Mechanisms of intrinsic resistance to antimicrobial peptides of *Edwardsiella ictaluri* and its influence on fish gut inflammation and virulence

Javier Santander,1 Taylor Martin,2 Amanda Loh,2 Camilo Pohlenz,3 Delbert M. Gatlin, III3,4 and Roy Curtiss, III1,2

Correspondence
Javier Santander
jasantanderm@asu.edu

1Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
2School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
3Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX 77843, USA
4Intercollegiate Faculty of Nutrition, Texas A&M University System, College Station, TX 77843, USA

The genus *Edwardsiella* comprises a genetically distinct taxon related to other members of the family *Enterobacteriaceae*. It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus *Edwardsiella*. In particular, *Edwardsiella ictaluri*, an important pathogen of the catfish (*Ictalurus punctatus*), is highly resistant to CAMPs. *E. ictaluri* mechanisms of resistance to CAMPs are unknown. We hypothesized that *E. ictaluri* lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of *wibT*, *gne* and *ugd* eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of *ugd*, the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. *E. ictaluri* OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish (*Danio rerio*) and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in *E. ictaluri* influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.

INTRODUCTION

The genus *Edwardsiella*, which consists of the three species *Edwardsiella tarda*, *Edwardsiella hoshinae* and *Edwardsiella ictaluri*, belongs to the family *Enterobacteriaceae*. This genus is a genetically distinct taxon related to other members of the family *Enterobacteriaceae*. *Edwardsiella* bacteria differ strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. High intrinsic resistance to cationic antimicrobial peptides (CAMPs) is one of the particular properties of the genus *Edwardsiella* (Muyembe *et al.*, 1973; Reinhardt *et al.*, 1985; Stock & Wiedemann, 2001).

E. ictaluri is one of the most important pathogens of commercially raised channel catfish (*Ictalurus punctatus*) (Shoemaker *et al.*, 2009), which account for more than 80% of US aquaculture production, in spite of the recent production decrease (Hanson & Sites, 2012). In general, fish possess a strong innate immune system that acts as the first line of defence against a broad spectrum of pathogens. Fish continuously fight against pathogens by secreting a wide range of antimicrobial peptides as an innate defence mechanism (Bly & Clem, 1991; Tatnuer & Horne, 1983). CAMPs are short, amphipathic, positively charged peptides produced by organisms from bacteria to mammals.
They have an important role in innate immunity responses (Ganz, 2003; Zanetti, 2004), killing bacteria by permeabilization of the cytoplasmic membrane (Brogden, 2005), and also through inhibition of essential microbial processes, such as protein, cell-wall and nucleic acid syntheses (Patrzykat et al., 2002). Seven antimicrobial peptides have been described in channel catfish, including NK-lysin type 1, NK-lysin type 2, NK-lysin type 3 (Wang et al., 2006), bactericidal permeability-increasing protein (BPI) (Xu et al., 2005), cathespin D (Dunham et al., 2002), hepcidin (Bao et al., 2005) and liver-expressed AMP 2 (LEAP2) (Bao et al., 2006). Among these catfish described CAMPs, hepcidin, NK-lysin type 1, NK-lysin type 3 and cathespin D seem to play a role during E. ictaluri infection (Pridgeon et al., 2012).

In general, bacterial resistance to antimicrobial peptides is mediated by different mechanisms, including alteration of the bacterial surface charge, proteolytic degradation and export of peptides by efflux pumps (Peschel & Sahl, 2006). Edwardsiella species are particularly resistant to the CAMP polymyxin B and colistin (also called polymyxin E) (Muyembe et al., 1973; Reinhardt et al., 1985; Santander & Curtiss, 2010; Stock & Wiedmann, 2001). Several components of the lipopolysaccharide (LPS) are important for CAMP resistance. For instance, LPS plays an important role in the resistance to CAMPs in Bordetella bronchiseptica (Banemann et al., 1998), and LPS outer and inner core regions contribute to resistance of Yersinia enterocolitica (Skurnik et al., 1999) and Escherichia coli (Farnaud et al., 2004), respectively. While some Gram-negative bacteria possess constitutive mechanisms of resistance, others such as Salmonella enterica serovar Typhimurium and Y. pestis possess inducible resistances. Exposure to sublethal concentrations of CAMPs induces modifications to the LPS, including addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) (Guo et al., 1997; Knirel et al., 2007), palmitoylation and myristoylation (Guo et al., 1998; Tran et al., 2005) to resist CAMP action. These modifications increase the net charge of the membrane repelling CAMPs (Guo et al., 1998; Raetz et al., 2009; Tran et al., 2005). Also, constitutive presence of L-Ara4N in lipid A has been documented in the CAMP-resistant bacterium Burkholderia cenocepacia (De Soyza et al., 2004). Capsular polysaccharides have also been reported to contribute to antimicrobial peptide resistance (Lloret et al., 2008).

The complete LPS structure of E. ictaluri has not been elucidated. Nevertheless, the composition and structure of the E. ictaluri oligo-polysaccharides (O-PS) have been reported (Vinogradov et al., 2005). The E. ictaluri O-chain was found to be an unbranched linear polymer of a repeating tetrasaccharide unit composed of d-glucose, 2-acetamido-2-deoxy-β-D-galactose and β-D-galactose in a 1:2:1 ratio having the structure: [-4→-]α-D-GlcP-(1→4)-α-D-GalpNAc-(1→3)-β-D-GalpNAc-(1→4)-β-D-Galp-[1→]. (Vinogradov et al., 2005). Serological analyses using monoclonal antibodies have indicated that E. ictaluri is serologically homogeneous (Bertolini et al., 1990; Shotts & Waltman, 1990), suggesting that there is no variation in the O-PS between E. ictaluri strains.

The predicted E. ictaluri O-PS biosynthesis enzymes consist of four putative overlapping genes, wibT, galF, gne and ugd, located in the O-PS cluster under control of a jump-start promoter (Lawrence et al., 2003). In this study, we evaluate the role of E. ictaluri wibT, galF, gne and ugd in the resistance to CAMPs. We describe the constitutive mechanism of E. ictaluri intrinsic resistance to CAMPs and its influence on virulence, tissue colonization, gut inflammation and immune protection in the fish host.

METHODS

Bacterial strains, plasmids, media and reagents.

The bacterial strains and plasmids are listed in Tables S1 and S2, respectively (available in Microbiology Online). Bacteriological media and components are from Difco. Antibiotics and reagents are from Sigma. Luria-Bertani broth (tryptone, 10 g; yeast extract, 5 g; NaCl, 10 g; double distilled H₂O, 1 litre) (Bertani, 1951) and Bacto brain heart infusion (BHI) were used routinely. When required, the media were supplemented with 1.5% agar, 6% sucrose, colistin (Col; 12.5 µg ml⁻¹), polymyxin B (Pmb; 20 µg ml⁻¹), ampicillin (Amp; 100 µg ml⁻¹), chloramphenicol (Cm; 25 µg ml⁻¹), gentamicin (Gm; 10 µg ml⁻¹) or kanamycin (Km; 50 µg ml⁻¹). Bacterial growth was monitored spectrophotometrically and/or by plating. Oligonucleotides were from IDT. Restriction endonucleases were from New England Biolabs. Taq DNA polymerase (New England Biolabs) was used in all PCR tests. Qiagen products were used to isolate plasmid DNA, gel-purify fragments or purify PCR products. T4 DNA polymerase and shrimp alkaline phosphatase were from Promega.

