An optimized in vitro blood–brain barrier model reveals bidirectional transmigration of African trypanosome strains

Christopher Untucht,1 Janine Rasch,1 Elena Fuchs,1 Manfred Rohde,2 Simone Bergmann1 and Michael Steinert1

Correspondence
Michael Steinert
m.steinert@tu-bs.de

Received 15 February 2011
Revised 7 June 2011
Accepted 5 July 2011

1Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
2Helmholtz Zentrum für Infektionsforschung (HZI), Medizinische Mikrobiologie, Braunschweig, Germany

The transmigration of African trypanosomes across the human blood–brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites Trypanosoma brucei gambiense and T. b. rhodesiense are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to the death of untreated patients. This project focused on the mechanisms of trypanosomal traversal across the BBB. In order to establish a suitable in vitro BBB model for parasite transmigration, different human cell lines were used, including ECV304, HBMEC and HUVEC, as well as C6 rat astrocytes. Validation of the BBB models with Escherichia coli HB101 and E. coli K1 revealed that a combination of ECV304 cells seeded on Matrigel as a semi-synthetic basement membrane and C6 astrocytes resulted in an optimal BBB model system. The BBB model showed selective permeability for the pathogenic E. coli K1 strain, and African trypanosomes were able to traverse the optimized ECV304–C6 BBB efficiently. Furthermore, coincubation indicated that paracellular macrophage transmigration does not facilitate trypanosomal BBB traversal. An inverse assembly of the BBB model demonstrated that trypanosomes were also able to transmigrate the optimized ECV304–C6 BBB backwards, indicating the relevance of the CNS as a possible reservoir of a relapsing parasitaemia.

INTRODUCTION

Human African trypanosomiasis is a vector-borne parasitic disease, which currently causes about 10 000 deaths each year. At the end of the last century the number of lethal cases was estimated as up to 300 000, according to WHO data. The disease threatens over 60 million people of 36 African nations, reaching lethality of 100% without treatment (WHO, 2010). The parasites, called trypanosomes, are transmitted during a blood meal of tsetse flies of the Glossina genus and can infect humans as well as cattle. Trypanosoma brucei brucei is one of the causative agents of Nagana, a severe cattle disease, which hampers intensive cattle farming in endemic areas (Steverding, 2008). T. b. gambiense and T. b. rhodesiense are human pathogens and multiply within the blood circulation system. Therein, the parasites evade the host immune system by different strategies, for instance by switching their surface-coat antigens (Dubois et al., 2005). As the disease progresses, the parasites infect the central nervous system (CNS), leading to the severe outcome of the disease. Once inside the CNS, parasites are hardly reached by drugs or by the immune system. Depending on the trypanosome subspecies the parasites transmigrate through the human blood–brain barrier (BBB) within a few weeks (T. b. rhodesiense), some months or even years (T. b. gambiense). So far, the invasion into the CNS of African trypanosomes is poorly understood (Grab & Kennedy, 2008). It has been shown that secreted proteases (Nikolskaia et al., 2006, 2008), in the case of T. b. rhodesiense, and the composition of the extracellular matrix as well as secreted IFN-γ (Masocha et al., 2004), in the case of T. b. brucei, play a critical role in the process of BBB transmigration.

The human BBB consists of endothelial cells from brain capillaries and ensures the maintenance of the CNS microenvironment. It regulates selective transport of substances and protects the brain from most pathogens and toxins. The interaction of the endothelium with its

Abbreviations: BBB, blood–brain barrier; BBBi, inverse BBB; CNS, central nervous system; FESEM, field-emission scanning electron microscopy; HBMEC, human brain microvascular endothelial cells; HUVEC, human umbilical vein endothelial cells; PMA, phorbol 12-myristate 13-acetate.

Supplementary material is available with the online version of this paper.
associated cells, like astrocytes, pericytes and microglia, is important for the properties of the BBB (Abbott, 2005). Astrocytes are known to induce and regulate many BBB characteristics and functions, namely the formation of tight junctions as well as the expression and asymmetrical localization of special enzymes, e.g. within transport systems (Abbott et al., 2006; Cecchelli et al., 2007).

