms of conductivity have been proposed for MNWs: (1) metallic-like conductivity model and (2) electron hopping model. For G. sulfurreducens MNWs, both models have been advocated by different groups of scientists while for S. oneidensis MNWs, electron transfer is believed to occur by the hopping mechanism. Both major proposed mechanisms of electron transfer through MNWs are discussed here.

Metallic-like conductivity model

Elaborate experiments done in G. sulfurreducens showed that its MNWs have intrinsic metallic-like electrical conductivity which is comparable to carbon nanotubes and some organic conductors (Malvankar et al., 2011, 2015; Malvankar & Lovley, 2012, 2014). This observation was distinct from an electron hopping mechanism observed in biological systems like photosynthetic reaction centres (Feliciano, 2012). Some of the important properties which support the metallic-like conductivity model for G. sulfurreducens MNWs and biofilms are their temperature- and pH-dependent electrical behaviours (Malvankar et al., 2011). This observation was also supported by structural studies where lower pH was shown to induce conformational changes in aromatic amino acids which thereby causes higher conductivity in the Geobacter pili (Malvankar et al., 2015).

In synthetic organic metals, electron transfer is attributed to overlapping π–π orbitals of aromatic rings present in it. Proteins also contain several aromatic amino acids whose aromatic constituents can play a role similar to that of organic metals in electron transfer. To confirm the role of these aromatic amino acids in electron transfer, a Geobacter strain, Aro-5, was constructed (Vargas et al., 2013). In Geobacter Aro-5, five aromatic amino acids of PilA, the pili subunit, were replaced with alanine and it was observed that the resultant modified pili showed considerable diminished electrical conductivity and ability to reduce Fe (III) compared to the pili of the control strain (Vargas et al., 2013). Though this study confirmed that aromatic amino acids play an important role in conductivity of G. sulfurreducens pili and its biofilm, it is still unclear how modified pili are able to show residual electrical conductivity. Further, the removal of aromatic amino acids may be altering the 3D structure of pili and thereby the positioning of cytochromes on pili, which can ultimately decrease pili conductivity (Boesen & Nielsen, 2013). This is important considering the fact that tilting of molecules and interplanar distances haves the potential to affect charge transport. The pilus filament model by Yan et al. (2015) based on Neisseria gonorhoeae concludes that aromatics are too far apart to be involved in electron transport. However, experimental data generated using techniques like synchrotron X-ray microdiffraction and rocking-curve X-ray diffraction have refuted this model and strongly supported the role of aromatic amino acids in long-distance electron transfer and reinforced the metallic-like conductivity mechanism in Geobacter pili (Malvankar et al., 2015). Along with experimental data, modelling studies also supported the metallic conductivity model where lowest energy models of Geobacter pili were observed to have no central channel and a closely packed core chain of aromatic residues facilitated electron transport along the length of the pilus and confirmed the potentially electrically conductive geometry to it (Xiao et al., 2016).

The importance of intrinsic pilus structures of G. sulfurreducens in electron transfer was further studied where the pilA gene of G. sulfurreducens was replaced with the pilA gene from Ps. aeruginosa (Liu et al., 2014). The resultant strain was able to produce and assemble Ps. aeruginosa PilA subunits into pili and interestingly these hybrid pili had the same pattern of cytochromes as that of control cells. However, the conductivity of these hybrid pili was found to be 14 times less than normal pili with significantly diminished ability to reduce iron and current generation. From these
observations, authors suggested that the intrinsic structures of Geobacter pili and not associated cytochromes are important for electron transfer through it. However, as the pili of Ps. aeruginosa have been found non-conductive in the earlier study (Reguera et al., 2005), the hybrid pili here should also show non-conductive behaviour if the conductivity is 100% related to intrinsic structure of pili. Since the pili show diminished conductivity, the basis needs to be worked out unambiguously to reach any conclusion.

