Genetic adaptation of *Pseudomonas aeruginosa* during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in *mucA* and/or *lasR* mutants

Oana Ciofu, Lotte F. Mandsberg, Thomas Bjarnsholt, Tina Wassermann and Niels Høiby

Correspondence Oana Ciofu 
ociofu@sund.ku.dk

1Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Denmark
2Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

Received 21 August 2009
Revised 9 December 2009
Accepted 16 December 2009

During the chronic lung infection of patients with cystic fibrosis (CF), *Pseudomonas aeruginosa* can survive for long periods due to adaptive evolution mediated by genetic variation. Hypermutability is considered to play an important role in this adaptive evolution and it has been demonstrated that mutator populations are amplified in the CF lung by hitchhiking with adaptive mutations. Two of the genes that are frequently mutated in isolates from chronic infection are *mucA* and *lasR*. Loss-of-function mutations in these genes determine the phenotypic switch to mucoidy and loss of quorum sensing, which are considered hallmarks of chronic virulence. The aims of our study were to investigate (1) the genetic background of the *P. aeruginosa* subpopulations with non-mutator, weak or strong mutator phenotype and their dynamics during the chronic lung infection, and (2) the time sequence in which the hypermutable, mucoid and quorum-sensing-negative phenotypes emerge during chronic lung infection. For these purposes the sequences of *mutS*, *mutL*, *uvrD*, *mutT*, *mutY* and *mutM* anti-mutator genes as well as of *mucA* and *lasR* were analysed in 70 sequential *P. aeruginosa* isolates obtained from the respiratory secretions of 10 CF patients (one to three isolates per time point). Analysis of the genetic background of the mutator phenotype showed that *mutS* was the most commonly affected gene followed by *mutL* in isolates with strong mutator phenotype. The *mutT*, *mutY*, *mutM* genes were affected in isolates with low fold-changes in the mutation frequencies compared to the reference strain PAO1. Isolates with non-mutator, weak or strong mutator phenotype were represented at all time points showing co-existence of these subpopulations, which suggests parallel evolution of the various mutators in the different focal niches of infection in the CF lung. Mutations in *mucA* and *lasR* occurred earlier than mutations in the anti-mutator genes, showing that hypermutability is not a prerequisite for the acquisition of mucoidy and loss of quorum sensing, considered hallmarks of chronic virulence. Significantly higher mutation rates and MICs of ceftazidime, meropenem and ciprofloxacin were found for isolates collected late (more than 10 years) during the chronic lung infection compared to isolates collected earlier, which suggests an amplification of the mutator subpopulation by hitchhiking with development of antibiotic resistance. Similar evolutionary pathways concordant with adaptive radiation were observed in different clonal lineages of *P. aeruginosa* from CF patients.

**INTRODUCTION**

During the chronic lung infection of patients with cystic fibrosis (CF), *Pseudomonas aeruginosa* can survive for long periods under the challenging selective pressure imposed by the immune system and the antibiotic treatment, due to
a biofilm mode of growth (Hoiby et al., 2008) and adaptive evolution mediated by genetic variation (Smith et al., 2006). It has been shown that hypermutability plays an important role in this adaptive evolution and it has been demonstrated that mutator populations are amplified by hitchhiking with adaptive mutations (Mena et al., 2008). When P. aeruginosa strains have survived in the CF lung for more than 30 years, they may have experienced 65,000 divisions, during which time niche specialists have evolved that are well adapted to survive in CF lungs, but have less capability to survive elsewhere. Accumulation of mutations leads to phenotypic changes in CF isolates such as increased alginate production and occurrence of mucoid variants (Govan & Nelson, 1993), loss of quorum sensing (Smith et al., 2006; D’Argenio et al., 2007), loss of motility (Mahenthiralingam et al., 1994), loss of effector proteins of the type III secretion system (Jain et al., 2004), loss of the O-antigen components of the lipopolysaccharide (Hancock et al., 1983), reduced virulence (Luzar & Montie, 1985), reduced capacity for in vitro biofilm formation (Lee et al., 2005) and increased antibiotic resistance (Ciufot et al., 2001).

CF P. aeruginosa isolates with mutator phenotype exhibit abroad range of mutation frequencies from 1000 to a few fold-changes compared to the mutation frequencies of the laboratory strain PAO1 (Oliver et al., 2000; Ciufot et al., 2005; Hogardt et al., 2007; Kenna et al., 2007; Mena et al., 2008). A strong mutator in clinical isolates has been defined as a strain with mutation frequencies at least 20-fold higher than strain PAO1 (≥2 × 10⁻⁷ for rifampicin). A strain with lower fold-changes can be considered a weak mutator (<2 × 10⁻⁷ and ≥2 × 10⁻⁸), while strains with mutation frequencies similar to or lower than PAO1 are considered non-mutators (<2 × 10⁻⁸).

