Cytochrome c_4 is required for siderophore expression by *Legionella pneumophila*, whereas cytochromes c_1 and c_5 promote intracellular infection

Emily S. Yip, Denise M. Burnside and Nicholas P. Cianciotto

A panel of cytochrome c maturation (ccm) mutants of *Legionella pneumophila* displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a *Legionella*-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by *L. pneumophila*. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c_1 and cycB mutants lacking cytochrome c_6 had normal siderophore expression, cyc4 mutants defective for cytochrome c_4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c_4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c_6 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.

INTRODUCTION

Legionella pneumophila is an aerobic, Gram-negative bacterium that is best known as the agent of Legionnaires’ disease, a potentially fatal form of pneumonia (Diederen, 2008). In its aquatic habitat, *L. pneumophila* survives planktonically, within biofilms, and as an intracellular parasite of protozoa (Taylor et al., 2009). Human infection occurs after inhalation of contaminated droplets that originate from a variety of aerosol-generating devices. In the lung, *L. pneumophila* grows in macrophages, and bacterial persistence may also involve growth in epithelia and extracellular survival (Allard et al., 2009; Newton et al., 2010). Iron acquisition is a key component of *L. pneumophila* growth, intracellular infection and virulence (Cianciotto, 2002; Cianciotto, 2008a, b). Factors involved in *Legionella* Fe$^{3+}$ assimilation include an inner-membrane Fe$^{3+}$ transport (FeoB) system and a secreted pyomelanin pigment that has Fe$^{3+}$ reductase activity (Chatfield & Cianciotto, 2007; Robey & Cianciotto, 2002). *L. pneumophila* feoB mutants are impaired in lung infection, confirming the importance of Fe$^{3+}$ assimilation for pathogenesis (Robey & Cianciotto, 2002). The principal aspect of *L. pneumophila* Fe$^{3+}$ uptake is legiobactin. When *L. pneumophila* strains are grown in a low-iron, chemically defined medium (CDM), the siderophore is detected by the chrome azurol S (CAS) assay (Allard et al., 2006; Liles et al., 2000). Legiobactin is also detected in a bioassay, in which CDM culture supernatants or purified siderophore stimulate the growth of iron-starved legionellae (Allard et al., 2006, 2009). Some but not all other *Legionella* species appear to make legiobactin (Allard et al., 2006; Starkenburg et al., 2004). Two linked genes, IbtA and IbtB, have been implicated in the production of legiobactin. LbtA, required for the synthesis of siderophore, has sequence similarity to several other siderophore synthetases (Allard et al., 2006). LbtB is believed to be an inner-membrane transporter that promotes the secretion of legiobactin (Allard et al., 2006). Importantly, IbtA mutants, but not their complemented derivatives, are defective for infection of the murine lung, documenting a role for legiobactin in *L. pneumophila* virulence (Allard et al., 2009).

In addition to characterizing FeoB, ferric reductase and legiobactin, we previously determined that the ccm locus promotes *L. pneumophila* growth in low-iron conditions,
suggesting that the cytochrome c maturation system has a role in iron acquisition (Naylor & Ciancio, 2004; Viswanathan et al., 2002). In *L. pneumophila* and a variety of other bacteria, the *ccm* locus is an eight-gene operon (*ccmA* through *ccmH*) that encodes a multi-protein complex which transports haem across the inner membrane and then attaches it to apocytochromes in the periplasm as the final step in the maturation of c-type cytochromes (Ciancio, et al., 2005; Kranz, et al., 2009; Sanders et al., 2010). Also important for the maturation of c-type cytochromes are the Sec translocon, which delivers (reduced) apocytochromes across the inner membrane, and the extracytoplasmic DsbA/DsbB pathway, which converts the reduced apocytochromes to the oxidized forms that are acted on by the Ccm system (Sanders et al., 2010). Initially, we found that mutations in *ccmC* reduced the plating efficiency of *L. pneumophila* on low-iron buffered charcoal yeast extract (BCYE) agar (Pope et al., 1996; Viswanathan et al., 2002). The *ccmC* mutants were also impaired for infection of *Hartmannella vermiformis* amoebae, human macrophage-like cells (U937 and THP-1 lines) and the murine lung (Naylor & Ciancio, 2004; Viswanathan et al., 2002). The infectivity defect was exacerbated when the host cells were treated with the Fe³⁺ chelator desferrioxamine but ameliorated when supplementary iron was added, suggesting that the *ccmC* mutants are impaired for both extracellular and intracellular iron acquisition (Naylor & Ciancio, 2004; Viswanathan et al., 2002). Complementation analysis confirmed that *ccmC* is required for *L. pneumophila* growth on low-iron media and during infection (Viswanathan et al., 2002). By characterizing additional *ccmB, ccmC* and *ccmF* mutants, we confirmed that the entire Ccm system is required for *L. pneumophila* growth in low-iron conditions (Naylor & Ciancio, 2004). We now report that *L. pneumophila* Ccm and more specifically cytochrome *c*₄ are required for the expression of legiobactin.