Construction and characterization of E. ictaluri with defined deletions.

The recombinant pEZ suicide vectors (Table S2) carrying the linked flanking regions to generate in-frame deletion of wibT, galF, gne and ugd genes were constructed as described previously (Santander et al., 2007, 2010, 2011). The defined deletion mutations encompass a deletion including the TAG start codon, but do not include the TAG or TAA stop codon. The primers used to construct the suicide vectors are listed in Table S3. Primers 1 and 2 were designed to amplify the upstream gene-flanking regions. Primers 3 and 4 amplified the downstream gene-flanking regions. The flanking regions were ligated and cloned into pMEG-375 digested with SplI and XbaI. To construct E. ictaluri mutants, the suicide plasmid was conjugationally transferred from Escherichia coli J7213 (Roland et al., 1999) to E. ictaluri strains. Strains containing single-crossover plasmid insertions were isolated on BHI agar plates containing Col and Amp. Loss of the suicide vector after the second recombination between homologous regions (i.e. allelic exchange) was selected by using the sacB-based sucrose sensitivity counter-selection system (Edwards et al., 1998) adapted to E. ictaluri (Santander et al., 2010, 2011). The colonies were selected for Amp and Col, and screened by PCR using primers 1 and 4. The ΔwibT, ΔgalF and Δgne mutants were screened for Amp, Col and PCR (Fig. 1). The Δugd mutant was screened for Amp, Col and PCR. Biochemical profiles of E. ictaluri strains were determined using the API 20E system (bioMérieux).

Complementation of E. ictaluri mutants.

The wibT, gne and ugd genes were cloned independently into pEZ151 (Table S2) under Plac control at the Addh restriction site. The primers used to amplify the corresponding genes under Plac control are listed in Table S3. The resulting plasmids were used to complement the E. ictaluri mutant strains (Table S1).
LPS purification and analysis. LPS extraction was performed by using TRI-regent (Sigma) as described by Yi & Hackett (2000). LPS profiles were evaluated by SDS-PAGE and visualized by silver staining (Hitchcock & Brown, 1983; Tsai & Frasch, 1982).

Glycosyl composition. Glycosyl composition analysis was performed by combined GC/MS of the per-O-trimethylsilyl derivatives of the monosaccharide methyl glycosides produced from the sample by acidic methanolysis. Purified LPS aliquots of 300 μg were added to separate tubes with 20 μg inositol as the internal standard. Methyl glycosides were then prepared from the dry sample following the mild acid treatment by methanolysis in 1 M HCl in methanol at 80 °C (16 h), followed by re-N-acetylation with pyridine and acetic anhydride in methanol (for detection of amino sugars). The sample was then per-O-trimethylsilylated by treatment with Tri-Sil (Pierce) at 80 °C (30 min). These procedures were carried out as described by Merkle & Poppe (1994). GC/MS analysis of the per-O-trimethylsilyl methyl glycosides was performed on an AT 6890N gas chromatograph interfaced to a 5975B MSD mass spectrometer, using a Supelco EC-1 fused silica capillary column (30 m × 0.25 mm ID).

Disc diffusion susceptibility and MIC assays. Disc diffusion susceptibility was determined in Mueller–Hinton (MH) medium supplemented with 5% sheep blood agar (CLSI, 2005a). MICs were determined in MH agar supplemented with 5% calf fetal bovine serum (HyClone) by microplate serial dilution assay (CLSI, 2005b). This assay was performed using flat-bottomed 96-well clear microtitre plates. Then, 20,000 μg polymyxin B (Pmb) ml⁻¹ and 12,500 μg colistin sulfate (Col) ml⁻¹ were serially diluted and then inoculated with mid-exponential-phase cultures of the E. ictaluri strains. The plates were incubated for 48 h at 28°C.

Transmission electron microscopy (TEM). To increase flagella synthesis, the bacterial samples were collected from motility agar plates away from the point of inoculation (Panangala et al., 2009). Negative staining was performed as described by Chandler & Roberson (2009).

Outer-membrane protein (OMP) profiles. Sarkosyl-insoluble OMPs were obtained as previously described (Santander et al., 2012). The OMPs were normalized to 25 μg ml⁻¹ by using an ND-1000 spectrophotometer (NanoDrop) and separated by 10% (w/v) SDS-PAGE. Coomassie blue staining was performed to visualize proteins.

Protein identification. The upregulated OMP in E. ictaluri ΔwibT, Δgne and Δugd mutants was excised from the SDS-PAGE gel for peptide sequencing analysis (ProtTech) by using NanoLC-MS/MS peptide sequencing technology. The protein gel band was destained, cleaned and digested in-gel with sequencing-grade modified trypsin (Promega). The resulting peptide mixture was analysed by an LC-MS/MS system, in which a high-performance liquid chromatograph with a 75 μm inner diameter reversed-phase C18 column coupled to an ion trap mass spectrometer (Thermo) was used. The MS data were utilized to search the non-redundant protein database at the National Center for Biotechnology Information (NCBI).

Quantitative bacterial adherence assay. To assess adherence, we inoculated 200 μl of BHI or LB broth in 96-well flat-bottomed microtitre polystyrene plates (Becton Dickinson) with 5 μl of an overnight BHI or LB culture. The plates were incubated statically over 7 days at 28 °C and visualized by staining with 0.5% crystal violet for 5 min after washing with water. Bacterial adherence was quantified in
duplicate, after adding 200 μl of 95% ethanol, by an ELISA plate reader at 570 nm.

Semi-quantitative Reverse Transcription - Polymerase Chain Reaction (RT-PCR). Expression of _ogd_, _ploP_, _arnT_ and _neuC_ genes was evaluated by RT-PCR. Total RNA extraction was performed using an RNeasy QIAgene kit from Qiagen. cDNA synthesis was performed by SuperScript™ III First-Strand Synthesis System (Invitrogen) using random hexamer primers. Semi-quantitative PCR (Ali et al., 1997) was performed using the specific primers listed in Table S3. The number of PCR cycles was normalized to 28 for semi-quantitative RT-PCR. 16S (rnr gene) was used as expression control and _fadR_ was used as single gene expression control (Santander et al., 2012).

Survival in fish blood and resistance to complement. _E. ictaluri_ strains, grown in BH broth to a cell density of approximately 1 × 10^8 c.f.u. ml^{-1} (late-exponential phase). To evaluate the strain survival in whole catfish blood, the cells were diluted in PBS, pH 7.4, and inoculated into fresh catfish blood from naive fish, either untreated or complement-inactivated by incubation at 55°C for 1 h, at a density of 1.0 × 10^6 c.f.u. ml^{-1} and incubated at 28°C for the duration of the assay. Bacterial viability was assessed by plating onto BH agar at 0, 2 and 6 h after inoculation. The assay was performed in duplicate and was repeated 3–5 times using blood samples from different catfish batches (Pine Bluff, AR, or Louisiana State University, LA).

