Deletion of SenX3–RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions

1Queen Mary University of London, Barts and the London, London, UK
2Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
3Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
4TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA

Correspondence
Tanya Parish
t.parish@qmul.ac.uk

Received 27 April 2012
Revised 29 August 2012
Accepted 30 August 2012

Two component regulatory systems are key elements in the control of bacterial gene expression in response to environmental perturbations. The SenX3–RegX3 system is implicated in the control of phosphate uptake in Mycobacterium smegmatis and Mycobacterium tuberculosis. regX3 is reported to be essential in M. smegmatis, but not in M. tuberculosis. We attempted to construct complete senX3–regX3 operon deletion strains of M. smegmatis; initially we found that the operon could only be deleted when another functional copy was provided. Using a strain in which the only functional copy of the operon was present on an integrating plasmid, we attempted to replace the functional copy with an empty vector. Surprisingly, we obtained strains in which the functional copy had been deleted from the chromosome at a low frequency. We deleted the senX3 gene in a similar fashion, but it was not possible to delete regX3 alone. To identify possible compensatory mutations we sequenced the whole genome of two deletion strains and the wild-type. A synonymous single nucleotide polymorphism (SNP) in a lipoprotein was found in all deletion strains, but not the parental strains, and a frameshift mutation in nhaA was identified in three of the four deletion strains. Operon deletion strains were more sensitive to phosphate limitation, showing a reduced ability to grow at lower phosphate concentrations. The M. tuberculosis operon was able to functionally complement the growth phenotype in M. smegmatis under phosphate-replete conditions, but not under low phosphate conditions, reinforcing the difference between the two species. Our data show that, in contrast with previous reports, it is possible to delete the operon in M. smegmatis, possibly due to the accumulation of compensatory mutations, and that the deletion does affect growth in phosphate.

INTRODUCTION

Two-component regulatory systems (TCRs) are a common bacterial mechanism for effecting changes in global regulation in response to specific environmental stimuli (Stock & Guhaniyogi, 2006). Mycobacteria have a number of classical TCRs (Cole et al., 1998); for most systems the environmental signal is detected by a sensory protein which first autophosphorylates a conserved histidine, and then transfers the phosphate to the response regulator. Normally phosphorylation of the regulator leads to activation of its DNA-binding activity resulting in...
induction or repression of the target genes (Stock & Guhaniyogi, 2006).

The SenX3–RegX3 system of mycobacteria has been studied in some detail. In *M. tuberculosis*, the system is required for virulence, with mutant strains showing attenuation in macrophage and murine infection models (Parish et al., 2003; Rickman et al., 2004; Rifat et al., 2009). In contrast, the regulator, RegX3, is essential in the non-pathogenic species *Mycobacterium smegmatis*. All *M. tuberculosis* strains sequenced have non-synonymous mutations in both SenX3 and RegX3, which is likely to affect the function of both proteins (Garcia Pelayo et al., 2009). In addition, variation in the number of repeating units located between the two genes are seen in clinical isolates of *M. tuberculosis* (Supply et al., 1997).

The SenX3 TCR is involved in the response to phosphate limitation, although it is unlikely that the direct stimulus for SenX3 is phosphate concentration (Gebhard & Cook, 2008; Glover et al., 2007; Rifat et al., 2009). Depletion of phosphate leads to upregulation of the senX3–regX3 operon, as well as two systems involved in phosphate uptake, the high-affinity PsSTCAB and PnhDCE phosphate transport systems (Gebhard & Cook, 2008; Glover et al., 2007; Rifat et al., 2009). In *M. smegmatis* expression of the PsSTCAB systems is controlled directly by SenX3–RegX3 (Glover et al., 2007), whereas PnhDCE expression is directly controlled by the regulator PnhF (Gebhard & Cook, 2008) and indirectly controlled by the SenX3 system through its action on PnhF (Gebhard & Cook, 2008).