METHODS

Bacterial strains. *L. pneumophila* 130b (ATCC strain BAA-74, also known as AA100 or Wadsworth) served as our wild-type (Allard et al., 2009). This serogroup 1 strain is a virulent clinical isolate. Previously described mutants of 130b used in this study were as follows: NU257 and NU295 are *ccmC* mutants, NU292 and NU293 *ccmB* mutants, NU296 and NU297 *ccmF* mutants, NU269 an *feoB* mutant, and NU302 an *lbtA* mutant (Allard et al., 2006; Naylor & Ciancio, 2004; Robey & Ciancio, 2002; Viswanathan et al., 2002). *Escherichia coli* DH5α (Invitrogen) was the host for recombinant plasmids.

Bacteriological media and extracellular growth experiments. *L. pneumophila* strains were routinely cultured at 37 °C on BCYE agar, which has an iron supplement consisting of 0.25 g of ferric pyrophosphate per litre (Allard et al., 2006). When appropriate, the agar was supplemented with chloramphenicol at 6 µg ml⁻¹, kanamycin at 25 µg ml⁻¹ or gentamicin at 2.5 µg ml⁻¹. To judge the basic extracellular growth capacity of *L. pneumophila*, bacteria grown on BCYE agar were inoculated into buffered yeast extract (BYE) broth and then the optical density of the cultures was determined at 660 nm (OD₆₆₀) (Hickey & Ciancio, 1997; Liles et al., 2000; Viswanathan et al., 2002). To assess the extracellular growth of *L. pneumophila* in iron-limiting conditions, strains were inoculated in deferrated CDM and growth was monitored spectrophotometrically (Allard et al., 2006). To judge growth on iron-limited solid medium, legiobaeae were tested for their ability to form colonies on BCYE agar that lacked its iron supplement (Allard et al., 2006; Robey & Ciancio, 2002; Viswanathan et al., 2002). Bacteria were pre-cultured for 3 days on standard BCYE agar, suspended in PBS at 1 × 10⁷ c.f.u. ml⁻¹, and then 10 µl aliquots taken from 10-fold serial dilutions in PBS were spotted on the assay medium. Growth was recorded after 4 days of incubation at 37 °C. *E. coli* was grown in Luria–Bertani medium, containing kanamycin (50 µg ml⁻¹), gentamicin (2.5 µg ml⁻¹), chloramphenicol (30 µg ml⁻¹) or ampicillin (100 µg ml⁻¹).

Siderophore assays. Legiobactin production, secretion and utilization were examined as described previously (Allard et al., 2006, 2009). Briefly, *L. pneumophila* strains were grown in *BYE* to an OD₆₆₀ of 1.0, inoculated into deferrated CDM to an OD₆₆₀ of 0.3, and then incubated at 37 °C. At 24 h post-inoculation, siderophore activity in supernatants was quantified using the CAS assay as previously done, with desferrioxamine serving as the standard (Allard et al., 2006, 2009; Liles et al., 2000; Starkenburg et al., 2004). Supernatants were tested for siderophore biological activity by examining their ability to promote the growth of the NU269 *feoB* mutant on non-iron-supplemented BCYE agar (Allard et al., 2006, 2009). NU269 lacks an inner-membrane Fe³⁺ permease and thus is defective for uptake of Fe²⁺ but not Fe⁴⁺ (Robey & Ciancio, 2002). To compare wild-type and mutant *L. pneumophila* for their ability to use legiobactin, bacteria were pre-cultured for 3 days on BCYE agar, suspended in PBS, and then 1 × 10⁵ c.f.u. were spread onto non-iron-supplemented BCYE agar containing 400 µM 2,2’-dipyridyl (Allard et al., 2006). Small wells cut in the centre of the agar were filled with 75 µl of supernatants obtained from deferrated CDM cultures. Control wells contained deferrated CDM, 5 µM Fe³⁺ pyrophosphate or 20 µM Fe⁴⁺ ammonium sulfate. Growth around the wells was assessed after incubation at 25 °C for 8–10 days.