To evaluate resistance to the complement alternative pathway, serum from ten juvenile channel catfish (fingerlings) was collected and pooled. Half of the serum was heated at 55°C for 30 min to inactivate complement. Normal serum and heat-inactivated serum were aliquoted and stored at −80°C. Guinea pig serum (Callbiochem) was used as control. For survival of strains in serum, the cells were diluted in PBS, pH 7.4, and inoculated into serum, either untreated or complement-inactivated, at a density of 1.0 × 10^6 c.f.u. ml^{-1}. Control consisted of bacteria mixed with PBS. Bacterial viability was quantified in duplicate by serial dilution and plate counts. Four independent replicates from separate cultures were run for each strain and serum treatment. To evaluate resistance to the complement classical pathway, a method similar to that described above was performed, but the cells were inoculated into serum, either untreated or complement-inactivated plus anti-Hd rabbit antibodies (Difco) that react with all _E. ictaluri_ strains (Fig. S3).

Infection and immunization of zebrafish (Dano rerio). Zebrafish challenges were performed according to previously described methodology (Petrie-Hanson et al., 2007) with modifications (Santander et al., 2011). The water temperature was 26±1°C, the fish were acclimatized over 2 weeks before experimentation. Adult zebrafish (average weight, 0.5 g) were sedated in 100 mg tricaine methanesulfonate 1−1 (MS-222; Sigma), then injected intramuscularly. Two sets of controls were used: fish that were injected with 10 μl of sterile PBS and fish that were not injected. Moribund fish demonstrating clinical signs were killed and necropsied, and bacteria isolated as previously described (Petrie-Hanson et al., 2007). Survivors of each dose at 6 weeks post-injection were challenged with 10^6 c.f.u. of wild-type _E. ictaluri_. Fish care and use were performed in accordance with the requirements of the Arizona State University Institutional Animal Care and Use Committee.

Colonization of zebrafish tissues by _E. ictaluri_. Colonization of spleen, kidney and gills by _E. ictaluri_ was evaluated as follows. Selected organs from infected and uninfected fish were removed by dissection with the aid of a stereomicroscope. Dissected organs were placed in a 1.5 ml microcentrifuge tube containing 200 μl PBS and homogenized with a pellet pestle (Pellet Pestle, catalogue no. K749520-0090; Fisher Scientific). Serial dilutions of homogenates were prepared in Buffer Saline Gelatin (BSG), and numbers of c.f.u. were determined by plating on BHI Col agar plates.

Tissue culture, attaching and invasion assay in channel catfish ovary (CCO) cells. The CCO cell line (Bowser & Plumb, 1980) was obtained from ATCC (CRL-2772). Cells growing in monolayers were cultured in tissue culture flasks in Dulbecco’s modified Eagle medium (DMEM; 10-013; Cellgro) diluted to a catfish tonicity of 243 mOsm kg^{-1} by adding 1 part sterile deionized water (DMEM 9:1) and containing 0.05 mM β-mercaptoethanol (Sigma Chemicals), supplemented with 10% fetal bovine serum (Cellgro). A standard gentamicin survival assay (Sizemore et al., 1997) was used to evaluate the abilities of the wild-type and the O-PS mutants to attach to and enter CCO cells. Briefly, CCO cells were suspended to a final concentration of 1 × 10^7 cells ml^{-1}. One milliliter of the cell suspension was added to each well of a 24-well plate and allowed to adhere for 16 h at 28°C with 5% CO_2, after which the wells were washed three times with PBS to remove non-adherent cells and 1 ml of fresh DMEM 1:9 was added per well. To evaluate the efficiency of entry and replication, 1,0 × 10^7 cells ml^{-1} of either wild-type or O-PS mutants were added to triplicate wells of the 16 h CCO cultures, giving an m.o.i. of 1 (1 bacterium to 1 CCO cell). After infection, the plates were centrifuged at 200 g to synchronize contact of the bacteria with the adhered cell layer and allowed to incubate for 1 h at 28°C. The medium was then removed from each well and the cells were washed three times with PBS. To determine the number of attaching _E. ictaluri_ cells, 100 μl of a 1% solution of Triton X-100 was added to lyse the CCO cells. The number of attaching _E. ictaluri_ cells was determined by spreading serial dilutions on BHI agar plates. To determine the number of intracellular or invading _E. ictaluri_ cells, DMEM 1:9 with 100 μg gentamicin ml^{-1} was added for 1 h to kill residual extracellular bacteria. Then the medium was removed from each well and the cells were washed three times with PBS and lysed with 100 μl of a 1% solution of Triton X-100. The numbers of invading _E. ictaluri_ cells were determined by spreading serial dilutions on BHI agar plates.

Survival assay in tissue-specific macrophages from channel catfish. Catfish macrophages (MØ) were isolated from intestinal mucosa as described by Clerton et al. (1998) with slight modifications, and from head kidney as reported by Secombe (1990) with modifications (Pohlenz et al., 2012).

Catfish gut phagocytes were isolated by incubating pieces of anterior intestine in Hank’s balanced salt solution (HBSS, phenol red and Ca^{2+}/Mg^{2+} free, pH 7.2; Sigma), containing EDTA and DTT (EDTA, 0.37 mg ml^{-1} + DTT 0.145 mg ml^{-1}; Sigma), for 15 min at 22°C. The tissue pieces were then rinsed in rinsing medium [RM, HBSS+5% fetal calf serum (FCS), 1% penicillin + streptomycin+0.1 mg DNase 1 ml^{-1}; Sigma]. The fragments were transferred to a conical flask containing RM + collagenase (0.15 mg ml^{-1}, type II; Sigma) and incubated in a shaking water bath for 2 h at 22°C. The supernatant was filtered and the resulting cell suspension was centrifuged twice at 400 g for 10 min at 4°C. Finally the cells were resuspended in antibiotic-free L-15 medium +0.1% FCS.

Head-kidney tissue was filtered through a 100 μm nylon mesh. The resulting cell suspension was layered on a Percoll (Sigma) gradient (34%/51%, v/v) and centrifuged at 400 g for 30 min. The cell layer at the interface was collected and washed twice with ice-cold PBS at 200 g for 10 min. A final wash and resuspension was conducted with antibiotic-free L-15 +0.1% FCS.

Macrophages were enumerated using a haemocytometer and viability assessed by trypan blue staining (Sigma). Viability was >95% in all cases. Head-kidney cell suspension was adjusted to 1 × 10^7 cells ml^{-1},
whereas gut MØ was adjusted to 1×10^6 cells ml$^{-1}$. Then, 100 μl of each MØ suspension was added per well in a sterile flat-bottomed 96-well microplate (Falcon).

The ability of MØ to kill E. ictaluri was evaluated using the method described by Secombes (1990) and modified by Shoemaker et al. (1997) and Pohlenz et al. (2012). Bacteria mutants were cultured in BHI broth for 18 h at 28 °C. Cultures were centrifuged at 2000 g for 10 min and the pellet washed once in HBSS; bacteria were then resuspended in antibiotic-free L-15 medium. Bacteria were enumerated using a bacterial counter chamber and the suspension was adjusted to 3×10^8 and 3×10^7 cells ml$^{-1}$ for use in head-kidney and gut phagocyte cultures, respectively. The MØ primary cultures were incubated for 2 h, then washed twice with 200 μl L-15, and resuspended with L-15+2% FCS medium. Primary MØ were infected with 20 μl of the respective bacterial strain in eight-well plates and centrifuged at 150 g for 5 min. The infections were incubated for 2.5 h at 28 °C. At 0 h and 2.5 h supernatants were removed and MØ lysed with 50 μl 0.2% Tween 20 (Mallinckrodt) solution. Then, 100 μl of fresh BHI was added to each well and plates were incubated for 18 h at 27 °C in an orbital incubator. After the incubation period, 20 μl thiazolyl blue tetrazolium bromide (MTT, 10 mg mL$^{-1}$; Sigma) was added per well. The plates were read at 620 nm after 5 min of incubation. Bacterial concentrations were calculated by comparing the absorbance obtained for each well to a standard curve previously constructed (data not shown). Bacitracid capacity (% killing=bacteria 0 h – bacteria 2.5 h x 100/bacteria 0 h) was computed for each well and is presented as mean % killing. All the assays were performed four times.