P. aeruginosa CF isolates with strong mutator phenotype have been repeatedly shown to be caused by loss-of-function mutations in genes related to DNA repair belonging to the methyl-directed mismatch-repair system (MMR system), which includes mutS, mutL and uvrD (Oliver et al., 2002; Montanari et al., 2007; Hogardt et al., 2007; Mena et al., 2008). There have been indications that genes (mutT, mutY and mutM) belonging to the system that prevents or repairs the mutations produced by the oxidative lesion mediated by 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-dG or GO) are also involved in the occurrence of mutators (Oliver et al., 2000; Hogardt et al., 2007). We have recently reported CF P. aeruginosa isolates with mutator or weak mutator phenotype due to inactivation of mutT and mutY genes (Mandsberg et al., 2009). Novel mutator genes PA0140 (ahpF), PA4609 (radA), PA3002 (mfd), PA3003 and PA0750 (ung) have been recently reported to play a role in hypermutability, especially in isolates with weak mutator phenotype (less than fivefold increase in mutation frequencies compared to the wild-type) (Wiegand et al., 2008). An additional gene entitled pflA was also shown to play an anti-mutator role providing general stress protection (Rodriguez-Rojas & Blazquez, 2009).

It has been shown that the prevalence of P. aeruginosa mutators increases with time during chronic lung infection due to positive selection of the mutators in the CF lung (Ciufot et al., 2005; Hogardt et al., 2007; Mena et al., 2008). Association between strong mutators and development of resistance to antibiotics has been reported on several occasions (Oliver et al., 2000; Ciufot et al., 2005; Henrichfreise et al., 2007; Ferroni et al., 2009) and we have recently shown that even small increases in the mutation frequencies, less than 20 times the mutation frequency of PAO1, can represent an advantage for the adaptation of the strains to the antibiotic treatment (Mandsberg et al., 2009).

Inactivation of the MMR system was shown to favour the emergence in vitro of phenotypic variants considered typical markers of CF lung infection such as mucoidy due to mutations in mua and loss of quorum sensing due to mutations in lasR (Smania et al., 2004). However, the time sequence in which the hypermutable, mucoid and quorum-sensing negative phenotypes emerge during chronic lung infection has not been investigated before in clinical CF P. aeruginosa isolates.

In this study, we took advantage of the possibility of following the genetic adaptation of different clonal lineages by characterizing the accumulation of loss-of-function mutations in mua, lasR and six anti-mutator genes in longitudinal samples from 10 CF patients.

The sequence variability of the anti-mutator genes belonging to the MMR system (mutS, mutL and uvrD) and GO system (mutT, mutY and mutM) as well as of lasR and mua were investigated in 70 sequential isolates with weak or strong mutator phenotype and in non-mutators collected at time points from 5 up to more than 25 years of chronic lung infection (one to three isolates per time point). The significance of the identified mutations for the anti-mutator gene functionality was investigated by complementation with plasmids containing the respective wild-type allele.

**METHODS**

**CF patients, bacterial strains and growth conditions.** In the Copenhagen CF Centre, all patients are monitored at monthly visits by evaluation of their clinical status, pulmonary function and microbiology of the lower airways secretions. Chronic pulmonary infection is defined as the persistent presence of P. aeruginosa in the sputum for 6 consecutive months, or less if the persistence is combined with the presence of two or more precipitating antibodies against P. aeruginosa. Sputum samples obtained by expectoration or endolaryngeal suction are Gram-stained and examined under the microscope to confirm the origin from the lower airways. Since 1976 regular 14 day courses of intensive intravenous treatment (combination of a β-lactam with an aminoglycoside) have been administered every third month to repeatedly restore the lung function and, since 1984, colistin inhalations supplemented if necessary with oral ciprofloxacin have been administered between the intravenous courses.

http://mic.sgmjournals.org
P. aeruginosa isolates have been collected from sputum of CF patients since 1973 and stored in nutrient broth containing 5% glycerol at −80 °C. The selection criteria were phenotypic (mucoid and non-mucoid) and different patterns of resistance to antibiotics, as determined on the basis of direct sensitivity testing of isolates from plated sputum. Sequential isolates (70 isolates) from 10 CF patients with chronic P. aeruginosa lung infection were included in this study. Previous measurements of mutation frequencies identified these 10 isolates as harbouring mutator strains in their lung in the late stages of the chronic infection. For practical purposes the duration of the chronic lung infection was expressed in five 5-year periods from 5–10 years (11 isolates), 10–15 years (12 isolates), 15–20 years (17 isolates), 20–25 years (15 isolates) and more than 25 years (15 isolates) of chronic infection.

Genotyping by PFGE. All isolates were genotyped by PFGE as described previously using SpeI enzyme (Ojeniyi et al., 1991; Romling & Tümler, 2000). After PFGE, the band patterns were visualized by ethidium bromide staining and then photographed (GelDoc imaging system, Bio-Rad). The patterns were analysed by Fingerprinting II software (Bio-Rad). The clonal relatedness of the individual pairs of mucoid and non-mucoid P. aeruginosa was confirmed according to Tenover et al. (1995). Isolates with PFGE patterns that differ from each other by two to three bands were considered clonally related, as this pattern is consistent with a single genetic event, i.e. a point mutation or an insertion or deletion of the DNA. Isolates with PFGE patterns that differed by more than three bands were considered to belong to different strains.

Measurement of mutation frequencies of P. aeruginosa isolates. To determine the mutation frequencies after exposure to rifampicin and streptomycin, the bacterial isolates were grown overnight in 20 ml Luria–Bertani (LB) medium, centrifuged at 3000 r.p.m. for 10 min, and resuspended in 1 ml LB medium. A 100 μl volume of 0, 10\(^{-3}\) or 10\(^{-4}\) dilutions was plated on LB plates containing 300 μg rifampicin ml\(^{-1}\) and on LB plates containing 500 μg streptomycin ml\(^{-1}\). A 100 μl volume of 10\(^{-2}\) to 10\(^{-10}\) dilutions was plated on LB plates, and the numbers of c.f.u. were counted after incubation at 37°C for 48 h. The mutation frequencies are the mean values from two measurements.