In *M. tuberculosis* the SenX3 system is part of a larger regulatory complex involving SigC and MtrA. SenX3 expression is dependent on SigC, such that it is significantly downregulated in a SigC deletion strain (Sun et al., 2004). A number of direct interactions with promoter regions are known for the *M. tuberculosis* regulator RegX3. Binding of purified RegX3 to the promoter regions of ald, gtaA and cydB as well as its own promoter has been demonstrated (Himpens et al., 2000; Roberts et al., 2011). Interactions have also been detected with the promoter regions of *Rv0353*, *Rv3132C–3134* (dosSR), *rubAB*, *groEL1*, *ifaa2* and *whiB7* using a bacterial one-hybrid system (Guo et al., 2009).

METHODS

Culture of mycobacteria. *M. smegmatis* mc²155 was grown at 37 °C in Lemo medium (10 g peptone, 5 g Lemo powder, 5 g NaCl, all 1⁰ containing 0.05% (w/v) Tween 80 for liquid cultures or 15 g agar 1⁰ for solid medium. Hygromycin was used at 100 μg ml⁻¹, kanamycin at 20 μg ml⁻¹ and sucrose at 10% (w/v) where required. The low phosphate medium contained 20 mM MOPS pH 6.6, 0.5 g MgSO₄, 2 mg ZnCl₂, 10 mg FeCl₃, 0.5 mg CuCl₂, 0.5 mg MnCl₂, 0.5 mg Na₂B₄O₇, 0.5 mg (NH₄)₄MoO₄, all 1⁰, and 30 mM (NH₄)₂SO₄ supplemented with 2% glucose, 5% BSA and 0.05% Tween 80; phosphate was added to the required concentrations as K₂HPO₄:KH₂PO₄ pH 6.6; cultures were grown at 37 °C with shaking at 100 r.p.m.

Deletion of plasmids. A deletion delivery vector for the entire SenX3–RegX3 region was constructed. The upstream and downstream regions were amplified by PCR using primer pairs Del1/De1 (5’-CCCGGTACCCAGTACCGGACGACGACGAG and 5’-CCCAAGCTTAOCCAGTGGAAGCGGGGAAGAA and Del2/De4 (5’-CCGGTACCCGTACCGGACGACGACGAG and 5’-CCCCGCTACGCGCTGGGATACAAGCTGGGAG); the fragments were cloned into p2NIL (Parish & Stoker, 2000) using the underlined restriction sites as HindIII–KpnI and KpnI–BamHI fragments. The Pad cassette from pGOAL19 (Parish & Stoker, 2000) carrying *lacZ*, *lacZ* and *sacB* was cloned in to this vector to generate the deletion delivery plasmid pELMO2.2. The complementing plasmid pSOUP211.1 was generated by cloning a 2.3 kb fragment carrying the complete *M. tuberculosis* senX3–regX3 operon together with 179 bp of the upstream region carrying the promoter into plNT3, a single copy integrating vector carrying gentamicin resistance (Parish et al., 2005). Inverse PCR was used to generate plasmids with deletions of either *senX3* or *regX3* primer pair ien1/isen2 (5’-gcatatgcccagtctacagccagcag and 5’-gcatatatgccaggagacagcag) was used to generate a 1.1 kb deletion in senX3; primer pair ieq1/iqeq2 (5’-gcatatatgctctccctcacaataac and 5’-gcatatatgtaaccgggtgtggtgag) was used to generate a 0.6 kb deletion in regX3; an *NdeI* site was incorporated into each primer to facilitate rejoining of the plasmid ends.

Construction of recombinant strains. The deletion delivery vector pELMO2.2 was pre-treated with UV (Hinds et al., 1999) and electroporated into *M. smegmatis* to generate single cross-overs (SCOs). The genotype of one SCO was confirmed by Southern blot analysis and this strain was streaked onto antibiotic-free medium to allow the second cross-over to occur. Double cross-overs (DCOs) were selected as white colonies appearing on sucrose-containing medium. Colony PCR was used to determine which allele (wild-type or deletion) were present using primers Check1/Check2 (GACCTGCACTGGTAC-TGGCAG and GACCTGCACTGTGACTGCAC) which amplify 2.3 kb for the wild-type allele and 0.4 kb for the deletion allele.