The cytochromes located on Geobacter pili were hypothesized to be terminal reductases which transfer electrons from pili to electron acceptors like Fe and not the one playing a role in electron transport (Malvankar & Lovley, 2014). Malvankar et al. (2012) stressed that electron hopping does not meet the necessary biochemical requirement for electron transfer through pili. They reported that Omcs cytochromes assumed to be involved in electron transfer along the length of pili are too far from each other to carry out electron transfer as per the electron hopping model (Malvankar & Lovley, 2012). They also reported that denaturing cytochromes in G. sulfurreducens pili networks and biofilms do not affect the electrical conductivity, thus ruling out any role of cytochromes in electron transfer through pili and biofilms (Malvankar et al., 2011; Malvankar & Lovley, 2012). Further, STM analysis of G. sulfurreducens MNWs supported these findings where electron transfer is attributed to the intrinsic pili structures and not to the cytochromes (Veazey et al., 2011).

From all of the above observed results (Leang et al., 2010; Malvankar et al., 2011; Malvankar & Lovley, 2012), scientists refuted the electron hopping model for electron transfer in G. sulfurreducens MNWs and proposed the metallic-like conductivity model for same (Malvankar et al., 2011; Malvankar & Lovley, 2012).

Electron hopping model

One view is emerging that electron transfer occurs by multistep hopping in Geobacter and Shewanella MNWs and not by metallic conduction as proposed earlier. In Geobacter MNWs, aromatic amino acids are supposed to be involved in such electron transfer, whereas for Shewanella MNWs, cytochromes are believed to play this role.

As discussed in the previous section, it has been proved unambiguously that aromatic amino acids are indispensable for electron transfer through Geobacter MNWs. However, it is debatable whether these aromatic amino acids transfer electrons by metallic conduction or by multistep hopping. Multiple modelling studies strongly support the hypothesis that electron transfer through Geobacter MNWs occurs by multistep hopping among aromatic amino acids (Feliciano et al., 2015; Lebedev et al., 2015; Yan et al., 2015). This hypothesis was further strengthened by a recent report where experimental evidence has been provided to support multistep hopping in Geobacter MNWs where cryogenic STM of Geobacter pili showed thermal activation of the differential transversal conductance at low voltages which is in accordance with the electron hopping mechanism (Lampa-Pastirk et al., 2016). It has also been shown that metal- or redox organic cofactor-free Geobacter pili show carrier mobility of 3.2×10^{-2} cm2 Vs$^{-1}$ which is too low for metallic conductivity regime where carrier mobilities of more than 1 cm2 Vs$^{-1}$ are required (Lampa-Pastirk et al., 2016).

Quantitative measurement of electron transport across S. oneidensis MNWs showed that a complex electronic structure formed by its molecular constituents mediates electron transport in it (El-Naggar et al., 2008). It has been proved that S. oneidensis MR-1 requires cytochromes, MtrC and OmcA for production of MNWs (El-Naggar et al., 2010; Gorby et al., 2006). Both of these cytochromes are located on the outer membrane of the cell. Scientists hypothesized that long-range electron transfer through S. oneidensis MNWs takes place by electron hopping where an intricate cytochrome network may be involved (Stryawcz-Glaven et al., 2011; Tender, 2011) and multiple experimental and modelling studies have confirmed this hypothesis (El-Naggar et al., 2010; Gorby et al., 2006; Leung et al., 2013; Pirbadian & El-Naggar, 2012; Polizzi et al., 2012). A recent study has reported that MNWs in S. oneidensis are composed of extended periplasmic and outer membranes embedded with cytochromes (Fig. 3c) which further supports the electron hopping model (Pirbadian et al., 2014). However, in S. oneidensis MNWs, it is yet to be proved conclusively that cytochromes are closely spaced enough (1–2 nm) to carry out charge transport over micrometre distances. Interested readers are referred to specific reviews on this topic (Skourtis, 2013; Waleed Shinwari et al., 2010).

Potential applications of MNWs

One reason behind the widespread attention gained by MNWs is their potential applications in several fields. Below we discuss some fields where MNWs can play an important role.