According to the mutation frequencies on rifampicin plates, the isolates were grouped into strong mutators (Hp) [20 times the frequency of mutation of PAO1 (≥2 × 10\(^{-7}\))], weak mutants (wpHp) (<2 × 10\(^{-7}\) and ≥2 × 10\(^{-8}\)), or non-mutators (nhp) (<2 × 10\(^{-8}\)).

Determination of antibiotic resistance. The MICs of cefazidime, meropenem, tobramycin, ciprofloxacin and colistin against the 70 longitudinal P. aeruginosa isolates were determined by the agar plate dilution method as previously described (Ciofu et al., 1996) or by E-test (AB Biodisk), according to the manufacturer’s instructions.

Sequence analysis of mutS, mutL, uvrD, mutY, mutM and mutT. The mutS, mutL, uvrD, mutY, mutM and mutT genes from all the isolates included in the study were PCR amplified using the primer sets presented in Supplementary Table S1 (available with the online version of this paper). After purification (Promega Wisart purification kit) the PCR products were fully sequenced using the sequencing primers presented in Supplementary Table S1. The sequencing was done on a Macrogen automatic DNA sequencer ABI3700. The number of reads was between two and four for each gene of each strain. The sequence results were compared with the strain PAO1 sequence (http://www.pseudomonas.com) with DNAsis Max version 2.0 (Hitachi Software Engineering), in order to determine the occurrence of sequence variants in the six anti-mutator genes analysed.

Sequence analysis of lasR and mucA. lasR and mucA from all the isolates included in the study were PCR amplified. The primers used for lasR amplification and sequencing were lasR start (5’–3’) ATGGCCCTGTTGGACGTTT and lasR stop (5’–3’) GCAAGATCGAGAATAAGABCAC.

The primers used for mucA amplification and sequencing were mucA-1 (5’–3’) CTCTGACGCCCTTTGTCGAGAAG; mucA-1 rev (5’–3’) CTGCGAACCAAAGCAGCGAAG; mucA-2 (5’–3’) G-TGGCCTGTCAACACGAGCA; and mucA-2 rev (5’–3’) GT-GGTGTTGTGCAGACGACG.

After purification (Promega Wisart purification kit) the PCR products were sequenced on a Macrogen automatic DNA sequencer ABI3700. The number of reads was between two and four for each gene of each strain. The sequence results were compared with the strain PAO1 sequence (http://www.pseudomonas.com) with DNAsis Max version 2.0 (Hitachi Software Engineering), in order to determine the occurrence of sequence variants in the genes analysed.

Construction of complementation plasmids. The P. aeruginosa–Escherichia coli shuttle vector pUCP26 (West et al., 1994) was used for the construction of recombinant plasmids containing the PAO1 mutL, uvrD, mutT, mutY and mutM genes under the control of the plasmid-borne lac promoter. The plasmids were constructed by amplifying mutL, uvrD, mutT, mutY and mutM from PAO1 templates with primers provided with restrictions sites matching those in the pUCP26 multi-cloning-site and a Shine–Dalgarno motif, as previously described (Mandsberg et al., 2009). The resulting recombinant plasmids were pLM103 (mutL), pLM104 (uvrD), pLM101 (mutT), pLM100 (mutY) and pLM102 (mutM).

Complementation with MMR or GO genes. Plasmid pUCPMS harbouring the wild-type mutS gene from PAO1 (Ojefi et al., 2004), pLM103 (mutL), pLM104 (uvrD), pLM101 (mutT), pLM100 (mutY) and pLM102 (mutM) were electroporated into clinical isolates with detected changes in the sequence of the respective genes. The transformed bacteria were inoculated on LB agar containing tetracycline (gentamicin for pUCPMS) at concentrations able to inhibit the growth of the CF P. aeruginosa isolates. As control, the empty plasmid pUCP26 was electroporated into the clinical isolates. Plasmid DNA extraction of transformed colonies confirmed the presence of plasmids, and mutation frequencies were measured.

Statistical analysis. The description and analysis of data were carried out by using Statview 5 software. The data are given as geometric means for mutation frequencies. Unpaired t-test was used to compare mutation frequencies of the P. aeruginosa isolates collected in the five different periods of chronic lung infection after log-transformation of the data in order to normalize the distribution.

RESULTS

Clonal distribution of the P. aeruginosa isolates

The PFGE showed that six different clones of P. aeruginosa were represented among the 70 isolates from the 10 Danish CF patients. The patients maintained the same bacterial clones in their lungs during the long period of chronic lung infection (data not shown). Two previously reported dominant clones (DK-1 or ‘r’ and DK-2 or ‘b’) (Ojeniyi et al., 1993; Jelsbak et al., 2007; Ciofu et al., 2008) were shared by several patients (CF 2, CF 5, CF 7 and CF 10 harboured DK-1 while CF 3, CF 4 and CF 9 harboured DK-2). Unique clones (A, B, C and D) were harboured by the last three patients although one patient had simultaneously
Table 1. Summary of the type of mutations identified in anti-mutator genes and in mucA and lasR genes of sequential P. aeruginosa isolates with strong (Hp), weak (wHp) or non-mutator (nhp) phenotype in 10 CF patients with chronic lung infection

The isolates are identified by a number representing the number of years the CF patient had been chronically infected at the time of isolate collection. When both non-mucoid (NM) and mucoid (M) phenotypes were available from the sputum sample, the isolate is identified by a number followed by NM or M. The clone (see text) to which each isolate belongs is also presented. nc, no changes identified in the respective gene sequence, ND, sequence not determined.