A merodiploid carrying the *M. tuberculosis* operon was constructed as follows: a plasmid carrying the complete *M. tuberculosis* SenX3–RegX3 operon (pSOUP211.1) was transformed into the SCO strains. DCOs were generated by streaking onto gentamicin-only medium, followed by selection on sucrose-containing medium. DCOs were screened by PCR as before.

Switching was carried out as described previously (Pasley & Parish, 2003). Briefly, strains were electroporated and selection for the incoming vector used to isolate transformants. Transformants were patched onto the relevant antibiotic plates. PCR primers gen1/gen2 (5’-GGGCTCAAGTGGGGCATCAT and 5’-TGTCACCGTTAATCTGCTTG) and kan1/kan2 (5’-CGAGGATCAAATGAACTGC and 5’-GAGGAGTATTTCAACGGGAA) were used to screen for the presence of the gentamicin and kanamycin resistance cassettes respectively.

Analysis of regX3 expression. RNA was isolated from *M. smegmatis* and cDNA was synthesized using random primers. Quantitative PCR was carried out using primer/probe combinations for real-time (Taqman) PCR. For *M. smegmatis* regX3, primers 5’-CCGACGTTGCAAGGCCAT and 5’-TGACGATTCGTCAGACGAG were used with the probe 5’-TGAACGCGGCGACACGA.
For *M. tuberculosis* regX3, primers 5′-ATCTGATGCTGCTGGGATGT and 5′-ACCCACCTGTGATCTGCTAT were used with the probe 5′-TGGCGGGCTGGCTGCCAGCT. For *M. smegmatis* sigA, primers 5′-AAGCGGGCAGCCAAGAG and 5′-TCGAGATCGTGTCACCTCAA were used with probe 5′-TTGGGCGCGCTTGGCC.

Whole genome sequencing. Genomic DNA was prepared from *M. smegmatis* strains and whole genome sequencing carried out as previously described (Ioerger et al., 2010). SNPs were confirmed by PCR amplification and sequencing.

RESULTS AND DISCUSSION

Construction of a senX3–regX3 operon deletion in M. smegmatis

We are interested in the role of the SenX3–RegX3 two component regulatory system in mycobacteria. We had previously constructed a deletion strain of *M. tuberculosis* in which we removed the only copy of regX3 from the genome; this strain showed a growth defect *in vitro* (in axenic culture and in macrophages) and *in vivo* in the mouse model of infection (Parish et al., 2003). Work with other deletion or transposon mutants of RegX3 and/or SenX3 has confirmed that this two component system is required for infection in mice and guinea pigs (Parish et al., 2003; Rickman et al., 2004; Rifat et al., 2009).

In order to extend our studies we attempted to construct a deletion strain in *M. smegmatis*. During this work, other authors published the surprising observation that RegX3 was essential in *M. smegmatis* (Glover et al., 2007), although it can be easily deleted from *M. tuberculosis* (Ewann et al., 2002; Parish et al., 2003; Rickman et al., 2004; Rifat et al., 2009). This suggests there are differences in the regulon between the two species which would benefit from a deletion strain. Glover et al. (2007) attempted to construct a regX3 mutant and showed that it could only be achieved when complemented with a second copy. They also attempted to generate a senX3–regX3 double deletion unsuccessfully, but in this case they did not show it could be achieved after complementation. In both cases, the mutants were marked with a kanamycin resistance gene, which could have polar effects. We attempted to construct an unmarked deletion of the complete operon to assess if it were truly essential. Using a two-step homologous recombination procedure (Parish & Stoker, 2000) we screened 183 DCOs; all were wild-type. When a merodiploid strain containing the functional *M. tuberculosis* operon was used, we were able to delete the entire chromosomal operon in 7/7 DCOs screened. Southern analysis confirmed that all had lost the wild-type copy of the operon (Fig. 1). This suggests that the operon is essential, and also indicates that the *M. tuberculosis* system is functional and able to complement for the *M. smegmatis* system. Unusually, all of the DCOs we screened were deletion alleles, suggesting that there may be a selective pressure against the presence of both systems simultaneously, possibly from interference.