DNA, RNA and protein analysis. DNA was isolated from *L. pneumophila* as before (Ciancio & Fields, 1992). DNA sequencing was done at the Northwestern University Biotech Lab, with primers from Integrated DNA Tech. Reverse transcription (RT)-PCR was done as previously described (Allard et al., 2006; Liles et al., 1998). RNA was isolated from 18 h CDM or BYE cultures of *L. pneumophila* using RNA STAT-60 according to the manufacturer’s instructions (TEL-TEST B, Inc.). Total cDNA was amplified with random hexamers (Invitrogen) and detected using standard PCR. Primer pairs used for amplifying the *ccm*, *petC* (encoding cytochrome *c*₁ of ubiquinol-cytochrome *c*₁ reductase), *cytc* (cytochrome *c*₃), *cytB* (cytochrome *c*₃), *lbtA* and *dsbA* genes are listed in Table 1. Control experiments lacking reverse transcriptase were done to rule out contributions from contaminating DNA in the DNase-treated samples. PCR products obtained from genomic DNA confirmed that the mRNAs observed were of the appropriate length. PCR products were separated by agarose-gel electrophoresis and detected with ethidium bromide (Allard et al., 2006; Liles et al., 1998). Homology searches were done through the National Center for Biotechnology Information at http://www.ncbi.nlm.nih.gov/ and *L. pneumophila* databases at http://genolist.pasteur.fr/LegioList/, http://www.ebi.ac.uk/ena/data/view/FR687201 and http://www.ncbi.nlm.nih.gov/genomeprj/48801.

Mutant constructions. To obtain a cytochrome *c*₁ mutant, the *petC* gene was amplified from the genomic DNA of strain 130b by PCR using primers c1-F and c1-R (Table 1), and the resulting 1.6 kb fragment was cloned into pGEM-T Easy (Promega). The resultant plasmid, pGpC, was digested with SphI and ligated to a fragment of pMB2190 that carries a kanamycin-resistance gene (Km⁺) (Rossier et al., 2004). This final construct, pGpC::Km⁺, was then introduced

http://mic.sgmjournals.org
Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’–3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccmB-F (orf1–5–F)</td>
<td>TATATACTCCAGTGGCGCAA</td>
</tr>
<tr>
<td>ccmB-R (ccmB5’–R)</td>
<td>GATATCCACACTAATCCGGGAGC</td>
</tr>
<tr>
<td>ccmC-F (orf2–1–F)</td>
<td>TGGTTGCTGGTGAATACCCTT</td>
</tr>
<tr>
<td>ccmC-R (ccmC5’–R)</td>
<td>GACTCCCTTGCTGATATCCTG</td>
</tr>
<tr>
<td>ccmD-F (ccmD3’–F)</td>
<td>TGGTTGTTTCAAGGATGATGATCCTG</td>
</tr>
<tr>
<td>ccmD-R (ccmC-R)</td>
<td>ACCCTACCTCCTGGATGTTT</td>
</tr>
<tr>
<td>ccmF (ccmF12–F)</td>
<td>AGTAAGGTGCTTGGTGA</td>
</tr>
<tr>
<td>ccmF (ccmE-R)</td>
<td>AGAACAGGATCTCGACCAATG</td>
</tr>
<tr>
<td>ccmG-F (ccmH–F)</td>
<td>TCTCATCATTTGGCCTTCGTCG</td>
</tr>
<tr>
<td>ccmG-R (ccmF–R)</td>
<td>TCTCGGTGCTGGATGTTTT</td>
</tr>
<tr>
<td>ccmH-F (ccmG3’–F)</td>
<td>TCCGCTACGGGATATCCGGGATA</td>
</tr>
<tr>
<td>ccmH-R (ccmH5’–R)</td>
<td>TCTCAGGATTCCTGGATTTGGCAT</td>
</tr>
<tr>
<td>petC-F (c1–F)</td>
<td>GCGCGCTAACATCAATGTTG</td>
</tr>
<tr>
<td>petC-R (c1–R)</td>
<td>CTTCGCGACGGGCTACTG</td>
</tr>
<tr>
<td>cyc4-F (c4–F)</td>
<td>GGTGTTTTCGCTGTTGTCCTGC</td>
</tr>
<tr>
<td>cyc4-R (c4–R)</td>
<td>CGATGTTGCTGTTGCAAGTC</td>
</tr>
<tr>
<td>cyc5-R (c5–F)</td>
<td>GCTCCACGGCCTTGGCATG</td>
</tr>
<tr>
<td>cycR (c5–R)</td>
<td>GTTCTTCAATCCGAGAAG</td>
</tr>
<tr>
<td>lbtA-F</td>
<td>CATTGGTCGATGGCCCTT</td>
</tr>
<tr>
<td>lbtA-R</td>
<td>GCACCGGGAATTTAGGAT</td>
</tr>
<tr>
<td>dsbA-F</td>
<td>GCCAAAGGCTATTTACACG</td>
</tr>
<tr>
<td>dsbA-R</td>
<td>CTCCTCGGCTATTGGTGA</td>
</tr>
</tbody>
</table>