In vitro models of the BBB allow direct analysis and manipulation of the molecular mechanisms underlying the transmigration of African trypanosomes into the brain. In order to identify new targets for drug development, an increased understanding of the transmigration process is urgently needed (Grab & Kennedy, 2008). The complexity of BBB models ranges from three-dimensional model systems (Cucullo et al., 2007; Parkinson et al., 2003; Stanness et al., 1997) to transwell-based models with one or more cell types (astrocytes, pericytes and endothelial cells) (Nakagawa et al., 2007).

In the present study we generated and compared different in vitro BBB models, and here we describe an optimized BBB model consisting of the human cell line ECV304 and rat C6 astrocytes (Hurst & Fritz, 1996). Analysis of transmigration in this model revealed different BBB transmigration rates for different African trypanosome strains. Evaluation of macrophage transmigration also demonstrated that paracellular extravasation of macrophages does not facilitate trypanosomal CNS invasion. Furthermore, parasite transmigration across an inverse assembly of the optimized ECV304–C6 BBB indicated that the traversal process occurs bidirectionally, supporting the possibility of trypanosomal return to the bloodstream out of the CNS.

METHODS

Culture conditions of bacteria and trypanosomes. *E. coli* HB101 (Boyer & Rouillard-Dussoix, 1969) and *E. coli* K1 (Korhonen et al., 1985) were grown on Luria–Bertani (LB) agar plates. For transmigration assays an overnight culture was washed off the plate with phosphate-buffered saline (PBS, pH 7.4). Optical density was measured in a spectrophotometer (Libra S22; Biochrom) at 550 nm. Medium complete solution (Hirumi & Hirumi, 1989) at 37°C was used for the overnight cultivation of cell lines (STIB930 and BMEM medium for the second or third day. HMEM medium was used for the fourth day) depending on cell density with splitting rates of 1 : 5 or 1 : 10 every 2 days. For co-cultivation assays 5 × 10⁶ J774 macrophages [not activated with PMA (phorbol 12-myristate 13-acetate)] were cultured together with 2 × 10⁷ T. b. brucei TC221 in 1 ml J774 medium in 24-well plates. Macrophages and trypanosomes were counted at time points 0, 24, 48 and 72 h with a Neubauer or a Fuchs–Rosenthal counting chamber respectively. For comparison, macrophages and trypanosomes were cultured alone in their standard media in 24-well plates for 72 h.

Generation of in vitro BBB models. ECV304, HBMEC, HUVEC and C6 cell lines were used to set up different BBB models. For optimization of the BBB models, cell seeding concentrations were varied. The number of C6 cells per insert varied from 1 × 10⁴ to 5 × 10⁶. The number of ECV304 cells was between 3 × 10⁴ and 1.1 × 10⁵ per insert. HBMEC and HUVEC were seeded at 6 × 10⁵ cells per insert. To generate the optimized BBB model, ECV304 and C6 cell lines were cultivated in 24-well inserts with membranes with 8 μm pores coated with a Matrigel layer (BD Biosciences #354480; precoated with Matrigel). ECV304 cells were grown inside the inserts and C6 cells on the outside, underneath the membrane. To seed C6 cells, the inserts were turned around and 5 × 10⁵ cells were incubated on the outer side of the PET (polyethylene terephthalate) membrane for 1 h, allowing the cells to attach to the membrane. After Matrigel rehydration according to the manufacturer’s guidelines, 6 × 10⁴ ECV304 cells were seeded on top of the Matrigel layer. Alternatively, collagen-I-coated inserts (BD Biosciences #354490; precoated collagen-I inserts with 3 μm pores) were used to set up the ECV304–C6 BBB. The inserts were cultivated for 5 days in M199 medium with a medium exchange on the fourth day. BBB models containing ECV304 or HBMEC were used for transmigration assays on the fifth day of cultivation. BBB models containing HUVEC were assayed on the sixth day. To improve barrier tightness (see Results), M199 medium was replaced by the serum-free Quantum 286 medium (PAA Laboratories).