Bioenergy

For production of highly efficient microbial fuel cells, electron transfer should occur through biofilms so that even micro-organisms which are away from the anode can transfer electrons to it, thereby increasing total current output (Nwogu, 2007). Even for planktonic cells, long-range electron transport is necessary to improve the efficiency of microbial fuel cells. Soluble electron shuttles (natural as well as artificial) and MNWs can be useful for such long-range electron transfers (Fig. 1). Electron shuttles to be used for long-range electron transfer have their own disadvantages – natural electron shuttles have a slow diffusion rate which limits total electron flux rates while lack of long-term stability and toxicity to humans are the issues for artificial electron shuttles (Malvankar & Lovley, 2012).

MNWs thus can play an important role in improving the overall efficiency of microbial fuel cells. In G. sulfurreducens, these MNWs help cells to make efficient contact with electrodes by acting as a bridge between cells and electrodes,
Thus enabling long-range electron transfer through biofilm (Steidl et al., 2016). This long-range electron transfer thus has been shown to increase electricity production by 10 times (Reguera et al., 2006). Along the same lines, MNW-producing photosynthetic micro-organisms (Gorby et al., 2006; Sure et al., 2015; 2016b) may be helpful in improving the efficiency of photosynthetic microbial fuel cells and microbial solar cells (Rosenbaum et al., 2010; Strik et al., 2011).

Methane is considered as an important renewable energy source which can be generated by anaerobic digestion of wastewater and biomass (Angenent et al., 2004; De Mes et al., 2003; Prochnow et al., 2009). MNWs have been believed to play a role in methane production in syntrophic microbial communities (Morita et al., 2011; Rotaru et al., 2014; Summers et al., 2010; Wegener et al., 2015), which can be exploited further for improved methane production in anaerobic digesters. Interested readers are referred to specific reviews on this topic (Lovley, 2011; Malvankar & Lovley, 2014).

Bioremediation

Shewanella and *Geobacter* have been extensively studied for bioremediation of heavy metals and discovery of MNWs in these micro-organisms has further increased their potential in this field. It has been shown that MNWs can play an important role in bioremediation of a heavy metal like uranium (Cologgi et al., 2011). Presence of MNWs in *G. sulfurreducens* has been shown to significantly mineralize more uranium per cell than an MNW-deficient mutant (Cologgi et al., 2011). The MNWs also increase cellular tolerance to uranium by preventing its periplasmic accumulation as suggested in Fig. 4 (Cologgi et al., 2011). Further, such MNWs considerably increase the total surface area available for heavy metal adsorption and subsequent detoxification. MNWs in *Synechocystis* also have been observed to precipitate arsenic (Sure et al., 2016a) and chromium (Sure et al., unpublished data) and thus may be helpful in their bioremediation. Readers may refer to a specific review on this topic (Lovley, 2011).

Bioelectronics

Scientists believe that MNWs will allow us to develop instruments usable in water and moist environments (Malvankar & Lovley, 2012). Furthermore, Leung et al. (2011) characterized *S. oneidensis* MNWs and showed that they have enough mechanical strength (Young's modulus ~1 GPa) to be used as a building block for construction of electronic devices. The MNWs can be modified using genetic and protein engineering, so different ligands (metals) can be attached to it which may help to modulate its electric behaviour (Lovley et al., 2009) or can increase its electrical conductivity significantly (Tan et al., 2016). In this direction, MNWs in *G. sulfurreducens* have been modified to have better conductive and adhesive properties (Reguera et al., 2014). A recent study by Tan et al. (2016) has shown that, in *G. sulfurreducens* MNWs, replacing C-terminal phenylalanine and tyrosine of PilA with tryptophan decreases its diameter by half and increases its conductivity by ~2000-fold. MNWs may also be used in biosensors (Lovley et al., 2009); however, no such studies have been reported yet. Interested readers are referred to specific reviews on this topic (Amursky et al., 2014; Patolsky & Lieber, 2005; Patolsky et al., 2006; Waleed Shinwari et al., 2010; Wang et al., 2014; Ziadan, 2012) which may inform them about how different nanowires, including MNWs, can be used for practical applications.