Intracoelomic infection and immunization of catfish. Specific-pathogen-free channel catfish fingerlings from Louisiana State University were used with a mean weight of 18.5 ± 1.3 g (~6 months old). The animals were randomly assigned to treatment groups of 10–25 fish each in 100 l tanks. Each tank was equipped with a recirculating, biofiltered, mechanically filtered, and UV water-treated system with 12 h light cycle per day. The temperature was water was set at 26 ± 1 °C during the first 2 weeks of acclimatization and during the course of the experiments. The fish were fed daily with commercial Aquamax grower 400 (Purina Mills Inc.). Catfish were infected by the intracoelomic (i.c.) route with 10^7–10^8 c.f.u. of E. ictaluri strains (fish were not fed until 1 h after infection). The fish were anaesthetized with buffered MS-222 (pH 7.5) (100 mg l$^{-1}$; Sigma) prior to handling. Moribund animals were killed and then necropsied to evaluate the presence of E. ictaluri in kidney, spleen and liver.

Bath infection and immunization of catfish. Catfish fingerlings were immersed in a solution of E. ictaluri (wild-type or mutant strains) of 10^2 c.f.u. ml$^{-1}$ for 30 min. Six weeks post-immunization, fish were challenged by bath immersion with 10^2 c.f.u. ml$^{-1}$ of E. ictaluri (10 LD$_{50}$) for 30 min. The animals were fasted 24 h prior to the inoculation to 1 h post-inoculation. Non-immunized animals were used as controls. Fish were observed daily.

Oral infection of catfish. Catfish were fasted for 24 h before oral inoculation with the respective E. ictaluri strains. Fish were anaesthetized before handling. The animals were orally inoculated with 100 μl of the corresponding bacterial suspension (see below). PBS was used as a control. The fish were not fed until 1 h after inoculation.

Colonization of catfish tissues by E. ictaluri and histology. Colonization of spleen, kidney (posterior and head) and liver by E. ictaluri was evaluated as follows. Following death of the animals, selected organs from infected and uninfected fish were removed by dissection. Dissected organs were homogenized. Serial dilutions of homogenates were prepared in PBS, and numbers of c.f.u. were determined by plating on BHI Col agar plates. Parts of the organs were fixed in 10% formalin and subjected to H & E staining for histopathological examination.

Bacteria inoculate preparation. Bacterial strains were grown overnight in standing cultures that were diluted 1:20 in prewarmed BHI broth and grown with mild aeration (180 r.p.m.) at 28 °C to an OD$_{600}$ of 0.8–0.9 (~10^8 c.f.u. ml$^{-1}$). Bacteria were sedimented for 15 min by centrifugation (4000 r.p.m.) at room temperature and resuspended in PBS to densities appropriate for the inoculation.

Statistics. An ANOVA (SPSS Software), followed by a least significant difference method, was used to evaluate differences in bacterial titres discerned to 95% confidence intervals. $P<0.05$ was considered statistically significant.

RESULTS

E. ictaluri O-PS mutant analysis

The wibT gene encodes a putative UDP-galactose 4-epimerase, which converts UDP-glucose to UDP-galactose. Deletion of wibT affects O-PS synthesis (Fig. 2a) and the LPS core, presenting only glucose and 3-deoxy-alpha-D-manno-oct-2-ulopyranosonic acid (KDO) traces in the LPS (Table 1). Galactose utilization was not affected in E. ictaluri ΔwibT, E. ictaluri ΔwibT colony morphology presented the typical rough phenotype of an LPS mutant strain (Fig. S1). Deletion of the galF gene, which encodes a putative modulator galU/UGP-Glc-1-P uridyltransferase, did not affect LPS synthesis (Fig. 2a) or colony morphology (Fig. S1). The gne gene encodes a putative UDP-GlcNAc 4-epimerase enzyme (Lawrence et al., 2003), which interconverts UDP-glucosamine (UDP-GlcNAc) to UDP-galactosamine (UDP-GalNAc; 2-acetamido-2-deoxy-D-galactose), the major component of the E. ictaluri O-PS (Vinogradov et al., 2005). Deletion of gne affects O-PS synthesis (Fig. 2a), but not the LPS core (Table 1). E. ictaluri Δgne colony morphology presented the typical rough phenotype of an LPS mutant (Fig. S1). The ugd gene encodes a putative UDP-galactose dehydrogenase enzyme, which converts UDP-glucose to UDP-glucuronic acid. Glucuronic acid is not present in the O-PS of E. ictaluri (Vinogradov et al., 2005) (Table 1), but deletion of ugd has profound effects on LPS synthesis (Fig. 2a). E. ictaluri Δugd presented only glucose in its O-PS, and KDO sugars were not detected (Table 1). E. ictaluri Δugd colony morphology presented a smooth phenotype, atypical for an LPS mutant (Fig. S1). The glycosyl analysis of the ugd mutant correlates with its LPS profile, which has a lower molecular mass in contrast with the wild-type or the ΔwibT and Δgne mutants (Fig. 2a). LPS synthesis was re-established in all complemented mutants with their respective wild-type gene (Fig. S2).

In summary, these results indicate that wibT, gne and ugd participate directly in the synthesis of O-PS. Furthermore, ugd is related to core-lipid A synthesis in E. ictaluri.

Outer-membrane protein analysis

E. ictaluri ΔwibT, Δgne and Δugd upregulate a similar OMP of ~48 kDa identified as OmpN (Fig. 2b). OmpN corresponds to a putative porin that may be related to
the agglutination phenotype. However, further studies are required to determine the role of OmpN in *E. ictaluri*.

Agglutination

E. ictaluri ΔwibT, Δgne and *Δugd* mutants presented auto-agglutination and precipitation in liquid culture (Fig. 2c–e).

The *Δgne* mutant showed the fastest agglutination and precipitation of all the mutants (~40 min), followed by *ΔwibT* and finally *Δugd*. This agglutination and precipitation phenotype could be attributed to membrane charge changes or to upregulation of OmpN. Further studies are required to determine the nature of this particular phenotype.

Table 1. LPS glycosyl composition analysis

<table>
<thead>
<tr>
<th>Glycosyl residue</th>
<th>Wild-type (Wt% CHO 20.04)</th>
<th>ΔwibT (Wt% CHO 56.3)</th>
<th>Δgne (Wt% CHO 28.3)</th>
<th>Δugd (Wt% CHO 89.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass (μg)</td>
<td>M%*</td>
<td>Mass (μg)</td>
<td>M%*</td>
</tr>
<tr>
<td>Gal</td>
<td>109.3</td>
<td>25.7</td>
<td>ND</td>
<td>–</td>
</tr>
<tr>
<td>Glu</td>
<td>234.3</td>
<td>55</td>
<td>101.9</td>
<td>≤100</td>
</tr>
<tr>
<td>GalNAc</td>
<td>76.3</td>
<td>14.7</td>
<td>ND</td>
<td>–</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>11.4</td>
<td>2.2</td>
<td>Trace</td>
<td>–</td>
</tr>
<tr>
<td>KDO</td>
<td>15.3</td>
<td>2.6</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Values are expressed as mol% of total carbohydrate.
Motility

E. ictaluri ΔwibT and Δugd presented defects in motility and absence of flagellar synthesis (Fig. 2f, g). The *E. ictaluri* Δagne mutant did not have motility defects in contrast to the ΔwibT and Δugd LPS mutant strains (Fig. 2f, g). *E. ictaluri* ΔgaLF showed similar motility to the wild-type (data not shown). Motility and flagellar synthesis were restored upon complementation with the respective wild-type genes (data not shown).