These data support the work previously reported showing that the chromosomal operon is essential for growth (Glover et al., 2007). However, in the previous experiments, no attempt to remove the second functional copy was made after the chromosomal deletion was constructed. In order to address this omission, we attempted to remove the integrated copy of the operon; we made use of our switching strategy in which the resident integrated vector (carrying the operon) is replaced by a newly transformed control vector (no operon) simply by selecting for the

Fig. 1. Complementation of the senX3–regX3 operon of *M. smegmatis* with the operon from *M. tuberculosis*. The operon deletion delivery vector was electroporated into wild-type *M. smegmatis* to generate the SCO strain. An integrating vector carrying the *M. tuberculosis* senX3–regX3 operon was introduced into the SCO strain generating a merodiploid; DCOs in which the chromosomal copy of the operon was deleted were isolated in this background (del-int strains) but not in the wild-type background. (a) Expected genotypes for strains showing predicted sizes for hybridization with the *M. smegmatis* senX3 upstream region probe for the wild-type, SCO and del-int strains. (b) Southern analysis of strains. Lanes: 1, 1 kb ladder; 2, Lambda *HindIII* ladder; 3, SCO strain; 4, wild-type strain; 5–7, del-int strain carrying the *M. tuberculosis* operon only. The wild-type, deletion and SCO bands are indicated. Cross-hybridization of the upstream probe to another region was noted in all strains (weak band at 4.5 kb); this was not seen with other probes (data not shown). Note that the *M. smegmatis* probe does not hybridize to the *M. tuberculosis* operon.
The del-int strain of *M. smegmatis* (deletion of chromosomal operon, integrated copy of the *M. tuberculosis* operon) with the genotype *senX3*_{Msm}*regX3*_{Msm}Δ [*senX3*_{Mtb}*regX3*_{Mtb} Gm L5 int] was electroporated with either pSM128 (streptomycin resistance) (Dussurget *et al.*, 1999) or pKP186 (kanamycin resistance) (Springer *et al.*, 2001) and the incoming vector was selected for. We obtained a very low frequency of transformants which had lost gentamicin resistance but gained either streptomycin or kanamycin resistance, indicating that plasmid switching had occurred. PCR and Southern analyses confirmed the loss of the *M. tuberculosis* operon, and the chromosomal deletion of the *M. smegmatis* operon (Fig. 2).

We also attempted to delete *senX3* and *regX3* individually using the same strategy. Plasmids carrying either *senX3* alone or *regX3* alone were switched in to the del-int strain. A control plasmid with the complete operon successfully switched. A low number of transformants were obtained for both plasmids; on patching and PCR analysis, we determined that the RegX3 only vector had replaced the operon in some of the transformants (loss of gentamicin resistance, lack of wild-type PCR product, presence of deletion PCR product). Southern analysis of a switched (deletion) strain and a cointegrant, in which both plasmids were resident, is shown (Fig. 2). In contrast the SenX3 only vector could not replace the operon and all transformants had the wild-type operon. Thus we were able to delete *senX3* independently, but not *regX3* as predicted. In the *senX3* deletion strain, *regX3* should still be expressed from the same (native) promoter as for the operon. We confirmed this by RT-qPCR; *M. tuberculosis* *regX3* mRNA was seen in this strain (relative expression to *sigA* of 0.2), but not in the wild-type strain (zero expression). *M. smegmatis* *regX3* was seen in the wild-type strain (relative expression to *sigA* of 0.2), but not in the deletion strain (zero expression).