<table>
<thead>
<tr>
<th>CF patient</th>
<th>Isolateclone</th>
<th>Mutator phenotype and genotype</th>
<th>Mutations in mucA and the respective changes in MucA</th>
<th>Mutations in lasR and the respective changes in LasR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF 1</td>
<td>13A, 15NM4A, 16A</td>
<td>wHp</td>
<td>Insertion G at 114: stop codon</td>
<td>G264T:Trp88Cys</td>
</tr>
<tr>
<td></td>
<td>15M4B, 20M4B, 21M4, 23M4B, 20NM4B, 35NM4B</td>
<td>nhp, wHp (20M4B)</td>
<td>C352T: stop codon</td>
<td>C292T: stop codon</td>
</tr>
<tr>
<td></td>
<td>21 NM4B, 23 NM4B, 29 NM4B</td>
<td>nhp, wHp (23NM)</td>
<td>C352T: stop codon</td>
<td>C292T: stop codon</td>
</tr>
<tr>
<td></td>
<td>29M4A, 30M4A, 35M4B</td>
<td>hp</td>
<td>C352T: stop codon</td>
<td>C292T: stop codon</td>
</tr>
<tr>
<td></td>
<td>30NM1A</td>
<td>wHp</td>
<td>Insertion G at 114: frameshift</td>
<td></td>
</tr>
<tr>
<td>CF 2</td>
<td>16DK-1</td>
<td>nhp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22DK-1</td>
<td>Hp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24DK-1</td>
<td>hp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27MDK-1</td>
<td>hp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29MDK-1</td>
<td>hp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33MDK-1</td>
<td>hp</td>
<td>C349T: stop codon</td>
<td></td>
</tr>
<tr>
<td>CF 3</td>
<td>4DK-2</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5DK-2</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11DK-2, 12DK-2, 14DK-2, 15NM1DK-2, 15MDK-2</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
<tr>
<td>CF 4</td>
<td>5DK-2</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15DK-2, 18MDK-2, 20MDK-2, 20NM2DK-2</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
<tr>
<td>CF 5</td>
<td>10DK-1</td>
<td>nhp</td>
<td>G1567A: Glu522Lys</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. cont.

<table>
<thead>
<tr>
<th>CF patient</th>
<th>Isolateclone</th>
<th>Mutator phenotype and genotype</th>
<th>Mutations in <em>mucA</em> and the respective changes in MucA</th>
<th>Mutations in <em>lasR</em> and the respective changes in LasR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>nc*</td>
<td>nc</td>
</tr>
<tr>
<td>20&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>Hp</td>
<td>Insertion A at 2355: frameshift</td>
<td>ΔG430: frameshift</td>
<td>Δ5 bp at 187: frameshift</td>
</tr>
<tr>
<td>25&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>wHp</td>
<td>mutS</td>
<td>nc</td>
<td>T530C: Leu177Pro</td>
</tr>
<tr>
<td>CF 6</td>
<td>9&lt;sup&gt;C&lt;/sup&gt;, 10&lt;sup&gt;C&lt;/sup&gt;</td>
<td>wHp (9&lt;sup&gt;C&lt;/sup&gt;), nhp</td>
<td>mutM</td>
<td>Δ13 bp at 666: frameshift</td>
</tr>
<tr>
<td></td>
<td>Hp</td>
<td>G1645T: Ala548Val</td>
<td>D13 bp at 666: frameshift</td>
<td></td>
</tr>
<tr>
<td>21&lt;sup&gt;C&lt;/sup&gt;, 25&lt;sup&gt;C&lt;/sup&gt;, 27&lt;sup&gt;C&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutL</td>
<td>ΔG at 438: frameshift</td>
<td></td>
</tr>
<tr>
<td>CF 7</td>
<td>16&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>ΔGCA at 347: in-frame Gly deletion</td>
<td>nc</td>
</tr>
<tr>
<td>18M&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>18NM&lt;sup&gt;DK-1&lt;/sup&gt;, 21&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutM polymorphism</td>
<td>nc</td>
<td>C538T: Arg180Trp</td>
</tr>
<tr>
<td>23&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>mutL</td>
<td>C349T: stop codon</td>
<td>nc</td>
</tr>
<tr>
<td>CF 8</td>
<td>5&lt;sup&gt;D&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>ND</td>
</tr>
<tr>
<td>6&lt;sup&gt;D&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>nc</td>
<td>G313A: Ala105Thr</td>
</tr>
<tr>
<td>8&lt;sup&gt;D&lt;/sup&gt;, 9M&lt;sup&gt;D&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutS</td>
<td>ΔG430: frameshift</td>
<td>G313A: Ala105Thr</td>
</tr>
<tr>
<td>9NM&lt;sup&gt;D&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutS</td>
<td>ΔGC at 1554: frameshift</td>
<td>G313A: Ala105Thr</td>
</tr>
<tr>
<td>CF 9</td>
<td>14&lt;sup&gt;DK-2&lt;/sup&gt;</td>
<td>nhp</td>
<td>ΔG430: frameshift</td>
<td>Not amplified</td>
</tr>
<tr>
<td>19M&lt;sup&gt;DK-2&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>C349T: stop codon</td>
<td>Not amplified</td>
</tr>
<tr>
<td>19NM&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutS</td>
<td>C349T: stop codon</td>
<td>nc</td>
</tr>
<tr>
<td>24&lt;sub&gt;1&lt;/sub&gt;DK&lt;sup&gt;2&lt;/sup&gt;</td>
<td>Hp</td>
<td>G1567A: Glu522Lys</td>
<td>ΔG430: frameshift</td>
<td>Not amplified</td>
</tr>
<tr>
<td>24&lt;sub&gt;2&lt;/sub&gt;DK&lt;sup&gt;2&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutL</td>
<td>G1567A: Glu522Lys</td>
<td>ΔG430: frameshift</td>
</tr>
<tr>
<td>27&lt;sup&gt;DK-2&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutS</td>
<td>Insertion 5 bp at 1246: frameshift</td>
<td>Not amplified</td>
</tr>
<tr>
<td>CF 10</td>
<td>20M&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>No mutations</td>
<td>C349T: stop codon</td>
</tr>
<tr>
<td>20NM&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>Hp</td>
<td>mutL</td>
<td>nc</td>
<td>T227C: Val76Ala</td>
</tr>
<tr>
<td>28M&lt;sup&gt;DK-1&lt;/sup&gt;</td>
<td>nhp</td>
<td>Large insertion at 1882</td>
<td>C349T: stop codon</td>
<td>nc</td>
</tr>
</tbody>
</table>
two different clones (A and B) in the lung during the chronic lung infection (Table 1, Supplementary Table S2).