RESULTS

L. pneumophila ccm promotes the expression of legiobactin

Since our initial studies on ccm mutants (Naylor & Cianciotto, 2004; Viswanathan et al., 2002), we have improved our ability to produce and detect *L. pneumophila* siderophore (Allard et al., 2006, 2009). Therefore, as a next step toward understanding the mechanistic connection between Ccm and *Legionella* growth in low-iron conditions, we examined anew six of our ccm mutants for their expression of legiobactin. Two mutants (NU292, NU293) contained an inactivated *ccmB*, two (NU257, NU295) had mutations in *ccmC*, and two (NU296, NU297) were defective for *ccmF* (Table 1). The mutants were grown in deferrated CDM, and then cell-free culture supernatants were tested in the CAS assay. All of these *ccm* mutants displayed a significant reduction in CAS reactivity when compared to their wild-type parent, strain 130b (Fig. 1b). Over the course of multiple experiments, the siderophore activity of the mutants ranged from 20 to 50 % of that of wild-type. Further trials confirmed that the reduction in CAS reactivity exhibited by the *ccm* mutants was comparable to that of an *lbtA* mutant (Allard et al., 2006) that is known to not make legiobactin (Fig. 1c). To confirm the impact of the *ccm* mutations on siderophore production, we tested the supernatants from these mutants in a legiobactin-specific bioassay. Like the samples derived from the *lbtA* mutant, supernatants obtained from the *ccm* mutants were unable to stimulate the growth of iron-starved legionellae (Fig. 1d). Ccm mutants were, however, capable of using supplied legiobactin obtained from wild-type supernatants in order to stimulate their growth on iron-deplete media (data not shown). Taken together, these data indicated that an intact *ccm* locus is required for the production but not utilization of legiobactin. In support of this conclusion, RT-PCR analysis confirmed that genes within the *ccm* locus are expressed when wild-type 130b is grown in deferrated CDM (Fig. 2a). This analysis additionally indicated that *ccm* gene transcripts also occur when 130b is grown in BYE broth (Fig. 2a), indicating that *ccm* expression occurs in both minimal, iron-depleted conditions and rich, iron-replete medium, compatible with its having significance for multiple facets of bacterial growth besides siderophore expression. When RT-PCR analysis was extended to include *lbtA*, we found that the legiobactin synthesis gene was expressed in the *ccm* mutants (Fig. 3a, left panel), implying that the absence of a Ccm system (in *ccm* mutants) did not trigger some sort of feedback that shut down *lbtA* and legiobactin synthesis. Based on these data and coupled with the fact that Ccm operates within the inner membrane and periplasm, we posited that Ccm is promoting the maturation or secretion of legiobactin.