Transmigration assays. The different BBB models were infected with 1 × 10⁵ *E. coli* HB101. Prior to infection, bacteria were diluted in serum-free M199 or Quantum 286 and were incubated in the upper compartment of the transwell system for 5 h. Dilution series of specimens from the lower compartment were plated on LB agar plates, which were incubated at 37°C. CFUs were determined after 12–18 h of cultivation. Transmigration assays with *E. coli* K1 were performed as described for *E. coli* HB101, with variation of inoculum and infection time. Inocula of 10⁵, 10⁶ and 10⁷ bacteria per insert were applied and an infection time of 5, 6, 8 and 10 h was performed. To evaluate if membrane pores of 3 μm diameter are sufficient for trypanosomal transmigration, cell- and Matrigel-free 24-well inserts with membrane pores of 3 μm diameter (BD Biosciences) were incubated for 4, 24 and 48 h with 10⁶ and 10⁷ T. b. brucei TC221 per insert. Transmigrated trypanosomes were counted with a Neubauer counting chamber.

Transmigration assays across the optimized ECV304–C6 BBB were performed with different trypanosome strains in infection medium (M199 medium containing 10% fetal calf serum, or Quantum 286 without serum). Grown trypanosome cultures were centrifuged for 10 min at 400 g and resuspended in infection medium. Trypanosomes with an inoculum of 1 × 10⁶ parasites per BBB insert were incubated for...
6 h at 37 °C, 5% CO2, and 95% humidity. Transmigrated trypanosomes were counted from the lower compartment using a Neubauer counting chamber.

J774 murine macrophages were activated with 200 nM PMA (Sigma Aldrich Chemie) 24 h prior to the transmigration assays. The macrophages were harvested with a cell scraper, centrifuged at 100 g for 5 min and resuspended in infection medium. Inocula of 1 x 10^6 J774 cells per insert were incubated for 5 h at 37 °C, 5% CO2, and 95% humidity. Transmigrated J774 macrophages were counted from the lower compartment using a Fuchs–Rosenthal counting chamber.

Transmigration experiments were repeated in at least two independent test series with a minimum of three parallels each. Results were expressed as mean ± SD. Statistical significance was calculated with Student’s t-test (Microsoft Excel 2007) and is represented in the figures by asterisks (*) indicating different P-values (*P<0.05; **P<0.01; ***P<0.001).

Field-emission scanning electron microscopy (FESEM). Cell culture inserts with infected or uninfected BBB cell layers were stored overnight in fixation buffer containing 5% paraformaldehyde and 1% glutaraldehyde in PBS. For electron microscopy the samples were transferred in cacodylate buffer (0.1 M cadoxylate, 0.01 M CaCl2, 0.01 M MgCl2, 0.09 M sucrose, pH 6.9) containing 2% glutaraldehyde and 5% formaldehyde for 1 h on ice, washed with TE buffer (20 mM Tris, 1 mM EDTA, pH 6.9) before dehydrating in a graded series of acetone (10%, 30%, 50%, 70%, 90%, 100%) on ice (15 min for each step). Samples were then critical-point dried with liquid CO2 (CPD 30; Bal-Tec) and covered with a gold film by sputter (15 min for each step). Samples were then transferred in cacodylate buffer (0.1 M cacodylate, 0.01 M CaCl2, 0.01 M MgCl2, 0.09 M sucrose, pH 6.9) containing 2% glutaraldehyde and 5% formaldehyde for 1 h on ice, washed with TE buffer (20 mM Tris, 1 mM EDTA, pH 6.9) before dehydrating in a graded series of acetone (10%, 30%, 50%, 70%, 90%, 100%) on ice (15 min for each step). Samples were then critical-point dried with liquid CO2 (CPD 30; Bal-Tec) and covered with a gold film by sputter coating (SCD 500; Bal-Tec) before examination in a field-emission scanning electron microscope (Zeiss DSM 982 Gemini) using the Everhart–Thornley SE-detector and the inlens SE-detector in a 50:50 ratio at an acceleration voltage of 5 kV at calibrated magnifications. Images were stored on MO-disks and contrast and brightness adjusted with Adobe Photoshop 7.0 (Adobe Systems).