**Mutation frequency of CF P. aeruginosa sequential isolates**

Among the 70 isolates, 54% (38) had strong mutator phenotype (Hp), 11% (8) had weak mutator phenotype (wHp) and 34% (24) had non-mutator phenotype (nhp). Isolates with Hp, wHp or nhp were present in all the five time-groups of isolates, showing that in the CF lungs different bacterial subpopulations may co-exist over a long period (Fig. 1).

The mutation frequencies (geometric mean) to rifampicin and streptomycin resistance of the isolates collected in the late stages of the chronic infection (the group ‘more than 25 years’) were $5.4 \times 10^{-7}$ and $1.45 \times 10^{-6}$, respectively, and these were significantly higher ($P=0.03$) than the mutation frequencies of isolates collected in the initial stages of the chronic infection (the group ‘5–10 years’), which were $5.1 \times 10^{-8}$ and $1.54 \times 10^{-5}$, respectively.

In accordance with previous studies, these data suggest that in the course of chronic infection, an accumulation of mutants occurs due to bacterial replication (Oliver et al., 2004; Ciofu et al., 2005; Mena et al., 2008).

**Antibiotic susceptibility**

The MICs of ceftazidime and ciprofloxacin [median (range) μg ml$^{-1}$] for isolates collected in the first 5–10 year period of chronic lung infection [6.2 (1–100) and 0.25 (0.1–3.1)] were significantly lower compared to those found in isolates collected in the periods 10–15 years [400 (2–400) and 6 (0.03–50); $P=0.0004$ and non-significant, respectively], 15–20 years [200 (1.6–400) and 3.1 (0.4–25); $P=0.004$ and $P=0.01$, respectively], 20–25 years [57 (0.1–400) and 9.3 (0.5–25); $P=0.01$ and $P=0.006$, respectively] and more than 25 years [100 (0.75–400) and 3.1 (0.5–12.5); $P=0.01$ and $P=0.005$, respectively] of chronic lung infection. These results are in agreement with previous studies (Ciofu et al., 1994), showing development of resistance to antibiotics in P. aeruginosa isolates during chronic lung infection.

The MICs of ceftazidime, meropenem, tobramycin, ciprofloxacin and colistin for the Hp, wHp and nhp P. aeruginosa isolates are presented in Table 2. The Hp isolates were significantly more resistant to all the tested antibiotics, except colistin, than the nhp isolates. Interestingly, the MIC of tobramycin was significantly higher for the wHp isolates compared to the nhp isolates.

**Sequences of anti-mutator genes in consecutive CF P. aeruginosa isolates from different time points of the chronic lung infection**

The types of mutation identified in the different bacterial clones infecting the 10 CF patients are summarized in Table 1 and described in detail in Supplementary Table S2.

<table>
<thead>
<tr>
<th>CF patient</th>
<th>Isolate from</th>
<th>Mutator phenotype and genotype</th>
<th>Mutations in mucA and the respective changes in MucA</th>
<th>Mutations in lasR and the respective changes in LasR</th>
</tr>
</thead>
<tbody>
<tr>
<td>28NMDK-1</td>
<td>Hp, mutL</td>
<td>C349T: stop codon</td>
<td>T227C: Val76Ala</td>
<td></td>
</tr>
</tbody>
</table>

*In this isolate the sequence of algT showed ΔGCACA at position 89 leading to a frameshift, showing that mutation had occurred in the algT operon.

**Fig. 1.** Mutation frequencies after exposure to rifampicin in 70 P. aeruginosa isolates collected in five periods of chronic lung infection (5–10, 10–15, 15–20, 20–25, and more than 25 years) from 10 patients with CF. The results for strong mutators (Hp; ▲), weak mutators (wHp; △) and non-hypermutators (nhp; ●) are presented.
each of the wild-type genes could not confirm these mutations as the cause of high mutation frequencies in these isolates. Analysis of the promoter regions of all the anti-mutator genes showed no differences between the sequences of the six Hp isolates and the corresponding early nhp isolates from the two patients.