Cytochrome c₄ is required for the expression of legiobactin

Since the Ccm system is best known for its role in the maturation of c-type cytochromes (Sanders et al., 2010), we sought to determine the importance of individual c-type cytochromes for legiobactin expression. After examining the genomes of all five sequenced strains of *L. pneumophila* (strains Philadelphia-1, Paris, Lens, Corby, Alcoy and 130b) (Cazalet et al., 2004; Chien et al., 2004; D’Auria et al., 2010; Glöckner et al., 2008; Schroeder et al., 2010), we...
targeted the three genes encoding c-type cytochromes. The first gene (*petC*) encodes cytochrome *c1*, which is 28 kDa in size and possesses one haem-attachment site (the motif CXXCH) (Nomenclature Committee of the International Union of Biochemistry, 1992; Sanders *et al.*, 2010). As is typical in other bacteria (Davidson & Daldal, 1987; Thöny-Meyer *et al.*, 1991), *L. pneumophila petC* is the last gene in an operon with the other two genes (*petA* and *petB*) encoding the Rieske iron–sulfur protein and cytochrome *b* (Rossier & Cianciotto, 2005). The second gene (*cyc4*) that we targeted encodes cytochrome *c4*, which is 21 kDa in size and a di-haem (i.e. with two CXXCH motifs) protein (Chang *et al.*, 2010; Nomenclature Committee of the International Union of Biochemistry, 1992; Deudom *et al.*, 2008; Giudici-Orticoni *et al.*, 2000). The third gene (*cycB*) gene encodes a 15 kDa, mono-haem cytochrome *c5* (Chang *et al.*, 2010; Nomenclature Committee of the International Union of Biochemistry, 1992; Klarskov *et al.*, 1998; Li *et al.*, 2010). Both *cyc4* and *cycB* are in a two-gene operon, with the gene downstream of *cyc4* being *dsbA*, and the gene downstream of *cycB* being *dsbB*. As noted earlier, *DsbA* and *DsbB* mediate the oxidative folding of apocytochrome *c* molecules prior to their interaction with the Ccm system (Heras *et al.*, 2009; Sanders *et al.*, 2010). In the strain 130b database, *petC*, *cyc4* and *cycB* are also denoted by the ORF designations *lpw_29591*, *lpw_01241* and *lpw_29881*, respectively (Schroeder *et al.*, 2010). Using allelic exchange, as we have done many times to make other *L. pneumophila* mutants of strain 130b (Allard *et al.*, 2006; Pearce & Cianciotto, 2009; Stewart *et al.*, 2009), we constructed multiple mutants inactivated for either *petC* (NU375, NU376), *cyc4* (NU379, NU380) or *cycB* (NU381, NU382) and then tested them in the legiobactin assays. Whereas the *petC* mutants and *cycB* mutants behaved as the wild-type did, the *cyc4* mutants displayed a reduction in CAS activity that was comparable to that of the *ccm* mutants (Fig. 4a). In a similar vein, supernatants from the *cyc4* mutants were unable to stimulate the growth of iron-starved legionellae, whereas supernatants from the *petC* mutants and *cycB* mutants did stimulate growth (Fig. 4b). Because multiple independently derived *cyc4* mutants had the same phenotype, the loss of siderophore activity in these strains was due to the *cyc4* mutation rather than a spontaneous second-site mutation. Furthermore, because the *cyc4*
Expression of the ccm transcripts. Wild-type 130b was grown in deferrated CDM (CDM–Fe) or standard BYE broth (BYE), and then RNA was analysed by RT-PCR using primers specific to ccmC, ccmE, ccmG or ccmH. The PCR products obtained from mRNA templates was confirmed by the lack of product obtained when the reaction did not incorporate RT (–RT lanes). In additional experiments, ccmB and ccmF transcripts were detected in 130b growing in CDM–Fe (data not shown). (b) Expression of the c-type cytochrome genes. RNA from the wild-type was analysed by RT-PCR utilizing primers specific to petC, cyc4 or cycB. The results presented are representative of three independent experiments.

Fig. 2. Transcription of the ccm, petC, cyc4 and cycB genes. (a) Expression of ccm transcripts. Wild-type 130b was grown in deferrated CDM (CDM–Fe) or standard BYE broth (BYE), and then RNA was analysed by RT-PCR utilizing primers specific to ccmC, ccmE, ccmG or ccmH. The PCR products obtained from mRNA templates was confirmed by the lack of product obtained when the reaction did not incorporate RT (–RT lanes). In additional experiments, ccmB and ccmF transcripts were detected in 130b growing in CDM–Fe (data not shown). (b) Expression of the c-type cytochrome genes. RNA from the wild-type was analysed by RT-PCR utilizing primers specific to petC, cyc4 or cycB. The results presented are representative of three independent experiments.