Surface bacterial adhesion

E. ictaluri wild-type and ΔwibT, ΔgaLF and Δagne mutants did not attach to the polystyrene plate surface, either in the presence or in the absence of CAMPs in BHI or LB broth. In contrast, *E. ictaluri* Δugd strongly adhered to the plate in either the presence or the absence of CAMPs (Fig. 2h–k). *E. ictaluri* Δugd did not adhere in minimal media or water derived from catfish tanks (data not shown). The Δugd mutant produced this biofilm-like formation only when it was grown in rich media such as BHI or LB broth. The nature of this bacterial adhesion and its biochemistry require further research.

Antimicrobial peptide resistance

Bacterial resistance to CAMPs is mediated by different mechanisms, including export of peptides by efflux pumps, proteolytic degradation and alteration of the bacterial surface charge (Peschel & Sahl, 2006). To determine if *Edwardsiella* intrinsic resistance to CAMPs is mediated by efflux pumps, cultures of *E. ictaluri*, *E. tarda* and *E. hoshiniae* grown in the presence and absence of Col (12.5 µg ml⁻¹) or Pmb (25 µg ml⁻¹) were normalized to 1 x 10⁶ c.f.u. ml⁻¹ and treated with Cm (25 µg ml⁻¹) to preclude protein synthesis. The number of viable cells in the presence and absence of Col or Pmb was determined at 1, 2, 4, 8, 24 and 48 h. We did not detect significant differences in the number of c.f.u. between cells grown in the absence and presence of CAMPs. This result suggests that *Edwardsiella* intrinsic resistance to CAMPs is not mediated by efflux pumps.

To determine if *Edwardsiella* resistance to CAMPs is mediated by proteases, filter spent media from *Edwardsiella* wild-type cultures grown in the presence and absence of Col or Pmb were assayed on the CAMP-sensitive strains *Escherichia coli* K-12 and *E. ictaluri* Δugd. *Edwardsiella* wild-type species were utilized as resistant controls. *Escherichia coli* K-12 and *E. ictaluri* Δugd did not grow in filtered supernatants from the *Edwardsiella* wild-type species grown in the presence of Col or Pmb. In contrast, the *Edwardsiella* wild-type controls grew in all conditions. This result suggests that *Edwardsiella* intrinsic resistance to CAMPs is not mediated by proteases.

To determine if *Edwardsiella* intrinsic constitutive resistance to CAMPs is mediated by O-PS, *E. ictaluri* O-PS putative related genes were deleted (Fig. 1a). *E. ictaluri* ΔwibT, ΔgaLF and Δagne mutant strains are resistant to CAMP (Fig. 2l, m) (Table 2). *E. ictaluri* Δugd was extremely sensitive to CAMPs (Fig. 2l, m) (Table 2). This phenotype was reverted in the complemented strain (Fig. 2l, m) (Table 2 and Fig. S1). This result indicates that UDP-glucuronic acid and its derivatives are important for *Edwardsiella* intrinsic resistance to CAMPs.

As previously mentioned, Ugd (UDP-glucose dehydrogenase) converts UDP-glucose to UDP-glucuronic acid (UDP-GlcA). UDP-GlcA is used as substrate for colanic acid, type 4 capsules, sialic acid and L-Ara4N synthesis (Whitfield, 2006). Among these structural molecules, L-Ara4N is related to CAMP resistance in *S. enterica* (Bader et al., 2005), *Y. pestis* (Rebel et al., 2004), *Pseudomonas aeruginosa* (McPhee et al., 2003) and *Bulkenholderia* species (Ortega et al., 2007; Silipo et al., 2005). *E. ictaluri* possesses the genes required for synthesis and transport of L-Ara4N, arnB, arnC, arnA and arnT. In *S. enterica* the arnBCAT gene cluster is controlled by the PmrA-PmrB two-component system, which is under control of the PhoP-PhoQ two-component system and iron environmental concentrations (Gunn et al., 1996; Kox et al., 2000). Also, in *S. enterica* and *Y. pestis*, the ugd gene is under indirect and direct control by PhoP, respectively (Aguirre et al., 2000; Kato et al., 2003; Winfield et al., 2005; Wösten & Groisman, 1999).

Semiquantitative RT-PCR assay for *E. ictaluri* ugd, phoP and arnT genes indicates that these genes are constitutively expressed, regardless of the presence or absence of CAMPs (Fig. 3). This contrasts with the regulation described for *S. enterica* and *Y. pestis*. Recently, a subtle upregulation of ugd has been reported in *E. tarda* (Lv et al., 2012), which coincides with our results (Fig. 4). In fact, all the genes evaluated and related to CAMP resistance were slightly upregulated in the presence of CAMPs (Fig. 3).

The ugd gene is part of the O-PS operon under control of a jump-start promoter and it overlaps with the gne gene at the 5’ end (Fig. 1a). This contrasts to the situation in *Salmonella* and *Yersinia* where the ugd gene does not overlap with other adjacent genes and has its own promoter under control of PhoP (Winfield et al., 2005). The fact that the *E. ictaluri* ugd gene is controlled by a jump-start promoter correlates with the intrinsic constitutive resistance to CAMPs described in the early literature (Muyembe et al., 1973; Reinhardt et al., 1985; Stock & Wiedemann, 2001) and is coincident with our data (Table 2). However, the subtle regulation observed in *E. ictaluri* ugd and arnT genes (Fig. 3) may have implications during infection.

Survival in whole blood and resistance to complement

E. ictaluri wild-type and O-PS mutants survived in guinea and catfish serum, and whole catfish blood, indicating that...
LPS deletions do not affect resistance to complement (Figs S2–S4).

Zebrafish colonization and virulence

Zebrafish is not the natural host of *E. ictaluri*, but has been established as a reliable model system to evaluate *E. ictaluri* virulence (Petrie-Hanson et al., 2007; Santander et al., 2010, 2011). We found that *E. ictaluri* Δugd and Δgne administered intramuscularly (i.m.) were not fully attenuated in zebrafish (Fig. 4a, b). The *E. ictaluri* Δugd was hyper-attenuated, in contrast to the wild-type (Fig. 4c).

Establishing the means by which * Edwardsiella* infect and colonize fish tissues provides a strategy not only to develop effective live attenuated vaccines but also to determine the effects of the different O-PS mutated genes on pathogenesis. We evaluated the colonization of spleen, kidney, and gills 3 days post i.m. infection with *E. ictaluri* O-PS mutant strains in comparison with the wild-type. *E. ictaluri* Δugd colonized spleen, kidney, and gills at similar levels to the wild-type (Fig. 4d–f). In contrast, *E. ictaluri* Δugd presented significantly lower levels of colonization (Fig. 4f). The *E. ictaluri* Δgne showed intermediate levels of colonization with respect to the wild-type and Δugd mutant. This indicated that *E. ictaluri* O-PS mutant strains reached the lymphoid tissues after i.m. immunization, thus triggering a protective immune response (Fig. 4g–i). However, *E. ictaluri* Δugd conferred only 60% protection, in contrast to Δgne and Δugd that conferred 100% protection at the lowest dose of immunization by the i.m. route (Fig. 4g–i).