Four out of eight isolates with wHp showed mutations in mutT and complementation with the wild-type mutT reversed the mutator phenotype. All these isolates were collected from one CF patient. Mutations in uvrD and mutM leading to changes in the amino acid sequences (Ala548Val in UvrD) and (Ala65Thr in MutM) were identified in two other wHp isolates from two other patients. However, complementation with the respective wild-type genes failed to reverse the wHp phenotype, and the mutM mutation was found in a nhp isolate as well, making unclear the role of these mutations for the acquisition of the wHp. In the remaining two isolates with wHp phenotype, no mutations were identified in the six genes that were investigated.

In 19 out of 24 isolates with nhp, no changes were found in the six anti-mutator genes that have been investigated (except the sequence polymorphisms found in uvrD and mutT that are mentioned below). However, a 10 bp deletion leading to a frameshift in mutY and mutations in mutM leading to Ala65Thr in the encoded protein were identified in nhp isolates from two patients. Simultaneous mutations in mutS, mutL and mutY causing amino acid changes in the encoded proteins were identified in two nhp isolates of CF 8 (Supplementary Table S2), suggesting that the respective mutations did not influence the functionality of the encoded proteins.

The types of mutations identified were not associated to a specific bacterial clone. Although patients CF 2, CF 5, CF 7 and CF 10 harboured clone DK-1 in their lungs, whereas CF 3, CF 4 and CF 9 harboured DK-2, the sequence variability of the mutator genes was unique to each patient. The same type of mutation was present in sequential isolates, showing that the mutator phenotype occurred after the patients had been infected with these dominant clones and had not been transmitted to other patients. However, one exception is the G1567A mutation found in mutS leading to change of the Glu to Lys at position 522. This mutation was found in mutator isolates belonging to the DK-2 clone in patients CF 9 and CF 4.

Patient CF 1 had *P. aeruginosa* belonging to clone A and B in the lung during the chronic infection. While mutators of clone A had a wHp phenotype due to loss-of-function mutation in mutT, clone B mutators expressed a Hp phenotype due to loss-of-function mutation in mutS. Patient CF 2 had mutators with mucoid phenotype due to mutations in mutS, while the non-mucoid mutators had mutations in unidentified loci. In patient CF 9, inactivation of mutS or mutL was found in two isolates with Hp phenotype collected from the same sputum sample. All these examples show that mutators with different genetic backgrounds are maintained during the chronic infection, suggesting that these mutator lineages are not competing with each other in the CF lung.

### Table 2. MICs of ceftazidime, meropenem, tobramycin, ciprofloxacin and colistin [median, (ranges)] in sequential CF isolates with strong (Hp), weak (wHp) or non-mutator (nhp) phenotypes

The MICs were not determined in three isolates.

<table>
<thead>
<tr>
<th>Phenotype (number)</th>
<th>Ceftazidime (µg ml⁻¹)</th>
<th>Meropenem (µg ml⁻¹)</th>
<th>Tobramycin (µg ml⁻¹)</th>
<th>Ciprofloxacin (µg ml⁻¹)</th>
<th>Colistin (µg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp (36)</td>
<td>200 (0.75–400)</td>
<td>25 (0.2–400)</td>
<td>10.2 (0.4–100)</td>
<td>6.2 (0.25–50)</td>
<td>0.8 (0–12.5)</td>
</tr>
<tr>
<td>wHp (8)</td>
<td>25 (3–400)</td>
<td>2.8 (0.2–32)</td>
<td>10.2 (1–98)</td>
<td>0.9 (0.03–12.5)</td>
<td>0.65 (0.1–1.6)</td>
</tr>
<tr>
<td>nhp (23)</td>
<td>25* (0.1–400)</td>
<td>1.6* (0.02–100)</td>
<td>3.1*† (0.1–12.5)</td>
<td>1.6* (0.1–12.5)</td>
<td>1.6 (0.06–3.1)</td>
</tr>
</tbody>
</table>

*P<0.05 compared to Hp isolates.
†P<0.05 compared to wHp isolates.
Genetic background of *P. aeruginosa* mutators

(a)

DK-1

lasiR: C538T
mutL,YM polymorphism

CF 2-24, 27NM, 29, 33NM

CF 7-18NM, 21

CF 10-20NM

CF 10-20M, 28M

CF 7-23

CF 2-16

mutS: ΔA at 2429

lasiR: C668T
mutA: nc

CF 2-22

CF 2-27M

CF 2-33M

mutA: C349T

(b)

DK-2

mutA: ΔG430

lasiR: not amplified

CF 4-5, 12

CF 3-5

CF 3-11, 12, 14,

mutS: ΔA at 2210

mutS: G1567A

CF 4-15, 18M, 18NM, 20M

CF 9-14

mutL: ins 5 bp at 1246

CF 9-24_1, 27

CF 9-24_2
The majority of mutations in *mutS* and *mutL* were deletions or insertions leading to premature stop codons (Table 1). The point mutation G1567A in *mutS* led to an amino acid change Glu522Lys in the core domain III of MutS (Table 1) and the mutator phenotype reverted after complementation with the wild-type gene. As the core domain is connected to the ATPase domain, we suggest that this mutation might have consequences for the conformation of MutS at the level of the ATP-binding site (Lamers et al., 2000).