None of the newly made cytochrome mutants displayed a growth defect in standard BYE broth (data not shown) or on standard BCYE agar (Fig. 5a), indicating that they do not have a generalized growth defect. As noted above, *L. pneumophila* ccm mutants show a reduced ability to grow on BCYE agar that lacks an iron supplement (Naylor & Cianciotto, 2004; Viswanathan et al., 2002). However, none of the new mutants showed this defect (Fig. 5b), indicating that the growth defect of the ccm mutants on non-iron-supplemented media is not due to the loss of one of the c-type cytochromes. This is compatible with the fact that lbtA mutants grow normally on non-iron-supplemented BCYE agar (Allard et al., 2006) (Fig. 5b). Turning to intracellular growth assessments, the petC mutants and cycB mutants, but not the cyc4 mutants, exhibited a reduced ability to grow in amoebal hosts (Fig. 6a, b). That cyc4 mutants grew like the wild-type did was not at odds with their lack of siderophore and impaired growth on iron-depleted media, because as we previously determined, legiobactin is not needed for intracellular infection under standard conditions (Allard et al., 2006). The defects of the petC mutants and cycB mutants were noted in *H. vermiformis* and *A. castellanii* (Fig. 6a, b). Whereas the petC mutants displayed a relatively modest infectivity defect of 10- to 100-fold, depending upon the time post-inoculation, the cycB mutants appeared completely unable to infect the protozoa. Indeed, the cycB mutants were as defective as the ccmC mutants were (Fig. 6a, b), implying that the importance of Ccm for *L. pneumophila* infection of amoebae is due largely to a need for cytochrome c₄. Mirroring the results obtained from the amoebal assays, the petC mutants and cycB mutants, but not the cyc4 mutants, were impaired for growth in macrophages (Fig. 6c). One difference was the fact that the cycB mutant was not nearly as defective as a ccmC mutant was, suggesting that the importance of Ccm has a more complex basis in macrophages than it does in amoebae. Because multiple independently derived petC mutants had impaired growth in host cells and because there is no transcriptionally linked gene downstream of petC, the loss of infectivity by the petC mutants was due to the loss of PetC rather than any second-site mutation or polarity. Given that multiple cycB mutants showed impaired intracellular infection, the loss of infectivity in these mutants was due to the mutation in cycB as opposed to a second-site mutation. Since cycB mutants and the ccm mutants (which lack c-type cytochromes because of a mutation in a distinct chromosomal locus) had similar infectivity defects, we further...
conclude that these mutant phenotypes resulted from the loss of cytochrome \(c_3 \) as opposed to being only due to a possible polar effect on \(dsbB \) and the loss of DsbB activities that are unrelated to siderophores. In sum, these data indicate that cytochromes \(c_1 \) and \(c_3 \) are required for the optimal intracellular growth of \(L.\ pneumophila \).

DISCUSSION

For multiple reasons, we conclude that the Ccm system is required for full expression of legiobactin. First, a variety of independent \(ccm \) mutants of a virulent strain of \(L. pneumophila \) lack siderophore expression. Second, multiple, independently derived \(cyc4 \) mutants lacking a particular \(c \)-type cytochrome exhibit a similar lack of siderophore. Third, the loss of siderophore was documented by both the CAS assay and a legiobactin-specific bioassay. Fourth, transcription of the \(ccm \) and \(cyc4 \) genes occurs in legionellae growing in deferrated media. Our data bring to four the number of cases in which a Ccm system is linked to siderophore. Past examples include pyoverdine production by *Pseudomonas aeruginosa* (Baert et al., 2008), pyoverdine and thioquinolobactin synthesis by *Pseudomonas fluorescens* (Baysse et al., 2002, 2003; Gaballa et al., 1996; Matthijss et al., 2007) and siderophore expression by *Paracoccus denitrificans* and *Rhizobium leguminosarum* (Pearce et al., 1998; Yeoman et al., 1997). The fact that Legionella, *Pseudomonas*, *Paracoccus* and *Rhizobium* are quite distinct from each other, as are the structures of their siderophores (Allard et al., 2009), suggests that the connection between Ccm and siderophores likely also exists in a variety of other bacteria, including both environmental and pathogenic strains.