Attachment and invasion in catfish ovary cells

CCO cells and the gentamicin exclusion method were used to evaluate attachment and invasion of the *E. ictaluri* O-PS mutants. *E. ictaluri* ΔwibT and Δgne showed a slight increase in attachment and invasion in comparison with the wild-type (Fig. 5a, b). *E. ictaluri* Δugd presented a significant decrease in attachment and colonization (Fig. 5a, b).

Survival in catfish primary macrophages

The role of *E. ictaluri* LPS in macrophage phagocytosis resistance was evaluated in intestinal and head-kidney primary macrophages. *E. ictaluri* wild-type proliferated ~20% in intestinal macrophages (Fig. 5c) and killed ~20% in head-kidney macrophages (Fig. 5d). All *E. ictaluri* O-PS mutants were killed ~35% in intestinal primary macrophages (Fig. 5c). *E. ictaluri* ΔwibT was killed ~20% in head-kidney macrophages, similar to *E. ictaluri* wild-type (Fig. 5d). This is coincident with the residual virulence observed in *E. ictaluri* ΔwibT (Fig. 4). *E. ictaluri* Δugd was killed in around 50% and *E. ictaluri* Δugd in around 60% by the head-kidney macrophages (Fig. 5d).

Catfish virulence and colonization

Fingerlings were orally inoculated with 100 µl of the respective *E. ictaluri* O-PS mutant and wild-type. Colonization of lymphoid tissues was evaluated at 4 and 8 days post-infection. At 4 days post-infection all the *E. ictaluri* O-PS mutants were present in the lymphoid tissues tested, but at lower levels than the wild-type (Fig. 5e–h). *E. ictaluri* Δugd presented significantly lower levels of colonization in the intestine, liver, and spleen 4 days postorial infection. At 8 days post-infection the *E. ictaluri* O-PS mutants persisted in the intestine with Δugd at low levels (Fig. 5f). *E. ictaluri* ΔwibT and Δugd were found in low levels in the kidney 8 days post-infection (Fig. 5h). The *E. ictaluri* Δgne was not detected in the kidney 8 days post-infection.

Table 2. Minimum inhibitory concentrations

Assays were performed in MH supplemented with 5% fetal bovine serum. ND, Not determined.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Polymyxin B (µg ml⁻¹)</th>
<th>Colistin (µg ml⁻¹)</th>
<th>Ox-bile (mg ml⁻¹)</th>
<th>Deoxicholate (mg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J100 E. ictaluri 2003/c</td>
<td>400</td>
<td>200</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J102 E. ictaluri ATCC 33202</td>
<td>300</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J103 E. ictaluri ATCC 33829</td>
<td>300</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J104 E. ictaluri ALO</td>
<td>300</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J108 E. ictaluri S97-773</td>
<td>300</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J115 E. tarda PPD130/91</td>
<td>5</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J145 E. hoshinae ATCC 33379</td>
<td>200</td>
<td>200</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>γ289 Escherichia coli K-12</td>
<td>5</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>J124 E. ictaluri ΔwibT90</td>
<td>400</td>
<td>200</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J124 E. ictaluri ΔwibT90 (pEZ159)</td>
<td>300</td>
<td>200</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J123 E. ictaluri ΔgnaF91</td>
<td>200</td>
<td>300</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J126 E. ictaluri Δgne-31</td>
<td>400</td>
<td>300</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J135 E. ictaluri Δugd-11</td>
<td>1.25</td>
<td>2.5</td>
<td>>60</td>
<td>>60</td>
</tr>
<tr>
<td>J135 E. ictaluri Δugd-11 (pEZ154)</td>
<td>300</td>
<td>100</td>
<td>>60</td>
<td>>60</td>
</tr>
</tbody>
</table>
post-infection (Fig. 5h). *E. ictaluri* Δugd was not detected in the liver 8 days post-infection (Fig. 5j). At 8 days post-infection, *E. ictaluri* O-PS mutants were not detected in the spleen, in contrast to the wild-type (Fig. 5i).

Gut inflammation and histopathology

Orally inoculated catfish with the wild-type strain presented significant fluid secretion 5 days post-infection (Fig. 6b, c) as well as gut inflammation (Fig. 6d). This was corroborated by histopathology analysis where *E. ictaluri* wild-type caused significant damage to the intestinal epithelial and liver tissue (Fig. 6d). *E. ictaluri* ΔwibT caused damage to the intestinal tissue and liver (Fig. 6d). This result correlates with the remaining virulence of ΔwibT in zebrafish and catfish (Fig. 4a and Table 3). *E. ictaluri* Δgne and Δugd caused moderate to low damage to the intestinal epithelia (Fig. 6d). Liver damage was not detected in catfish orally inoculated with *E. ictaluri* Δgne and Δugd (Fig. 6d). Kidney damage was not detected in any fish inoculated with O-PS mutants (data not shown).

Virulence and immune protection in catfish

The *E. ictaluri* O-PS Δgne and Δugd mutants are totally attenuated when they are administered i.c., orally or by immersion to the fish. The ΔwibT mutant administered i.c., orally and by immersion to the fish caused mortality at lower levels than the wild-type (Table 3).

E. ictaluri ΔwibT, Δgne and Δugd administered i.c. conferred full protection to the immunized fish against the immersion challenge, but did not confer protection against the i.c. challenge. ΔwibT and Δugd administered orally or by immersion conferred poor immune protection.
(<60%) against the immersion challenge (Table 3). In contrast, Δgne administered orally or by immersion conferred a protective immune response against the immersion challenge (>70%) (Table 3). These results indicate that E. ictaluri Δgne could be considered a component in the design of oral–immersion live attenuated vaccines for the catfish industry.

DISCUSSION

Here, we have determined the genetic basis for O-PS synthesis and CAMP resistance in E. ictaluri. We propose a hypothetical pathway related to O-PS synthesis and CAMP resistance in E. ictaluri (Fig. 7). Also, the influence of the O-PS on fish gut inflammation, internal tissue colonization, virulence and immune protection was determined.

LPS profile and glycosyl composition analysis indicates that wibT, gne and ugd have different effects on O-PS synthesis. The E. ictaluri ΔwibT O-PS mutant showed agglutination (Fig. 2c–e), lack of motility (Fig. 2f, g) and residual virulence (Fig. 4a) (Table 3). These results are similar to a previous report describing the E. ictaluri wibT::Tn5Km mutant (Lawrence et al., 2003). Additionally, we determined that E. ictaluri ΔwibT utilizes galactose and synthesizes a rough LPS even in the presence of galactose in the culture growth medium. Furthermore, the E. ictaluri wibT gene does not complement the S. enterica galE mutant strain (data not shown). Based on previous bioinformatics analysis (Lawrence et al., 2003) and our results, we believe that wibT encodes a one-way UDP-4 galactose epimerase. In theory, deletion of wibT should only affect the external part of the O-PS subunit, leaving an O-PS with three-sugar subunits. However, deletion of wibT results in an O-PS subunit containing only glucose (Table 1) (Fig. 7). We think that this three-sugar subunit could be unstable or not assembled by the cell. In terms of vaccinology, E. ictaluri ΔwibT is not fully attenuated, causing mortalities and internal tissue damage, and conferring low immune protection (<60%) (Figs 4b, h and 6i) (Table 3).