Sequence polymorphisms were found in both *uvrD* and *mutT*. In *uvrD*, the mutations GT1985AC and A1997G leading to amino acid changes from Ser to Asn and Asn to Ser, respectively, were found in 90% of the isolates investigated (Supplementary Table S2). This polymorphism has been described previously in *P. aeruginosa* strains with mutator and non-mutator-phenotypes isolated at the Hannover CF Clinic (Montanari et al., 2007).

In *mutT*, the point mutation G708T leading to an amino acid change from Glu to Asp at position 236 was associated with clones DK-1, B and D (present in 88% of the isolates belonging to these three clones) while C416T leading to amino acid change Ser to Leu at position 139 was associated with clone DK-2 (100% of the DK-2 isolates) (Supplementary Table S2). These polymorphisms in *uvrD* and *mutT* were present in isolates with mutator and non-mutator phenotypes, suggesting that they are not affecting the mutation frequency of the isolates.

In a large number of clinical isolates (CF1 _29M, CF1_30NM-1, CF2_24, CF2_27NM, CF2_29, CF2_33NM, CF5_20, CF6_21, CF6_27, CF7_18NM, CF7_21, CF8_5, CF8_6, CF8_8, CF8_9M, CF8_13, CF8_16, CF9_24-1, CF9_24-2) mutations in several anti-mutator genes, such as *mutS*, *mutL*, *mutY* and *mutM*, were identified (Supplementary Table S2). Although complementation with single wild-type genes of the MMR system reduced the frequency of mutations in these isolates, we cannot exclude that the mutations identified in the genes of the GO system also play a role in the occurrence of the mutator phenotype.

**Sequence of mucA and lasR in consecutive CF P. aeruginosa isolates from different time points of the chronic lung infection**

Inactivation of the MMR system was shown in vitro to favour the emergence of *mucA22* and *lasR* mutants (Smania et al., 2004; Lujan et al., 2007; Moyano et al., 2007), and an association between hypermutability and mucoidy has been reported in clinical CF isolates (Waine et al., 2008).

We investigated in our collection of longitudinal *P. aeruginosa* CF isolates at which time point mutations in *mucA* and *lasR* occurred and compared it to the time point when mutations in the anti-mutator genes were identified. Mutations in anti-mutator genes occurred in the chronic CF isolates that already had mutations in *mucA* and/or *lasR*, as shown in Table 1 and Fig. 2.

The mutations identified in *mucA* were C349T and ΔG430 in isolates belonging to clone DK-1 and DK-2, respectively (Fig. 2a, b). In addition, *lasR* could not be amplified in either of the DK-2 isolates, suggesting the probable deletion of this gene in the DK-2 clone (in accordance with unpublished results of Lei Yang, Infection Microbiology Group, Technical University of Denmark). These patterns of mutations in *mucA* and *lasR* suggest that the spread of these two dominant clones among CF patients in Copenhagen occurred after the acquisition of the respective *mucA* and/or *lasR* mutations and one may hypothesize that these mutations are not affecting the infectivity of *P. aeruginosa* in new environments (Fig. 2a, b). In contrast, the mutations encountered in the anti-mutator genes in isolates of DK-1 and DK-2 varied among patients, suggesting that the evolution of mutators occurred later during chronic infection after the spread of these two dominant clones (Fig. 2a, b). The similar evolutionary pathways encountered in the different CF patients may be considered an example of adaptive radiation, where niche specialists occur in the different compartments of the CF lung.

**DISCUSSION**

In the present collection of *P. aeruginosa* isolates from chronically infected CF patients, mutations in both *mucA* and *lasR* preceded the occurrence of mutations in the anti-mutator genes, suggesting that the selection pressures for maintenance of mucoidy and *lasR*-deficient phenotypes are already acting in the initial phases of the chronic lung infection. Previous data (Waine et al., 2008) suggested an association between hypermutability and mucoidy and the authors even proposed a possible interaction between the two phenotypes due to the higher rates of mutations in hypermutators that would make more likely the acquisition of mutations resulting in the mucoid phenotype. Although this is an attractive hypothesis that fits with some in vitro observations (Lujan et al., 2007; Moyano et al., 2007), we could not confirm it by the genetic analysis of our collection of *P. aeruginosa* CF isolates from the late phases of the chronic lung infection.

Our data show that mucoid isolates as well as *lasR* quorum-sensing-deficient isolates are present in the initial phase of the infection while mutator isolates occur in the later phases of the infection; this is in accordance with earlier reports (Pedersen et al., 1992; D’Argenio et al., 2007). The occurrence of *mucA* and *lasR* mutation in bacteria that initially were Hp but which subsequently reverted to the nhp phenotype due to the disadvantage of the Hp in competition with other strains is a possible scenario that cannot be ruled out by our data. However, competition among different strains is less likely in the strongly compartmentalized CF lung.