The molecular basis for the role of Ccm in siderophore expression has been the subject of speculation. We and others had theorized that Ccm might be facilitating siderophore production through its role in the maturation of \(c \)-type cytochromes, the delivery of haem into the periplasm for purposes other than its ligation to apocytochromes, or the export of a molecule besides haem (Cianciotto et al., 2005). An early report had suggested the involvement of a \(cyc4 \)-like gene (\(pvcD \)) in the production of pyoverdine chromophore by *P. aeruginosa* (Baysse et al., 2001; Stintzi et al., 1999); however, it was later determined that the \(pvc \) locus aids in the production of isonitrile-functionalized coumarin and pseudooverdine, which do not have siderophore biological activity (Clarke-Pearson & Brady, 2008; Stintzi et al., 1996). By specifically targeting individual \(c \)-type cytochromes for mutation and using both chemical and biological assays for detection of legiobactin, we can now conclude that the role of Ccm in siderophore production by *L. pneumophila* is linked to \(c \)-type cytochromes, i.e. cytochrome \(c_5 \). One hypothesis to explain the newfound importance for the \(c \)-type cytochrome is that the biosynthesis of legiobactin requires an electron-transfer step within the periplasm, e.g. shuttling electrons, possibly from an electron-transport chain, to a substrate or enzyme that is needed for legiobactin synthesis and/or secretion. In support of this hypothesis, periplasmic enzymes have been shown to be necessary for the completion of siderophore synthesis in some other bacteria (Yeterian et al., 2010). It does remain formally possible however that cytochrome \(c_4 \) indirectly promotes the processing of legiobactin by helping to maintain a certain redox homeostasis in the periplasm or acting as a signalling molecule. Regardless, the fact that cytochrome \(c_4 \) but not cytochromes \(c_1 \) and \(c_3 \) is critical for legiobactin expression suggests that there is specificity to the interaction between the siderophore and cytochrome pathways.

To our knowledge, the current study represents the first investigation into the relative importance of \(c \)-type cytochromes for *L. pneumophila* growth. Since all of our *ccm* mutants grew normally on standard media, \(c \)-type
cytochromes are not essential for *L. pneumophila* extracellular growth. That the mutants lacking petC, cyc4 or cycB also grew normally on BCYE agar and in BYE broth supports this conclusion. These data are compatible with the fact that *L. pneumophila* also has *a*-*, b*- and *d*-type cytochromes, with at least *d*-type cytochromes supporting respiration via a quinol-oxidizing branch that is independent of cytochrome *c* (Cazalet *et al.* 2004; Hoffman & Pine, 1982; Miller & Hammel, 1985; Thöny-Meyer, 1997). In

Fig. 4. Legiobactin production by *L. pneumophila* wild-type and mutants lacking *c*-type cytochromes. (a) CAS activity of petC, cyc4 and cycB mutants compared to that of wild-type 130b and the *ccmB* and *ccmC* mutants. The CAS values are the means and standard deviations from duplicate cultures, and the results presented are representative of at least three independent experiments. The levels of CAS activity displayed by the cyc4 mutants were significantly less than that of wild-type (Student’s *t*-test, *P*<0.05). They were not, however, different from that of the *ccm* mutants, nor were the levels of CAS activity displayed by the petC and cycB mutants different from that of wild-type (*P*>0.05). (b) We plated approx. 10⁵ c.f.u. of the *feoB* mutant onto non-iron-supplemented BCYE agar and a centre well was filled, as indicated, with supernatant obtained from deferated CDM cultures of wild-type 130b, *ccmC* mutant NU295, petC mutant NU375, cyc4 mutant NU379 or cycB mutant NU381. After 5 days, the growth of the bacteria was recorded. The results shown are representative of at least three experiments. Although not shown here for the sake of space, cyc4 mutant NU380 also lacked siderophore activity in its culture supernatants, whereas petC mutant NU376 and cycB mutant NU382 behaved like the wild-type in this regard.