The isolation of an operon deletion was surprising, given previous data suggesting that it was not possible, as well as our own data confirming the essentiality of *regX3*. Using the same method we were able to construct *senX3* deletions, but not *regX3* deletions. It is not immediately obvious why were able to obtain a deletion mutant using the switching method, but not with a two-step homologous recombination method. We characterized one of the mutant strains carrying the empty vector pKP186 (genotype *senX3*_{Msm}*regX3*_{Msm}Δ [kan, L5 int]) carefully to confirm it did indeed lack the operon; Southern analysis using the *M. smegmatis* and the *M. tuberculosis* operons as probes confirmed their absence (Fig. 2). PCR amplification of the resistance markers in the integrating vectors confirmed that the gentamicin marker had been lost (data not shown). Cultures of the mutant strains (10⁸ c.f.u.) were plated onto gentamicin to confirm that all cells were sensitive and that there was no residual population carrying the operon plasmid. One further possibility to account for our inability to obtain a mutant using the two-step method could be that the mutants are sucrose-sensitive, since the mutant isolation method involved plating onto sucrose. We tested the ability of the deletion strain to grow on plates containing sucrose, but it was fully viable and showed no defects.
Table 1. SNPs in strains of *M. smegmatis*

SNPs identified in recombinant *M. smegmatis* strains. Whole genome sequencing was used to identify SNPs in two operon deletion strains (1:1 and 2:1). Mutations that were found in both deletion strains are shown. SNPs were confirmed by amplification and sequencing of the locus in all strains including the wild-type, SCO, SenX3 deletion strain (Mutant 1) and SenX3–RegX3 deletion strains (Mutants 1:1, 2:1, 1:2 and 2:2). nt, Not tested; –, no frameshift.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Gene</th>
<th>Genome location</th>
<th>SNP</th>
<th>Wild-type</th>
<th>SCO</th>
<th>SenX3A Mutant 1</th>
<th>SenX3–RegX3A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mutant 1:1</td>
<td>Mutant 2:1</td>
</tr>
<tr>
<td>Both strains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMEG_0935</td>
<td>Upstream</td>
<td>1016382</td>
<td>Non-coding</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MSMEG_0938c</td>
<td>CHP</td>
<td>1018768</td>
<td>sSNP Ser</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>MSMEG_3436</td>
<td>Toxin</td>
<td>3506652</td>
<td>Gly12 Val</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>MSMEG_3851</td>
<td>lppI</td>
<td>3922464</td>
<td>sSNP Gly</td>
<td>G</td>
<td>G</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Mutant 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMEG_2775</td>
<td>nhaA</td>
<td>2841396</td>
<td>Frameshift</td>
<td>–</td>
<td>–</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>MSMEG_4064</td>
<td>Alcohol dehydrogenase</td>
<td>4137385</td>
<td>sSNP His118</td>
<td>G</td>
<td>nt</td>
<td>nt</td>
<td>A</td>
</tr>
<tr>
<td>MSMEG_4133</td>
<td>Transposase</td>
<td>4214324</td>
<td>Downstream</td>
<td>G</td>
<td>nt</td>
<td>nt</td>
<td>T</td>
</tr>
<tr>
<td>MSMEG_4133</td>
<td>Transposase</td>
<td>4214329</td>
<td>Downstream</td>
<td>C</td>
<td>nt</td>
<td>nt</td>
<td>A</td>
</tr>
<tr>
<td>MSMEG_4133</td>
<td>Transposase</td>
<td>4214350</td>
<td>Downstream</td>
<td>A</td>
<td>nt</td>
<td>nt</td>
<td>C</td>
</tr>
<tr>
<td>Mutant 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMEG_0144c</td>
<td>HNH endonuclease</td>
<td>167650</td>
<td>sSNP Glu</td>
<td>T</td>
<td>nt</td>
<td>nt</td>
<td>T</td>
</tr>
<tr>
<td>MSMEG_0144c</td>
<td>HNH endonuclease</td>
<td>167668</td>
<td>His270 Gln</td>
<td>G</td>
<td>nt</td>
<td>nt</td>
<td>G</td>
</tr>
<tr>
<td>MSMEG_3504</td>
<td>MP</td>
<td>3567074</td>
<td>Asp75 Glu</td>
<td>C</td>
<td>nt</td>
<td>nt</td>
<td>C</td>
</tr>
</tbody>
</table>
SenX3–RegX3Δ strains have a synonymous single nucleotide polymorphism (SNP) in *lppI* and a frameshift in *nhaA*