The E. ictaluri gne gene is predicted to encode a UDP-GlcNAc-4-epimerase (Lawrence et al., 2003) that interconverts UDP-GlcNAc and UDP-GalNac (Fig. 7), the central piece of the unbranched O-PS (Fig. 7). E. ictaluri Δgne is attenuated, colonizes deep lymphoid tissues after
oral administration and confers immune protection against the wild-type challenge (Fig. 4h and Table 3). The E. ictaluri Δgne mutant has a good balance between attenuation and colonization, offering potent immune protection to the fish (>70% protection). This could explain in part the ability of Δgne to have increased colonization of epithelial cells, motility and mild survival in fish macrophages, in contrast to ΔwibT and Δugd. E. ictaluri Δgne possesses motility, in contrast to ΔwibT and Δugd, which might have a major impact on tissue colonization and protective immune response. E. ictaluri Δgne provides protective immune stimulatory antigens to the animal during bacterial colonization. Therefore, deletion of gne can be used as a means to attenuate E. ictaluri for oral–immersion vaccine development.

The E. ictaluri ugd gene is predicted to encode a UDP-glucose dehydrogenase (Lawrence et al., 2003) that oxidizes UDP-glucose to UDP-GlcA. UDP-GlcA is found in several capsular polysaccharides (K-antigens) and in colanic acid (M-antigen), an extracellular polysaccharide produced by many Escherichia coli strains (Whitfield, 2006). Also, UDP-GlcA participates in the synthesis of UDP-L-Ara4N (Breazeale et al., 2002; Raetz & Whitfield, 2002; Strominger, 1957), which is a crucial element in bacterial resistance to antibiotics such as polymyxin B and cationic peptides of the innate immune system (Guo et al., 1998; Raetzsch et al., 2009; Trent et al., 2001).

A widely recognized mechanism of resistance to CAMPs in Gram-negative bacteria is the decoration of lipid A phosphate residues with the positively charged sugar L-Ara4N, which requires synthesis of a UDP-L-Ara4N precursor from UDP-GlcA (Ernst et al., 1999; Helander et al., 1994; Nummila et al., 1995; Vaara et al., 1981). L-Ara4N substitution reduces the net negative charge of the lipid A molecule and hampers the ability of CAMPs to bind to the outer membrane (Vaara et al., 1981). In Pseudomonas aeruginosa and S. enterica, these substitutions are induced upon treatment with CAMPs (Bader et al., 2005; McPhee et al., 2003) and are dispensable for growth under normal laboratory conditions. In Burkholderia cepacia, L-Ara4N is constitutively incorporated into both lipid A and LPS core oligosaccharide (Silipo et al., 2005). Some evidence suggests that this is also true in B. cenocepacia, where UDP-L-Ara4N synthesis is essential for viability (Ortega et al., 2007). These observations highlight the importance of L-Ara4N in membrane

Fig. 5. Colonization of CCO cell line and catfish tissues by E. ictaluri O-PS. (a) Attachment. (b) Invasion. (c) Intestinal macrophage E. ictaluri killing assay. (d) Head-kidney macrophage E. ictaluri killing assay. (e–h) Four days post-oral infection. (i–k) Eight days post-oral infection. The samples correspond to five independent animals. *P<0.001.
integrity in organisms that present high intrinsic resistance to CAMPs such as *B. cepacia*, *B. cenocepacia* and *Edwardsiella*. *Edwardsiella* resistances to CAMPs are far higher (Table 2) compared with other resistances described in the family *Enterobacteriaceae*, such as *Salmonella* or *Yersinia* resistances (Aguirre et al., 2000; Gunn et al., 1996; Kato et al., 2003; Kox et al., 2000; Winfield et al., 2005; Wösten & Groisman, 1999). Since its first description, *Edwardsiella* has been characterized by a constitutive resistance to CAMPs (Muyembe et al., 1973; Reinhardt et al., 1985; Stock & Wiedemann, 2001) in contrast to the regulated resistance described in *Salmonella* and *Yersinia* (Aguirre et al., 2000; Gunn et al., 1996; Kato et al., 2003; Kox et al., 2000; Winfield et al., 2005; Wösten & Groisman, 1999). As previously mentioned, in *Salmonella* resistance to CAMPs is induced after exposure to sublethal concentrations of CAMPs or by inducing the activation of PhoP and RscB response regulators that upregulate the expression of the *ugd* gene (Gunn et al., 1996; Kox et al., 2000). The *Salmonella ugd* promoter region has several PhoP binding boxes that allow *ugd* upregulation upon PhoP binding (Gunn et al., 1996; Kox et al., 2000). In *Edwardsiella*, including *E. ictaluri* and *E. tarda*, the *ugd* gene does not present a promoter region or characteristic PhoP or RscB binding boxes downstream of the *ugd* gene. In fact, *ugd* is part of an operon that has a jump-start promoter (Lawrence et al., 2003). A recent report suggests that *E. tarda ugd* is regulated by PhoP in a similar fashion to the *Salmonella ugd* gene (Lv et al., 2012). However, if PhoP regulates *ugd* gene expression, deletion of PhoP must have severe effects on LPS synthesis and CAMP resistance. To our knowledge, *E. ictaluri* does not show changes in LPS synthesis or significant changes in expression levels of the *ugd* and *phoP* genes in the presence or absence of CAMPs (Fig. 3). Also, the presence and absence of CAMPs do not affect cell viability, supporting the fact that *ugd* is constitutively expressed. Furthermore, it has been reported that deletion of PhoP in *E. tarda* does not affect LPS synthesis or CAMP resistance (Chakraborty et al., 2010). Thus, according to our data and the current literature, the reported regulation of *ugd* by PhoP in *E. tarda* is nothing more than an artefact that does not have implications for CAMP resistance.

E. ictaluri Δ*wibT* and Δ*ugd* lack motility and flagella synthesis, in contrast to the wild-type and Δ*gne* (Fig. 2g). This phenotype may be due to the inability of Δ*wibT* and Δ*ugd* mutants to assemble the flagella. However, further studies are required to understand this particular phenotype. *E. ictaluri* has the ability to enter, survive and replicate in catfish macrophages (Booth et al., 2009). Here, we evaluate the role of *E. ictaluri* LPS in intestinal and head-kidney macrophage survival. We determined that LPS plays an
Table 3. Infection and challenge of channel catfish with *E. ictaluri* O-PS mutants