RESULTS

BBB model optimization leads to selective permeability

To establish a highly reproducible BBB model the endothelial cell lines HBMEC and HUVEC and the endothelial-like cell line ECV304 were seeded on Matrigel-covered inserts, either alone or in co-culture with C6 astrocytes. The number of ECV304 cells seeded was varied to obtain optimal confluence of the cells inside the insert, which is essential for a tight barrier. Moreover, the number of C6 astrocytes was altered to achieve optimal permeability of the cell layers. The barrier tightness was evaluated by bacterial transmigration assays with E. coli HB101 (Fig. 1). This E. coli strain is deficient in active invasion, though failed to generate a tight barrier in monoculture or in co-culture with C6 astrocytes. Co-culture of ECV304 with C6 cells decreased the permeability of the cell layers substantially. One-quarter of the transwell inserts with infected or uninfected BBB cell layers were completely impermeable barrier system. Therefore, the use of Matrigel as an underlying matrix, collagen-I coated inserts were used for HBMEC with C6 cells. Co-culture of ECV304 and C6 astrocytes decreased the permeability of the cell layers substantially. One-quarter of the transwell inserts with monocultures of ECV304 cells were impermeable, whereas the combination of ECV304 with C6 cells prevented the transmigration of E. coli HB101 in 80% of the tested inserts. Changing the culture medium to serum-free Quantum 286 improved the barrier function against E. coli HB101 up to 100%. In exchange for Matrigel as an underlying matrix, collagen-I coated inserts were used for the set up of an ECV304–C6 BBB, and this resulted in a completely impermeable barrier system. Therefore, the use of Matrigel turned out to be essential.

To validate the selective permeability of the optimized ECV304–C6 BBB, transmigration of E. coli K1 was determined in comparison to E. coli HB101. E. coli K1 is a causative agent of meningitis in newborns and known to cross the human BBB. Comparative transmigration analyses were performed including the variation of infection time and bacterial inoculum. E. coli K1 and HB101 with an inoculum of 10^5 bacteria per insert transmigrated the optimized ECV304–C6 BBB in a time-dependent manner. After 5 h of infection no transmigrated E. coli K1 or E. coli HB101 bacteria were detected (Fig. 2).
Longer infection times of 6, 8 and 10 h resulted in a substantial increase of *E. coli* K1 transmigration, whereas only marginal transmigration was observed for *E. coli* HB101. In addition to different infection times the transmigration of *E. coli* K1 and HB101 was also analysed applying inocula of 10⁵, 10⁶ and 10⁷ bacteria per insert. At high inocula of 10⁶ and 10⁷ bacteria per insert and 5 h of incubation, *E. coli* K1 efficiently transmigrated across the optimized ECV304–C6 BBB (Supplementary Fig. S1). In contrast, this optimized BBB model remained impermeable for *E. coli* HB101 even with high bacterial numbers used for inoculation. Both *E. coli* HB101 and *E. coli* K1 transmigrated cell-free inserts with Matrigel, with similar transmigration rates (Supplementary Fig. S1). These results demonstrate that neither the membrane nor the Matrigel contributed to the selective barrier function of the BBB models.

In conclusion, the results obtained indicate that a selective and reliable ECV304–C6 BBB can be generated by coculture of 5 x 10⁴ C6 cells and 6 x 10⁴ ECV304 cells seeded on Matrigel-covered membrane inserts with pores 8 μm in size. The optimal culture conditions comprise Quantum 286 medium and an incubation of the inserts for 5 days at 37 °C, 5 % CO₂ and 95 % humidity with a change of medium on the fourth day.

Electron microscopy visualizes the structure of the BBB cell layers

Microscopic characterization of optimized ECV304–C6 BBB inserts was performed after 5 days of incubation. Examination of the structure of the cell layers indicated that ECV304 cells grew as a confluent and tight cell layer (Fig. 3a). A side view of the cell layer was obtained by lifting fixed ECV304 cells from the insert membrane. The ECV304 cells grew in confluent layers with some overlapping regions of adjacent cells (Fig. 3b). The C6 cells formed a loose meshwork underneath the insert membrane (Fig. 3c). After 5 days of cultivation, the astrocyte cells maintained contact with the insert membrane as visualized by light microscopy of the 24-well plate bottoms. Membrane inserts with different pore sizes were applied in cell-free transmigration assays in order to analyse the contribution of the size of the membrane pores to the growth of the cells and transmigration efficiency of the trypanosomes. *T. b. brucei* TC221 and avirulent TC221 are all able to transmigrate membrane pores of at least 3 μm in diameter (Fig. 3d). In order to exclude the pore size as a limiting factor for transmigration and due to the ability of the ECV304 cells to span large pores, 8 μm pore sized membrane inserts were chosen for the optimized ECV304–C6 BBB.