Mucoid variants were reported to arise with a frequency of 1 in 10^7 (Govan & Fyfe, 1978). *P. aeruginosa* is present in
very high numbers in the CF lung, 10^7–10^10 c.f.u. ml^-1, which can readily explain the possibility for alginate producers to emerge in the absence of a strong mutator phenotype. In addition, we have shown that exposure of the bacteria to activated polymorphonuclear leukocytes (PMNs) creates mucA mutations in the absence of hypermutability and the inflammatory response is an early event during infection (Mathee et al., 1999). It has also been shown that spontaneous lasR mutants occur with a high frequency, making the involvement of hypermutability unlikely (D'Argenio et al., 2007; Sandoz et al., 2007). Subsequently, both mucoid and LasR-deficient isolates will be selected in the CF lung. The mucoid isolates will be selected because of a better survival due to the protective effects of alginate against innate immune factors and reactive oxygen species (Govan & Nelson, 1993) and the lasR mutants will be selected due to their growth advantage with particular carbon and nitrogen sources, including amino acids (D'Argenio et al., 2007).

We provide evidence that accumulation of mutators in the CF lung is associated especially with multi-drug resistance development, thus suggesting that the intensive antibiotic treatment is one of the main selective pressures for the maintenance and amplification of mutators, a hypothesis that is supported by several publications (Oliver et al., 2000; Ciofu et al., 2005; Ferroni et al., 2009).

The differences in the antibiotic treatment strategies between the CF centres, as well as sample bias in the Waine study due to an increased number of samples from patients harbouring mucoid isolates, might explain the different results reported previously (Waine et al., 2008).

Bacterial subpopulations with nhp, wHp or Hp phenotypes as well as Hp with different genetic backgrounds were found to co-exist in the CF lung during long periods of chronic infection, in accordance with previous reports (Hogardt et al., 2007; Mena et al., 2008). This suggests a lack of competition between the various mutator subpopulations due to the strong compartmentalization and low migration rates within and between the lungs of CF patients (Denamur et al., 2005). The different mutator subpopulations are probably living in different focal regions (de Jong et al., 2004) or niches in the CF lung (Bjarnsholt et al., 2009). Persistence of the strong mutators in spite of the cost of high mutation rates for long-term adaptation suggests that Hp are niche specialists (Giraud et al., 2001).

Our data show evidence of transmission among CF patients of P. aeruginosa with mutations in mucA or lasR but no evidence of transmission of mutators, confirming the reduced fitness of mutators for new environments. Studies in animal models have also shown that mutators have reduced potential for colonization of new environments and therefore strain transmissibility (Mena et al., 2007). It has been shown previously that mutators adapted to the CF lung lose their virulence and are impaired by deleterious mutations when they have to adapt to secondary environments (Montanari et al., 2007).

Our sequencing strategy allowed us to find loss-of-function mutations in genes involved in the repair of oxidative damage of the DNA in CF P. aeruginosa isolates, although it has been suggested that selection of this type of mutants will not take place in the CF lung due to the reduced oxygen tension in the CF sputum (Wiegand et al., 2008).

However, we have recently shown that the anoxic conditions in the sputum are due to the consumption of oxygen by the large number of PMNs which are liberating oxygen radicals (Kolpen et al., 2010). We have previously shown that activated PMNs represent an important source of oxidative stress for the bacterial DNA (Ciofu et al., 2005).

In addition to the increased oxidative burden, P. aeruginosa in the CF lung are probably also poorly protected against oxidative stress due to decreased catalase production in lasR mutants and during the biofilm mode of growth (Driffield et al., 2008).

Therefore, we suggest that a selection pressure for the occurrence of GO mutants does exist in the CF lung, in spite of the growth in sputum at low oxygen tension.

The prevalence of strong mutators due to mutations in MMR genes in the present and previous studies (Oliver et al., 2002; Mena et al., 2008) is probably due to the bias introduced by the isolation criteria of the P. aeruginosa strains from the sputum of CF patients, which include resistance to antibiotics. Analysis of mutation frequencies on a large number of P. aeruginosa colonies grown from the sputum would probably show a higher heterogeneity of mutators in the bacterial population.

Our strain collection was represented by P. aeruginosa isolates from the late stages of the chronic lung infection (from 4 up to 35 years of chronic lung infection) but did not include isolates from the phase of intermittent colonization or from the very early phases of the chronic lung infection. It has been previously published that 6% of the environmental isolates were weak mutators and 10% of early isolates were strong or weak mutators, but only the sequence of mutS was analysed in these isolates. Based on our present results, it would be interesting to investigate in a future prospective study the GO system genes in environmental or early P. aeruginosa isolates with weak mutator phenotype.

Mutations in several anti-mutator genes were found in a large number of isolates, suggesting the possibility of their synergistic effect on mutability. Simultaneous inactivation of both mutY and mutM had a synergistic effect in E. coli (Michaels et al., 1992; Miller, 1996) and similar results have been obtained in P. aeruginosa in our laboratory (unpublished results). A mutator cascade, in which one type of mutator (mutT) generates a second mutator (mutHLS) that then allows stepwise frameshift mutations, has been described in E. coli (Miller et al., 1999).
The types of mutation identified in the anti-mutator genes were very different from clone to clone and from CF patient to CF patient, suggesting that there are no hot-spot regions in the DNA sequence of these genes prone to mutability, such as those identified in mucA in mucoid CF isolates (Ciofu et al., 2008). In conclusion, our study shows that mutators with heterogeneous genetic background occur in isolates that have already acquired mutations in mucA or lasR and that these mutators are maintained in the lung during the chronic infection, suggesting parallel evolution of the different mutants in the various niches in the CF lung.

ACKNOWLEDGEMENTS

The technical assistance of Ulla Johansen, Jette Teglhus Møller and Anne Kirstine Nielsen are highly appreciated.

REFERENCES


Edited by: P. Cornelis