<table>
<thead>
<tr>
<th>Strain</th>
<th>Infection-immunization route</th>
<th>Infection-immunization dose (c.f.u. per dose)</th>
<th>Survival/total</th>
<th>Challenge route</th>
<th>Wild-type challenge dose (c.f.u. per dose)</th>
<th>Survival/total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>i.c.</td>
<td>1.2×10^4</td>
<td>5/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.2×10^6</td>
<td>0/13</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.2×10^6</td>
<td>0/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/7</td>
</tr>
<tr>
<td>ΔwibT</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>10/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.4×10^7</td>
<td>3/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.4×10^8</td>
<td>0/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td>Δgne</td>
<td>i.c.</td>
<td>1.7×10^5</td>
<td>10/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.7×10^7</td>
<td>10/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>1.7×10^8</td>
<td>7/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td>Δugd</td>
<td>i.c.</td>
<td>2.4×10^5</td>
<td>10/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>2.4×10^7</td>
<td>10/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>i.c.</td>
<td>2.4×10^8</td>
<td>8/10</td>
<td>i.c.</td>
<td>1.4×10^5</td>
<td>0/8</td>
</tr>
<tr>
<td>Wild-type</td>
<td>Oral</td>
<td>1.1×10^5</td>
<td>2/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.1×10^7</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.1×10^8</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔwibT</td>
<td>Oral</td>
<td>1.2×10^5</td>
<td>5/5</td>
<td>Immersion</td>
<td>2.1×10^7</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.2×10^7</td>
<td>4/5</td>
<td>Immersion</td>
<td>2.1×10^7</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.2×10^8</td>
<td>3/5</td>
<td>Immersion</td>
<td>2.1×10^7</td>
<td>1/3</td>
</tr>
<tr>
<td>Δgne</td>
<td>Oral</td>
<td>1.6×10^5</td>
<td>5/5</td>
<td>Immersion</td>
<td>1.4×10^7</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.6×10^7</td>
<td>5/5</td>
<td>Immersion</td>
<td>1.4×10^7</td>
<td>5/5</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.6×10^8</td>
<td>7/7</td>
<td>Immersion</td>
<td>1.4×10^7</td>
<td>7/7</td>
</tr>
<tr>
<td>Δugd</td>
<td>Oral</td>
<td>1.0×10^5</td>
<td>6/6</td>
<td>Immersion</td>
<td>1.3×10^7</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.0×10^7</td>
<td>6/6</td>
<td>Immersion</td>
<td>1.3×10^7</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>1.0×10^8</td>
<td>5/5</td>
<td>Immersion</td>
<td>1.3×10^7</td>
<td>1/5</td>
</tr>
<tr>
<td>Wild-type</td>
<td>Immersion</td>
<td>1.4×10^7</td>
<td>1/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔwibT</td>
<td>Immersion</td>
<td>1.8×10^7</td>
<td>4/5</td>
<td>Immersion</td>
<td>2.3×10^7</td>
<td>2/5</td>
</tr>
<tr>
<td>Δgne</td>
<td>Immersion</td>
<td>1.9×10^7</td>
<td>5/5</td>
<td>Immersion</td>
<td>2.3×10^7</td>
<td>5/5</td>
</tr>
<tr>
<td>Δugd</td>
<td>Immersion</td>
<td>1.6×10^7</td>
<td>6/6</td>
<td>Immersion</td>
<td>2.3×10^7</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Fig. 7. Hypothetical pathways of LPS synthesis in *E. ictaluri*. The coloured circles represent the *E. ictaluri* O-chain unbranched linear polymer composed of D-glucose (green circle), 2-acetamido-2-deoxy-D-galactose (red circle) and D-galactose (blue circle) in a 1:2:1 ratio having the structure: \[\rightarrow-\text{D-GlcP-(1\rightarrow4)}-\text{D-GalpNAc-(1\rightarrow3)}-\text{D-GalpNAc-(1\rightarrow4)}-\text{D-Galp-(1\rightarrow6)}\] (Vinogradov et al., 2005).
important role in *E. ictaluri* intracellular macrophage survival that influences bacterial tissue colonization and immune protection. *E. ictaluri* O-PS LPS mutants were killed to the same level by intestinally derived macrophages, in contrast to the wild-type that was able to replicate within the gut derivative macrophages (Fig. 5c). *E. ictaluri* O-PS LPS mutants were killed by the head-kidney macrophages according to the gene deletion, wild-type = ΔwibT < Δagne < Δugd (Fig. 5d). These results are coincident with the virulence data, where ΔwibT remains virulent and retains its ability to survive in head-kidney macrophages in contrast to Δagne and Δugd that have their ability to survive within macrophages compromised (Figs 4 and 5d) (Table 3). We observed a clear difference in the rate of macrophage *E. ictaluri* killing between intestinal and head-kidney macrophages. This difference may be related to the macrophage differentiation process. In summary, *E. ictaluri* LPS plays an important role in macrophage survival influencing virulence, colonization and immune protection.

Fish have no or a poor inflammatory immune response to LPS (Berczi et al., 1966; Iliev et al., 2005; Swain et al., 2008). However, there are, to our knowledge, no studies about fish intestinal gut inflammation related to *Edwardsiella* LPS. We observed that after 5 days post-oral infection with *E. ictaluri* wild-type, catfish begin to excrete faeces with mucus secretion and high *E. ictaluri* titres (10^4–10^6 c.f.u. per millilitre of faeces) (Fig. 6a, b). In contrast, catfish non-infected or orally inoculated with *E. ictaluri* ΔwibT, Δagne or Δugd, did not present mucus secretion in their faeces (Fig. 6a, b). However, all *E. ictaluri* O-PS mutants were able to colonize intestinal tissues (Fig. 5). These results suggest that LPS O-PS has effects on fish intestinal gut inflammation and mucus secretion. The intestinal necropsy and histopathology showed that *E. ictaluri* LPS O-PS induces intestinal inflammation and fluid secretion (Fig. 6h, i). Several reports suggest that fish do not respond to LPS mainly because of the lack of PLB, CD14 and TIRF1, essential components for the function of Toll-like receptor 4 (Iliev et al., 2005). Adult fish or zebrafish i.c. injected with high doses of LPS from different bacterial species, including *Edwardsiella* (100 μg), do not present mortalities or toxic shock syndrome symptoms (Swain et al., 2008; our data not shown). However, at the intestinal level we observed that *E. ictaluri* LPS deletions have a profound effect on fish intestinal inflammation depending on the type of effect that the deletion has on the bacterial LPS (Fig. 6i).

In terms of vaccinology, we believe that the ideal vaccine for the aquaculture industry should be immersion–oral. Although, *E. ictaluri* Δagne and Δugd conferred immune protection to the i.m. injected zebrafish (Fig. 4), only *E. ictaluri* Δagne conferred protection to the immersion bath-vaccinated catfish (Table 3). Also, *E. ictaluri* Δagne does not produce intestinal mucus secretion, making massive shedding to the water after oral vaccination impossible. We conclude that deletion of gne could be used as a component to develop effective immersion *E. ictaluri* live attenuated vaccines.

ACKNOWLEDGEMENTS

This work was supported by USDA grant CRIS-ARZR-2009-01801, NIH R01 AI60557, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Gestión Propia Fellowship, Chile, and School of Life Sciences, Arizona State University (ASU), SOLUR undergraduate fellowship program. We thank David Lowry for assistance at the Electron Microscope Laboratory of the School of Life Sciences, ASU, and the Complex Carbohydrate Center at the University of Georgia for the glycosyl analysis. We thank Jenny Pattengill at Mayo Clinic Scottsdale, AZ, for the histopathology slide preparations. We thank Jacquelyn Kilbourne for assistance at the Biodiagnosis Institute, ASU, animal facility, Greg Golden, ASU, for assistance with manuscript editing, and Erika Arch, Paul Hartig and Tina Hartig at ASU for their logistical support. We thank Dr Ron Thune, Louisiana State University, for providing catfish.

REFERENCES

Resistance of *E. ictaluri* to antimicrobial peptides

Edited by: D. Hood