Bidirectional transmigration of trypanosomes through the BBB

T. b. gambiense and *T. b. rhodesiense* cause the two different subtypes of human African trypanosomiasis, whereas *T. b. brucei* is described as an animal pathogen. Transmigration data revealed that the two human-pathogenic strains and *T. b. brucei* TC221 are all able to traverse the optimized ECV304–C6 BBB (Fig. 4). With an inoculum of 10⁶ trypanosomes per insert, the significantly highest transmigration rates were detected for *T. b. gambiense* STIB930, with 1.60(±1.32) x 10⁴ trypanosomes ml⁻¹, followed by *T. b. rhodesiense* STIB900 with 2.99(±1.77) x 10³ trypanosomes ml⁻¹ and *T. b. brucei* TC221 with a similar transmigration rate of 2.24(±3.35) x 10³ trypanosomes ml⁻¹. Increasing the inoculum to 10⁷ trypanosomes per insert led to a significant increase of the transmigration across the optimized ECV304–C6 BBB in the case of *T. b. brucei* TC221, with 2.55(±1.89) x 10⁴ trypanosomes ml⁻¹, and *T. b. rhodesiense* STIB900, with 1.97(±1.76) x 10⁴ trypanosomes ml⁻¹. In contrast, the transmigration rate of *T. b. gambiense* STIB930, 2.09(±1.03) x 10⁴ trypanosomes ml⁻¹, showed an increase that is not significant. Growth analyses of the parasites in cell culture medium revealed that the trypanosomal strains did not multiply within 6 h of incubation.

The brain is considered as a site of immune evasion. Therefore, the parasites might be able to traverse the BBB inversely. In order to simulate the situation of inside-out transmigration, an inverse BBB arrangement (BBBi) was designed. The ECV304 cells were seeded on the outside of the transwell insert membrane and the C6 cells grew inside the insert. After 5 days of incubation transmigration assays with an inoculum of 10⁶ trypanosomes per insert were performed. Determination of transmigration rates indicated that trypanosome strains cross the BBBi model in a similar manner as monitored for the original BBB model.
Fig. 3. FESEM analysis of the optimized ECV304–C6 BBB. (a) The human ECV304 cells build a tight and confluent cell layer after 5 days of incubation. (b) ECV304 cells partly lifted from the insert membrane enable a side view. The cell layer consists of partly overlapping neighbouring cells. (c) C6 astrocytes growing upside down build a loose meshwork with gaps large enough for trypanosomal migration. (d) *T. b. brucei* TC221 transmigration through cell-free Matrigel-covered inserts with membrane pores 3 µm in diameter.

Fig. 4. Transmigration of *T. b. brucei* TC221, *T. b. gambiense* STIB930 and *T. b. rhodesiense* STIB900 across the optimized ECV304–C6 BBB. Inocula of 10^6 trypanosomes were added to the inserts and samples were taken after 6 h from the lower compartment of the transwell system. Similar transmigration rates were determined for the animal-pathogenic *T. b. brucei* TC221 and the human-pathogenic *T. b. rhodesiense* STIB900. In comparison, a significantly higher transmigration efficiency was monitored for the human-pathogenic *T. b. gambiense* STIB930 ($P \leq 0.001$).

(Fig. 5). *T. b. gambiense* STIB930 transmigrated with $2.97(\pm 3.61) \times 10^4$ trypanosomes ml$^{-1}$, significantly higher than *T. b. brucei* TC221 with $4.62(\pm 4.06) \times 10^3$ trypanosomes ml$^{-1}$ and *T. b. rhodesiense* STIB900 with $2.91(\pm 1.88) \times 10^3$ trypanosomes ml$^{-1}$.