Fig. 5. Growth of *L. pneumophila* wild-type and *c*-type cytochrome mutants on BCYE agar. We spotted 10 µl aliquots from 10-fold serial dilutions of wild-type 130b, *ccmC* mutant NU295, petC mutant NU375, cyc4 mutant NU379, cycB mutant NU381 and *lbtA* mutant NU302 onto standard BCYE agar (a) or BCYE lacking its usual iron supplement (b). After 4 days, growth was recorded. Each strain (i.e. each column of growth depicted here) was spotted on its own plate, to prevent diffusible factors produced by some strains from stimulating the growth of others nearby and thereby confounding mutant analysis. The results shown are representative of three experiments.
contrast, under conditions of moderate iron limitation (i.e. non-iron-supplemented BCYE agar without iron chelator), ccm mutants exhibited a growth defect that was not recapitulated by the cytochrome mutants nor ascribed to lack of siderophore. Three basic scenarios can be envisioned to explain these data. In the first case, there is a functional redundancy among cytochromes c₁, c₄ and c₅, such that impaired growth under these conditions requires the absence of more than one of the cytochromes. In the second scenario, there is an additional c-type cytochrome(s) expressed by L. pneumophila. In support of this possibility, when examining the database, we did find several ORFs that might encode cytochrome c-like proteins (unpublished results). As to how c-type cytochromes (be they c₁, c₄, c₅ or encoded by an uncharacterized ORF) might facilitate growth in moderately low-iron conditions, it is possible that they promote Fe³⁺ reduction as has been documented for some of the c-type cytochromes produced by species of Geobacter and Shewanella (Dale et al., 2007; Londer et al., 2002; Mehta et al., 2005; Shi et al., 2007). That L. pneumophila can utilize Fe²⁺ transport to grow on low-iron media (Robey & Cianciotto, 2002) gives support to this possibility. In the final case, the importance of Ccm under extracellular conditions of moderate iron-depletion is independent of its role in cytochrome maturation and may involve an alternate use of Ccm-exported haem.

As to the role of cytochromes in intracellular growth, cytochromes c₁ and c₅ vs cytochrome c₄ proved to be the most important. Remarkably, the cycB mutants, like the ccmC mutants, exhibited a growth defect that was not recapitulated by the cytochrome mutants nor ascribed to lack of siderophore. Three basic scenarios can be envisioned to explain these data. In the first case, there is a functional redundancy among cytochromes c₁, c₄ and c₅, such that impaired growth under these conditions requires the absence of more than one of the cytochromes. In the second scenario, there is an additional c-type cytochrome(s) expressed by L. pneumophila. In support of this possibility, when examining the database, we did find several ORFs that might encode cytochrome c-like proteins (unpublished results). As to how c-type cytochromes (be they c₁, c₄, c₅ or encoded by an uncharacterized ORF) might facilitate growth in moderately low-iron conditions, it is possible that they promote Fe³⁺ reduction as has been documented for some of the c-type cytochromes produced by species of Geobacter and Shewanella (Dale et al., 2007; Londer et al., 2002; Mehta et al., 2005; Shi et al., 2007). That L. pneumophila can utilize Fe²⁺ transport to grow on low-iron media (Robey & Cianciotto, 2002) gives support to this possibility. In the final case, the importance of Ccm under extracellular conditions of moderate iron-depletion is independent of its role in cytochrome maturation and may involve an alternate use of Ccm-exported haem.

As to the role of cytochromes in intracellular growth, cytochromes c₁ and c₅ vs cytochrome c₄ proved to be the most important. Remarkably, the cycB mutants, like the
ccm mutants, were completely unable to grow in amoebae, indicating a critical role for this cytochrome c_5. We believe that the current study is the first to discern the relative importance of different c-type cytochromes during an intracellular infection event. Since our experiments testing the cycB and petC mutants utilized host cells that were not iron-stressed, and since mutants lacking Fe$^{3+}$ (legiobactin) or Fe$^{2+}$ (FeoB) uptake do not have this level of impairment, the key function of these c-type cytochromes during infection may involve their roles in respiration. On the other hand, there is a growing list of cases where Ccm or a cytochrome is linked to processes that are distinct from respiration and iron acquisition (Cianciotto et al., 2005; El-Naggar et al., 2010; Yurgel et al., 2007). In light of the importance of Ccm in lung infection by L. pneumophila (Naylor & Cianciotto, 2004), particularly intriguing is a recent report demonstrating that two c-type cytochromes regulate virulence factor (toxin) gene regulation in Bacillus anthracis (Wilson et al., 2009). Thus, studies on L. pneumophila Ccm and its c-type cytochromes should provide new insights into bacterial iron acquisition, intracellular infection and virulence.

ACKNOWLEDGEMENTS

We thank present and past members of the Cianciotto lab for their help and support, including Christa Chatfield and Brendan Mulhern for assisting with siderophore bioassays. E.S.Y. and D.M.B. were partly supported by NIH training grant T32 AI0007476. This study was funded by NIH grant AI034937 awarded to N.P.C.

REFERENCES

Edited by: H. Hilbi