The *senX3*–*regX3*Δ strains were isolated at a low frequency leading us to hypothesize that a compensatory mutation had occurred allowing the deletion of the regulatory system. If RegX3 were required for the induction of expression of an essential gene under *in vitro* conditions, then a mutation which resulted in constitutive or dysregulated expression would lead to RegX3 being dispensable. Alternatively if RegX3 repressed the expression of a toxic gene, then mutation to disrupt the gene function would have a similar effect.

In order to determine if the deletion strains had compensatory mutations, we sequenced the complete genome of two isolates and the wild-type. A comparison of the three strains revealed a number of SNPs (Table 1), which were confirmed by amplification and sequencing of each locus. Four mutations that differed from wild-type were found, but three of these were also present in the SCO (MSMEG0935, MSMEG0938, MSMEG3436). Since we were unable to construct a mutant from the SCO, we discounted these as potential compensatory mutations. Only one mutation (MSMEG 3851, *lppI*) was seen in both strains; we sequenced this locus in two additional operon deletion strains and the SenX3 deletion strain and found that all strains had the same SNP which was not seen in the SCO or wild-type. However, this is a synonymous SNP in G138 (GGG to GGA). Changes in codon usage can affect translational efficiencies and subsequent levels of proteins, but in this case the codon usage for GGG or GGA is similar, suggesting that there would be little effect on protein levels.

Fig. 3. Phosphate-limited growth of *senX3*–*regX3* deletion strains of *M. smegmatis*. Strains were grown in varying concentrations of phosphate: (a) 1 mM, (b) 100 µM, (c) 10 µM phosphate. □, Wild-type; ◆, Shera 1:1 (operon deletion); △, Shera 2:1 (operon deletion); ♦, Kat1 (*senX3* deletion). Results are the mean ± SD of three independent cultures.

Fig. 4. Phosphate-limited growth of *senX3*–*regX3* deletion strains of *M. smegmatis*. Strains were grown in varying concentrations of phosphate: (a) 1 mM, (b) 100 µM, (c) 10 µM phosphate. □, Wild-type; ◆, SCO; △, merodiploid; ♦, del-int strain (carrying copy of *M. tuberculosis* operon only). Results are the mean ± SD of three independent cultures.
Of the remaining mutations, none was held in common by the two fully sequenced strains; strain 1:1 had four SNPs and strain 2:1 had three SNPs. We sequenced several of these mutations in the two additional operon deletion strains and the SenX3 deletion strains. We found that the mutation in nhaA was seen in all of these strains bar one. Since we had observed the same mutation in nhaA in four of the deletion strains, but it was not present in the SCO, we assumed that this SNP had arisen during culture of the merodiploid for transformation. Although not all of the deletion strains had the mutation, we considered this to be a good candidate as a compensatory mutation; presumably in the strain without an nhaA mutation, another compensatory mutation existed, possibly in either an endonuclease (MSMEG_0144c) or a membrane protein (MSMEG_3504).