Trypanosomes do not benefit from macrophage transmigration

Paracellular extravasation of macrophages into tissues is a well-described process (Marchesi, 1961; Wittchen, 2009). For African trypanosomes paracellular transmigration of endothelia has been reported as well (Grab *et al.*, 2004). To investigate whether paracellular transmigration of macrophages has synergistic effects on the transmigration of trypanosomes, as shown for lymphocytes in a rodent model (Masocha *et al.*, 2004), the transmigration of J774 murine macrophages alone and together with *T. b. brucei* TC221 was examined. Evaluation of the transmigration rates of J774 macrophages across the optimized ECV304–C6 BBB with an inoculum of 10^5 cells per insert indicated that the J774 macrophages have the ability to cross this BBB model with a transmigration rate of $7.1(\pm 3.6) \times 10^2$ cells ml$^{-1}$ (Fig. 6). Activation of macrophages with PMA did not alter the transmigration rate. In cell-free inserts the Matrigel
layer prevents transmigration of macrophages. In cotransmigration assays with J774 macrophages and T. b. brucei TC221 trypanosomes, both inoculated with 10^6 cells per insert, the transmigration rate of macrophages did not vary significantly. In contrast, the transmigration of the T. b. brucei TC221 in the presence of J774 macrophages decreased significantly (Fig. 7). In order to exclude inhibitory effects from J774 macrophages on the viability of the trypanosomes, co-cultivation assays were performed. T. b. brucei TC221 reached similar cell densities after culture with and without J774 macrophages. During 48 h of co-cultivation the trypanosomes and the macrophages multiplied steadily (data not shown). Results of the growth assays revealed that the J774 macrophages had no negative effects on the viability of T. b. brucei TC221. Taken together these results show that the transmigration of J774 macrophages had no synergistic effects on the traversal of T. b. brucei TC221.

DISCUSSION

In animals and humans African trypanosomes traverse the BBB during infection, which leads finally to the fatal outcome of the disease. In the present study we established an improved in vitro BBB model, which is highly reproducible and suitable for the investigation of the trypanosomal attack on the brain. The optimized ECV304–C6 BBB consists of two closely interacting cell lines with a semi-synthetic extracellular matrix in between. C6 astrocytes are a cell line derived from a rat glioma and secrete soluble factors inducing BBB-specific gene expression in ECV304 cells (Hurst & Fritz, 1996; Hurst et al., 1998; Kuchler-Bopp et al., 1999). The BBB is a dynamic system and needs continuous induction processes, as evidenced by the fact that cells from brain microvessels can lose BBB features in monocultures (Reichel et al., 2003). In our study, evaluation of E. coli HB101 transmigration was chosen as the criterion for a tight barrier. E. coli HB101 does not possess fimbriae and is also deficient in genes that...
are necessary for invasive dissemination (Huang et al., 1995; Kim, 2000; Stins et al., 1999). Therefore, transmigration of E. coli HB101 across cell barriers occurs paracellularly through fissures and gaps within the cell layers. As shown by the transmigration assays with E. coli HB101 the combination of the interacting cell lines improved the barrier function of the optimized ECV304–C6 BBB. This BBB model was shown to be impermeable for bacterial amounts of 10^5 and 10^6 E. coli HB101 per insert. Electron microscopy analyses revealed a tight ECV304 cell layer with overlapping cell regions. Incubation of the optimized ECV304–C6 BBB with higher amounts of bacteria results in a loss of barrier function. This is possibly due to a decrease in pH to <6.4, as indicated by the change of the medium colour after 5 h of infection. Another reason for unspecific transmigration could be LPS-mediated barrier opening, as shown for other endothelial monolayers (Nooteboom et al., 2000). The invasive and meningitis-causing E. coli K1 strain was used as a positive control and showed a dose- and time-dependent BBB transmigration. The substantial differences in transmigration efficiencies between pathogenic and non-pathogenic E. coli strains demonstrated the selective permeability of the optimized ECV304–C6 BBB. This optimized model was also evaluated in permeation assays using different pharmaceutical compounds (Kühne et al., 2011), showing good correlation of the penetration values with the reference data.

