1887

Abstract

Forty fluorescent strains isolated from white and red cocoyam roots were tested for their ability to synthesize -acyl--homoserine lactones (acyl-HSLs). Remarkably, only isolates from the red cocoyam rhizosphere that were antagonistic against the cocoyam root rot pathogen and synthesized phenazine antibiotics produced acyl-HSLs. This supports the assumption that acyl-HSL production is related to the antagonistic activity of the strains. After detection, the signal molecules were identified through TLC-overlay and liquid chromatography-multiple MS (LC-MS/MS) analysis. In our representative strain, CMR12a, production of the signal molecules could be assigned to two quorum-sensing (QS) systems. The first one is the QS system for phenazine production, PhzI/PhzR, which seemed to be well conserved, since it was genetically organized in the same way as in the well-described phenazine-producing strains 2-79, PCL1391 and 30-84. The newly characterized genes and make up the second QS system of CMR12a, under the control of the uncommon -3-hydroxy-dodecanoyl-homoserine lactone (3-OH-C12-HSL) and with low similarity to other QS systems. No clear function could yet be assigned to the CmrI/CmrR system, although it contributes to the biocontrol capability of CMR12a. Both the PhzI/PhzR and CmrI/CmrR systems are controlled by the GacS/GacA two-component regulatory system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043125-0
2011-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/459.html?itemId=/content/journal/micro/10.1099/mic.0.043125-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B. B., Molin S., Givskov M. 2001; gfp -based N -acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585
    [Google Scholar]
  2. Anjaiah V., Koedam N., Nowak-Thompson B., Loper J. E., Höfte M., Tambong J. T., Cornelis P. 1998; Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn 5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854
    [Google Scholar]
  3. Bertani I., Venturi V. 2004; Regulation of the N -acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502
    [Google Scholar]
  4. Cha C., Gao P., Chen Y. C., Shaw P. D., Farrand S. K. 1998; Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129
    [Google Scholar]
  5. Chin-A-Woeng T. F. C., Bloemberg G. V., van der Bij A. J., van der Drift K., Schripsema J., Kroon B., Scheffer R. J., Keel C., Bakker P. other authors 1998; Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici . Mol Plant Microbe Interact 11:1069–1077
    [Google Scholar]
  6. Chin-A-Woeng T. F. C., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. 2001a; Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015
    [Google Scholar]
  7. Chin-A-Woeng T. F. C., van den Broek D., de Voer G., van der Drift K., Tuinman S., Thomas-Oates J. E., Lugtenberg B. J. J., Bloemberg G. V. 2001b; Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979
    [Google Scholar]
  8. Debode J., De Maeyer K., Perneel M., Pannecoucque J., De Backer G., Höfte M. 2007; Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196
    [Google Scholar]
  9. Dietrich L. E. P., Price-Whelan A., Petersen A., Whiteley M., Newman D. K. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa . Mol Microbiol 61:1308–1321
    [Google Scholar]
  10. Dubern J. F., Lugtenberg B. J. J., Bloemberg G. V. 2006; The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188:2898–2906
    [Google Scholar]
  11. Elasri M., Delorme S., Lemanceau P., Stewart G., Laue B., Glickmann E., Oger P. M., Dessaux Y. 2001; Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209
    [Google Scholar]
  12. Espinosa-Urgel M., Salido A., Ramos J. L. 2000; Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369
    [Google Scholar]
  13. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  14. Fuqua C., Parsek M. R., Greenberg E. P. 2001; Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468
    [Google Scholar]
  15. Heeb S., Haas D. 2001; Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363
    [Google Scholar]
  16. Hentzer M., Riedel K., Rasmussen T. B., Heydorn A., Andersen J. B., Parsek M. R., Rice S. A., Eberl L., Molin S. other authors 2002; Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102
    [Google Scholar]
  17. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  18. Höfte M., Buysens S., Koedam N., Cornelis P. 1993; Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91
    [Google Scholar]
  19. Huang Z. Y., Bonsall R. F., Mavrodi D. V., Weller D. M., Thomashow L. S. 2004; Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of Rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251
    [Google Scholar]
  20. Jain D. K., Collins-Thompson D. L., Lee H., Trevors J. T. 1991; A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279
    [Google Scholar]
  21. Khan S. R., Mavrodi D. V., Jog G. J., Suga H., Thomashow L. S., Farrand S. K. 2005; Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N -(3-OH-hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis -acting phz box. J Bacteriol 187:6517–6527
    [Google Scholar]
  22. Khan S. R., Herman J., Krank J., Serkova N. J., Churchill M. E. A., Suga H., Farrand S. K. 2007; N -(3-Hydroxyhexanoyl)-l-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30–84. Appl Environ Microbiol 73:7443–7455
    [Google Scholar]
  23. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  24. Lemanceau P., Expert D., Gaymard F., Bakker P., Briat J. F. 2009; Role of iron in plant–microbe interactions. In Plant Innate Immunity pp 491–549 Edited by Van Loon L. C. San Diego, CA: Academic Press (Elsevier;
    [Google Scholar]
  25. Li X. J., Fekete A., Englmann M., Gotz C., Rothballer M., Frommberger M., Buddrus K., Fekete J., Cai C. P. other authors 2006; Development and application of a method for the analysis of N -acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A 1134186–193
    [Google Scholar]
