1887

Abstract

A key aim in microbiology is to determine the genetic and phenotypic bases of bacterial virulence, persistence and antimicrobial resistance in chronic biofilm infections. This requires tractable, high-throughput models that reflect the physical and chemical environment encountered in specific infection contexts. Such models will increase the predictive power of microbiological experiments and provide platforms for enhanced testing of novel antibacterial or antivirulence therapies. We present an optimized model of cystic fibrosis lung infection: culture of pig bronchiolar tissue in artificial cystic fibrosis mucus. We focus on the formation of biofilms by . We show highly repeatable and specific formation of biofilms that resemble clinical biofilms by a commonly studied laboratory strain and ten cystic fibrosis isolates of this key opportunistic pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000352
2016-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1755.html?itemId=/content/journal/micro/10.1099/mic.0.000352&mimeType=html&fmt=ahah

References

  1. Benahmed M. A., Elbayed K., Daubeuf F., Santelmo N., Frossard N., Namer I. J. 2014; NMR HRMAS spectroscopy of lung biopsy samples: comparison study between human, pig, rat, and mouse metabolomics. Magn Reson Med 71:35–43 [View Article][PubMed]
    [Google Scholar]
  2. Bjarnsholt T., Jensen P. Ø., Fiandaca M. J., Pedersen J., Hansen C. R., Andersen C. B., Pressler T., Givskov M., Høiby N. 2009; Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558 [View Article][PubMed]
    [Google Scholar]
  3. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S. R., Moser C., Kühl M., Jensen P. Ø., Høiby N. 2013; The in vivo biofilm. Trends Microbiol 21:466–474 [View Article][PubMed]
    [Google Scholar]
  4. Darch S. E., McNally A., Harrison F., Corander J., Barr H. L., Paszkiewicz K., Holden S., Fogarty A., Crusz S. A., Diggle S. P. 2015; Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 5:7649 [View Article][PubMed]
    [Google Scholar]
  5. Diaz Caballero J., Clark S. T., Coburn B., Zhang Y., Wang P. W., Donaldson S. L., Tullis D. E., Yau Y. C., Waters V. J. et al. 2015; Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung. MBio 6:e00981-15 [View Article][PubMed]
    [Google Scholar]
  6. Elborn J. S. 2016; Cystic fibrosis. Lancet Advance online publication, 10.1016/S0140-6736(16)00576-6 [View Article]
    [Google Scholar]
  7. Harrison F., Muruli A., Higgins S., Diggle S. P. 2014; Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa . Infect Immun 82:3312–3323 [View Article][PubMed]
    [Google Scholar]
  8. Henderson A. G., Ehre C., Button B., Abdullah L. H., Cai L. H., Leigh M. W., DeMaria G. C., Matsui H., Donaldson S. H. et al. 2014; Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 124:3047–3060 [View Article][PubMed]
    [Google Scholar]
  9. Hoffmann N. 2007; Animal models of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. Drug Discov Today Dis Models 4:99–104 [View Article]
    [Google Scholar]
  10. Kragh K. N., Alhede M., Jensen P. Ø., Moser C., Scheike T., Jacobsen C. S., Seier Poulsen S., Eickhardt-Sørensen S. R., Trøstrup H. et al. 2014; Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Infect Immun 82:4477–4486 [View Article][PubMed]
    [Google Scholar]
  11. Kukavica-Ibrulj I., Levesque R. C. 2008; Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 42:389–412 [View Article]
    [Google Scholar]
  12. LaFayette S. L., Houle D., Beaudoin T., Wojewodka G., Radzioch D., Hoffman L. R., Burns J. L., Dandekar A. A., Smalley N. E. et al. 2015; Cystic fibrosis–adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses. Sci Adv 1:e1500199 [View Article][PubMed]
    [Google Scholar]
  13. Lessells C. M., Boag P. T. 1987; Unrepeatable repeatabilities: a common mistake. The Auk 104:116–121 [View Article]
    [Google Scholar]
  14. McGonigle P., Ruggeri B. 2014; Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87:162–171 [View Article][PubMed]
    [Google Scholar]
  15. Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V., Gerdts V. 2012; The pig: a model for human infectious diseases. Trends Microbiol 20:50–57 [View Article][PubMed]
    [Google Scholar]
  16. Nunes S. F., Murcia P. R., Tiley L. S., Brown I. H., Tucker A. W., Maskell D. J., Wood J. L. N. 2010; An ex vivo swine tracheal organ culture for the study of influenza infection. Influenza Other Respir Viruses 4:7–15 [CrossRef]
    [Google Scholar]
  17. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M. 2005; Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277 [View Article][PubMed]
    [Google Scholar]
  18. Palmer K. L., Aye L. M., Whiteley M. 2007; Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087 [View Article][PubMed]
    [Google Scholar]
  19. Poltak S. R., Cooper V. S. 2011; Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME J 5:369–378 [View Article][PubMed]
    [Google Scholar]
  20. Roberts A. E., Kragh K. N., Bjarnsholt T., Diggle S. P. 2015; The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol 427:3646–3661 [View Article][PubMed]
    [Google Scholar]
  21. Seok J., Warren H. S., Cuenca A. G., Mindrinos M. N., Baker H. V., Xu W., Richards D. R., McDonald-Smith G. P., Gao H. et al. 2013; Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512 [View Article]
    [Google Scholar]
  22. Short F. L., Murdoch S. L., Ryan R. P. 2014; Polybacterial human disease: the ills of social networking. Trends Microbiol 22:508–516 [View Article][PubMed]
    [Google Scholar]
  23. Silva I. N., Santos P. M., Santos M. R., Zlosnik J. E. A., Speert D. P., Buskirk S. W., Bruger E. L., Waters C. M., Cooper V. S., Moreira L. M. 2016; Long-term evolution of Burkholderia multivorans during a chronic cystic fibrosis infection reveals shifting forces of selection. mSystems Doi 1:3
    [Google Scholar]
  24. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. et al. 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492 [View Article][PubMed]
    [Google Scholar]
  25. Tata M., Wolfinger M. T., Amman F., Roschanski N., Dötsch A., Sonnleitner E., Häussler S., Bläsi U. 2016; RNASeq based transcriptional profiling of Pseudomonas aeruginosa PA14 after short- and long-term anoxic cultivation in synthetic cystic fibrosis sputum medium. PLoS One 11:e0147811 [View Article][PubMed]
    [Google Scholar]
  26. Turner K. H., Wessel A. K., Palmer G. C., Murray J. L., Whiteley M. 2015; Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci U S A 112:4110–4115 [View Article]
    [Google Scholar]
  27. Tyrrell J., Callaghan M. 2016; Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. Microbiology 162:191–205 [View Article][PubMed]
    [Google Scholar]
  28. Wiles S., Hanage W. P., Frankel G., Robertson B. 2006; Modelling infectious disease – time to think outside the box?. Nat Rev Microbiol 4:307–312 [View Article][PubMed]
    [Google Scholar]
  29. Williams P. P., Gallagher J. E. 1978; Preparation and long-term cultivation of porcine tracheal and lung organ cultures by alternate exposure to gaseous and liquid medium phases. In Vitro 14:686–696 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000352
Loading
/content/journal/micro/10.1099/mic.0.000352
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error