The optimized ECV304–C6 BBB was used for further transmigration analyses with the causative agents of human African sleeping sickness. T. b. gambiense and T. b. rhodesiense as well as the bovine-pathogenic T. b. brucei were able to transmigrate the optimized ECV304–C6 BBB. The latter showed the lowest transmigration rate. In vivo, T. b. brucei is not able to survive in the human bloodstream because of its sensitivity to trypanolytic factors in human serum (Hajduk et al., 1989; Rifkin, 1978). If the trypanolytic factor is absent, non-human pathogenic trypanosomes can cause life-threatening infections, as shown in a case report from India (Vanhollebeke et al., 2006). Therefore, the absence of the trypanolytic factor in the infection media is possibly the reason for the transmigration of T. b. brucei across the optimized ECV304–C6 BBB. T. b. rhodesiense causes East African sleeping sickness, which is an acute disease. In contrast, the West African sleeping sickness progresses more like a chronic disease and is caused by T. b. gambiense. Interestingly T. b. rhodesiense transmigrates with lower rates than T. b. gambiense, suggesting that the acute course of the disease is possibly not due to a stronger trypanosomal invasion into the brain. A tenfold increase of the trypanosomal inoculum resulted in an increased transmigration of T. b. brucei and T. b. rhodesiense, but not of T. b. gambiense, indicating that a certain density of parasites has to be reached in order to achieve maximum transmigration rates. The invasion process occurs by opening of the tight junctions without the destruction or degradation of tight junction proteins, and trypanosomes transmigrate through the BBB paracellularly (Grab et al., 2004). Opening of the tight junctions has been proven by real-time TEER (transendothelial electrical resistance) measurements, which revealed a transient loss of barrier integrity during transmigration (Grab et al., 2004). A comparable transmigration mechanism is known from the paracellular extravasation process of leukocytes, which are able to cross endothelial barriers without cellular damaging. This mode of extravasation has been shown for monocytes (Giri et al., 2000) and neutrophils (Burns et al., 2000), and leads to the assumption that the transmigration processes of leukocytes and trypanosomes across the BBB may be closely related (Masocha et al., 2007). Masocha et al. (2004) described that the lack of B- and T-lymphocytes in RAG-1-deficient mice prevents T. b. brucei from crossing the BBB. Our data demonstrate that trypanosomes are not able to simply follow the macrophages during their transmigration process. Moreover, we found that approximately 60% fewer T. b. brucei trypanosomes transmigrate in the presence of J774 macrophages, whereas the transmigration of J774 macrophages is not affected in presence of T. b. brucei trypanosomes. The low transmigration rate could be caused by a competitive blocking by macrophages of adhesion sites like laminin Z4 chains in the extracellular matrix (Masocha et al., 2004). Another possibility for getting across the BBB is the 'Trojan horse'-like travelling inside macrophages, as shown for example for Cryptococcus neoformans (Charlier et al., 2009). However, we found no evidence for intracellular African trypanosomes in our microscopic observations during transmigration or co-cultivation assays.

After multiplication within the bloodstream, the trypanosomal attack on the brain marks the second stage of the disease, which finally causes the death of the infected host. Correct identification of the disease stage of patients is essential for successful treatment in order to prevent relapsing parasitaemia. As shown in a rat infection model, the CNS can be a source of reinfection with parasites after clearance of bloodstream trypanosomes in consequence of treatment with drugs that cannot enter the CNS (Jennings et al., 1979). Results of the present study showed that trypanosomes traverse an inverse ECV304–C6 BBB model system with similar transmigration rates as in the normal BBB model. These results support the data of the rat-infection model and indicate that the CNS invasion is not a one-way process and that trypanosomes are capable of returning to the blood circulation.

In conclusion, we have evaluated three different cell lines for the generation of an in vitro BBB model. The optimized ECV304–C6 BBB is a highly reproducible and selective permeable barrier model for pathogens and was established for the comparative analysis of different African trypanosomes. We were the first to show that T. brucei strains traverse the blood–brain barrier in vitro in both directions. The BBB model presented provides a reliable in vitro system that facilitates investigation of BBB-transmigration processes in order to understand the cellular and molecular mechanisms underlying CNS invasion. This is urgently
needed for improvements in therapy and for the development of new drugs.

ACKNOWLEDGEMENTS

The E. coli K1 strain was kindly provided by Professor Dr U. Dobrindt, Institute for Hygiene at the University Medical Centre, Münster, Germany. The trypanosomal strains Trypanosoma brucei gambiense STIB930 and T. b. rhodesiense STIB900 were both gratefully obtained from Professor R. Brun, Schweizerisches Tropeninstitut, Basel, Switzerland. We also thank PD Dr A. Stich, Missionsärztlche Klinik, Würzburg, Germany, for supplying HUVEC and HBMEC cells. Finally we thank Dr Olga Shevchuk, Institute for Microbiology, TU Braunschweig, Germany, for constructive discussions.

REFERENCES

Edited by: L. J. Knoll