The SNP in nhaA leads to a frameshift and so would inactivate its function. This suggests that lack of RegX3 may lead to uncontrolled expression of nhaA with lethal consequences for the cell. Thus we propose that RegX3 acts as a negative regulator of NhaA expression. Sequence similarity suggests that NhaA is a sodium–proton antiporter which is responsible for the exchange of Na\(^+\) and H\(^+\) across the cytoplasmic membrane, resulting in net export of sodium from the cell (Padan et al., 2004). In \textit{E. coli} NhaA plays a key role in pH homeostasis, maintaining the intracellular pH between determined levels regardless of the external environment. Dysregulation of the system could lead to increased import of protons and a drop in intracellular pH.

\textit{M. tuberculosis} does not have a homologue of nhaA which could account for the difference in the essentiality of RegX between the two species, since RegX3 is not required to repress its transcription. \textit{M. tuberculosis} has predicted homologues of KefB, a potassium antiporter, and ChaA, a calcium antiporter, suggesting subtle differences in pH homeostasis. Interestingly KefB is upregulated in \textit{M. tuberculosis} during phosphate limitation, suggesting that it may be another member of the RegX3 regulon in \textit{M. tuberculosis} (Rifat et al., 2009). KefB plays an important role during macrophage infection, since mutants of \textit{M. bovis} BCG fail to prevent phagosome acidification (Stewart et al., 2005). \textit{M. tuberculosis} is more susceptible to weak acids and is less able to maintain intracellular pH under acidic conditions (Zhang et al., 2003), again reinforcing the differences between the two species.

SenX3 or RegX3 deletion strains show growth defects in low phosphate

The SenX3–RegX3 system is known to regulate the expression of several genes involved in phosphate accumulation in \textit{M. smegmatis}, so we determined whether strains had growth defects under conditions of limiting P\(_i\) (Figs 3 and 4). As previously noted, the growth of \textit{M. smegmatis} is limited when phosphate concentrations drop below 10 \(\mu\text{M}\). We looked at growth under various concentrations of phosphate. We compared the growth of the two operon deletion strains and the senX3 deletion strains to the wild-type. All strains grew similarly under phosphate-replete conditions (1 mM); however, the deletion strains showed a growth defect under phosphate-limiting conditions with little to no growth when phosphate was omitted from the medium. Growth of the deletion strains was retarded even at relatively high levels of phosphate (100 \(\mu\text{M}\)). These data confirm that RegX3-dependent changes in gene expression are required for the efficient uptake of phosphate under limiting conditions (Glover et al., 2007; Rifat et al., 2009).

We also assessed the ability of the merodiploid and del-int strain carrying the \textit{M. tuberculosis} operon to grow under phosphate-limiting conditions. The merodiploid strain containing the operon from both species was able to grow as well as the wild-type under phosphate limitation. Surprisingly, the del-int strain was compromised for growth under low phosphate, demonstrating that the \textit{M. tuberculosis} operon could not fully complement for its counterpart in \textit{M. smegmatis}. These data also suggest that the essentiality of the operon in \textit{M. smegmatis} is not related to its role in regulating phosphate uptake.

Conclusion

We demonstrated that deletion of the \textit{senX3-regX3} operon is possible in \textit{M. smegmatis} and suggest that this is due to compensatory mutations in the genome; there was no common nSNP in all four deletion strains we examined. However, we did identify an SNP in three strains and we propose that this mutation is compensatory and leads to the inactivation of the antiporter NhaA. It remains likely that there are other compensatory mutations that could allow the deletion of the operon. Our data reinforce the role of the SenX3–RegX3 TCR in responding to phosphate levels in the environment in \textit{M. smegmatis}. The isolation of deletion strains in the operon, previously considered to be essential, provides a route forward to understanding the role of this global regulator in mycobacteria.

ACKNOWLEDGEMENTS

This work was funded by studentships to J. N. J. from the Medical Research Council (UK) and to Y. P. from Barts and the London charity and the BBSRC (UK). Work was part funded by the EU FP7 project HEALTH-F3-2011-260872.

REFERENCES

Edited by: R. Manganelli