  26. Maddula V. S., Zhang Z., Pierson E. A., Pierson L. S. 2006; Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis aureofaciens strain 30-84. Microb Ecol 52:289–301
    [Google Scholar]
  27. Matthijs S., Baysse C., Koedam N., Tehrani K. A., Verheyden L., Budzikiewicz H., Schafer M., Hoorelbeke B., Meyer J. M. other authors 2004; The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384
    [Google Scholar]
  28. Mavrodi D. V., Ksenzenko V. N., Bonsall R. F., Cook R. J., Boronin A. M., Thomashow L. S. 1998; A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548
    [Google Scholar]
  29. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465
    [Google Scholar]
  30. Mavrodi D. V., Blankenfeldt W., Thomashow L. S. 2006; Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445
    [Google Scholar]
  31. Mavrodi D. V., Peever T. L., Mavrodi O. V., Parejko J. A., Raaijmakers J. M., Lemanceau P., Mazurier S., Heide L., Blankenfeldt W. other authors 2010; Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879
    [Google Scholar]
  32. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S. 1992; Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624
    [Google Scholar]
  33. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Camara M., Daykin M., Lamb J. H., Swift S. other authors 1997; Quorum sensing and Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N -acylhomoserine lactones. Microbiology 143:3703–3711
    [Google Scholar]
  34. Nerey Y., Pannecoucque J., Hernandez H. P., Diaz M., Espinosa R., De Vos S., Van Beneden S., Herrera L., Höfte M. 2010; Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. J Phytopathol 158:236–243
    [Google Scholar]
  35. Nielsen T. H., Thrane C., Christophersen C., Anthoni U., Sorensen J. 2000; Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001
    [Google Scholar]
  36. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201
    [Google Scholar]
  37. Perneel M., Tambong J. T., Adiobo A., Floren C., Saborio F., Levesque A., Höfte M. 2006; Intraspecific variability of Pythium myriotylum isolated from cocoyam and other host crops. Mycol Res 110:583–593
    [Google Scholar]
  38. Perneel M., Heyrman J., Adiobo A., De Maeyer K., Raaijmakers J. M., De Vos P., Höfte M. 2007; Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020
    [Google Scholar]
  39. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3127–3132
    [Google Scholar]
  40. Pham T. H., Boon N., Aelterman P., Clauwaert P., De Schamphelaire L., Vanhaecke L., De Maeyer K., Höfte M., Verstraete W., Rabaey K. 2008; Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129
    [Google Scholar]
  41. Pierson L. S., Pierson E. A. 2010; Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670
    [Google Scholar]
  42. Pierson L. S., Wood D. W., Pierson E. A. 1998; Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225
    [Google Scholar]
  43. Piper K. R., Vonbodman S. B., Farrand S. K. 1993; Conjugation factor of Agrobacterium tumefaciens regulates Ti-plasmid transfer by autoinduction. Nature 362:448–450
    [Google Scholar]
  44. Price-Whelan A., Dietrich L. E., Newman D. K. 2006; Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78
    [Google Scholar]
  45. Price-Whelan A., Dietrich L. E. P., Newman D. K. 2007; Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Scholten O. E., Panella L. W., De Bock T. S. M., Lange W. 2001; A greenhouse test for screening sugar beet ( Beta vulgaris ) for resistance to Rhizoctonia solani . Eur J Plant Pathol 107:161–166
    [Google Scholar]
  48. Shanks R. M. Q., Caiazza N. C., Hinsa S. M., Toutain C. M., O'Toole G. A. 2006; Saccharomyces cerevisiae -based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 72:5027–5036
    [Google Scholar]
  49. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E., Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N -acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041
    [Google Scholar]
  50. Steindler L., Bertani I., De Sordi L., Bigirimana J., Venturi V. 2008; The presence, type and role of N -acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol Lett 288:102–111
    [Google Scholar]
  51. Stintzi A., Evans K., Meyer J. M., Poole K. 1998; Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa : lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345
    [Google Scholar]
  52. Swift S., Karlyshev A. V., Fish L., Durant E. L., Winson M. K., Chhabra S. R., Williams P., MacIntyre S., Stewart G. 1997; Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida : identification of the LuxRI homologs AhyRI and AsaRI and their cognate N -acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281
    [Google Scholar]
  53. Thomashow L. S., Weller D. M. 1988; Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici . J Bacteriol 170:3499–3508
    [Google Scholar]
  54. Thomashow L. S., Weller D. M., Bonsall R. F., Pierson L. S. 1990; Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912
    [Google Scholar]
  55. Thrane C., Olsson S., Nielsen T. H., Sorensen J. 1999; Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23
    [Google Scholar]
  56. Turner J. M., Messenger A. J. 1986; Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27:211–275
    [Google Scholar]
  57. Venturi V. 2006; Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev 30:274–291
    [Google Scholar]
  58. Wei H. L., Zhang L. Q. 2006; Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek 89:267–280
    [Google Scholar]
  59. Whiteley M., Greenberg E. P. 2001; Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183:5529–5534
    [Google Scholar]
  60. Wood D. W., Pierson L. S. 1996; The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168:49–53
    [Google Scholar]
  61. Zhang Z. G., Pierson L. S. 2001; A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens . Appl Environ Microbiol 67:4305–4315
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043125-0
Loading
/content/journal/micro/10.1099/mic.0.043125-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error