Potential target for pathogenic micro-organisms

MNWs have been found in pathogenic biofilms causing BRONJ and supposed to play an important role in maintenance and survival of it (Wanger et al., 2013). This discovery is very important considering the fact that various human pathogenic micro-organisms like *Ne. gonorrhoeae* and *Vibrio cholerae* produce pili which are actively involved in pathogenesis (Heckels, 1989; Tacket et al., 1998; Zhang et al., 2000). Exoelectrogenic microbes with putative MNWs play specific role in host immune response (Ericsson et al., 2015). It needs to be studied whether pili are conductive in different pathogenic bacteria and, if so, what role they play in pathogenesis. In the phenomenon called ‘bioelectric effect’, electrically stimulated pathogenic biofilms showed increased susceptibility to antibiotics and this may happen because of disruption of conductive filaments within them as a result of electrical stimulation (Costerton et al., 1994; Wanger et al., 2013). The bioelectric effect also supports the hypothesis that MNWs might be playing an important role in maintenance of pathogenic biofilms. Thus, MNWs can be a potential target for prevention and treatment of relevant diseases and future research in this direction may yield some exciting results.

Gaps in current research and future directions

The above examples suggest that microbes may have developed multiple strategies to produce MNWs as per their niche and physiological requirement. Hence, more extensive screening of micro-organisms from diverse habitats needs to be done to establish their ability to produce MNWs which may help to completely understand their abundance and role in the environment. The physiological function of most known MNWs is not identified so far except that of *G. sulfurreducens*. This is another area which can be the focus of future studies.

Comparative characterization of all known MNWs for their conductive, biochemical and mechanical properties should be done. This will significantly help us to identify the best candidate for practical applications and may also help us to produce hybrid MNWs with better functionality than any individual one. It is also of utmost importance that mechanisms of electron transfer through MNWs should be studied in MNWs produced by diverse micro-organisms (other
than G. sulfurreducens and S. oneidensis). Apart from aromatic amino acids, sulfur-containing amino acids (methionine and cysteine) are also known to act as a relay in electron transfer (Sun et al., 2015; Wang et al., 2009). The probable role of these sulfur-containing amino acids (if present) in electron transfer through MNWs has not been studied so far and any involvement of these amino acids in conductivity of MNWs needs to be explored.

There is also a need to develop simple methods that will allow maximum production of MNW which will be important from an application point of view. For example, the method for MNWs production in Synechocystis was sophisticated earlier (Gorby et al., 2006), but in recent times, simple methods for maximum production of Synechocystis MNWs have been identified (Sure et al., 2015). Most of the findings in this field to date have been generated from a few laboratories. Reproducibility, authenticity and credibility of particular data are strengthened when identical or similar results are obtained from different laboratories. This is especially true for the advanced characterization of MNWs involving determination of their electron transfer mechanisms where ambiguity still exists among researchers. So it is essential that further research be carried out to harness the true potential of this field and used to tackle contemporary problems.

Conclusions

The ability of micro-organisms to produce MNWs increases their potential to influence their surrounding environment and thus further enhances their status as ‘tiny but powerful organisms’. Occurrence of MNWs in micro-organisms may be widespread and they may be employing it for diverse functions like extracellular electron transfer to metals, tolerance to toxic metals, preventing photo damage and cell communication depending upon their niche and physiological needs. The discovery of new MNW-producing microorganisms and the identification of specific environmental conditions leading to production of MNWs is extremely important along with rigorous biochemical and electrical characterization of the same. This will help in identification of most suitable MNWs for specific practical applications in the field of bioremediation, bioenergy, bioelectronics and possibly biotherapeutics. More efforts are needed to explore the mechanism of electron flow through different MNWs which would greatly help in modulation of electroconductive and other properties of MNWs.

Acknowledgements

The authors are thankful to the TERI-Deakin Nanobiotechnology Centre for providing necessary infrastructure to carry out required research work. S. S. acknowledges PhD fellowship (Candidate ID – 212082401) provided by Deakin University, Australia. We are also grateful to the anonymous reviewers for their detailed and valuable inputs which helped to improve the quality of this review paper.

References

