INTRODUCTION

Denitrification is the dissimilatory reduction of nitrogen oxanions to gaseous end products (Zumft, 1997). This process is secondary to aerobic respiration and is utilized as an alternative respiratory mode under micro-oxic and anoxic conditions. Denitrification is widespread in the biological world with eukaryotes, fungi, archaea and bacteria being able to respire fixed nitrogen oxanions to gaseous forms (Risgaard-Petersen et al., 2006; Zumft, 1997). An obligate intermediate in the denitrification pathway is nitric oxide (NO), produced upon nitrite reduction. The production of NO is believed to act directly as a signal for transcriptional regulators of denitrification genes, including the genes encoding nitrite and NO reductase (Giardina et al., 2008; Kwiatkowski & Shapleigh, 1996; Spiro, 2007; Tosques et al., 1996). NO is also a reactive free radical so its production must be tightly controlled. Consistent with this tight control, studies of expression of nirK, the gene encoding a copper-containing nitrite reductase, in some denitrifiers has revealed that its expression requires multiple regulators that integrate information about levels of oxygen and nitrogen oxanides (Baek et al., 2008; Bedmar et al., 2005; de Bruijn et al., 2006; Laratta et al., 2002). For example, in Agrobacterium tumefaciens the nirK gene has two levels of regulation. nirK is regulated first by ActR, a global transcriptional regulator, and second by NnrR, a denitrification specific regulator (Baek et al., 2008).

Rhodobacter sphaeroides strain 2.4.3 is a model for denitrification in an anoxygenic photoheterotroph. Strain 2.4.3 has a nirK and a cytochrome c-oxidizing nitric oxide reductase (Bartnikas et al., 1997; Tosques et al., 1997). Previously, the NnrR in this bacterium was established as an NO-responsive Fnr/Crp-type transcriptional regulator that regulates several genes involved in denitrification, including nirK (Hartsock & Shapleigh, 2010; Kwiatkowski & Shapleigh, 1996; Tosques et al., 1996). In addition to NnrR, the global two-component regulatory system PrrAB is required for upregulation of nirK since inactivation of the genes encoding these proteins drastically reduces nirK expression (Laratta et al., 2002). PrrB is a membrane-bound histidine sensor kinase and PrrA is the response regulator. As electron flow through the aerobic respiratory chain decreases, concomitant with oxygen levels, the kinase activity of PrrB is upregulated. In turn, PrrA is phosphorylated and activates or represses hundreds of genes that are involved in the transition from aerobic to anaerobic growth (Eraso et al., 2008). Importantly, the *cbb*3 oxidase is required for inhibiting the kinase activity of PrrB (Oh et al., 2004). In the absence of a functional *cbb*3 oxidase, PrrB constitutively phosphorylates PrrA, resulting in significantly higher levels of phosphorylated PrrA under aerobic conditions (Ranson-Olson & Zeilstra-Rylls, 2008). This uncouples the regulatory system from oxygen levels and allows PrrA-mediated activation or repression of genes under conditions of high O2 (O’Gara et al., 1998).

Contrary to the expectations based on the model of PrrA function, it has been observed that nirK is not expressed in the absence of the *cbb*3 oxidase (Laratta et al., 2002). Since PrrA-P levels are high in this background it would be expected that *nirK* and *nor* expression would not be impacted by the loss of the oxidase. Here, experiments...
undertaken to gain insight into the lack of nirK expression in the absence of the cbb3 oxidase are described, and a model of why nirK is not expressed is presented.

METHODS

Bacterial strains and culture conditions. Two strains of *Rhodobacter sphaeroides* were used in this study; Strain 2.4.3 (ATCC 17025) was used as the model denitrifying strain and the type strain 2.4.1 (ATCC 17023) was used as a non-denitrifying comparison. Mutants of the strains used in this study are listed in Table 1. The strains were cultured in Sistrom’s medium at 32 °C. When necessary, medium was supplemented with 12 mM potassium nitrate to support denitrifying growth (Laueking et al., 1978). The flask culture conditions used have been previously described (Tosques et al., 1996). Briefly, 100 ml liquid medium was added to 250 ml Erlenmeyer flasks, which were then inoculated and sealed with a rubber stopper. Flasks were incubated at 32 °C and agitated at 250 r.p.m. Aerobic growth results in depletion of oxygen in the headspace and, for this ratio of head space to liquid, low-oxygen and denitrifying growth commences at optical densities above 0.6. Relevant antibiotics were added at the following concentrations: tetracycline, 1.0 μg ml⁻¹; kanamycin, 25 μg ml⁻¹; streptomycin, 50 μg ml⁻¹; and gentamicin, 20 μg ml⁻¹.

Escherichia coli DH5α was used for molecular cloning and transformations. *E. coli* S17-1 was used for biparental matings. All *E. coli* cultures were grown in Luria–Bertani medium and liquid cultures were grown at 32 °C with aeration (Maniatis et al., 1982). When necessary, antibiotics were added at the following concentrations: ampicillin, 100 μg ml⁻¹; tetracycline, 10 μg ml⁻¹; streptomycin, 25 μg ml⁻¹; and kanamycin, 25 μg ml⁻¹.

Construction of plasmids and strains. The strains and plasmids used in this study are listed in Table 1. For PCRs, chromosomal DNA was isolated from *R. sphaeroides* strain 2.4.3 using the Puregene DNA Isolation kit. All oligonucleotide primers were purchased from Integrated DNA Technologies (IDT). Standard methods were used for restriction digests, ligations and biparental conjugations. Transformations were done using the TSS chemical method (Chung et al., 1989).

ΔccoN mutant construct. A cbb3 oxidase mutant was made by deleting ccoN, which encodes the catalytic subunit. This was achieved by double recombination, resulting in the insertion of a streptomycin-resistance cassette. To allow for a double-crossover event, two flanking regions of ccoN were amplified and the amplicons were cloned together into pUC19, using either PstI/BamHI or BamHI/EcoRI. A streptomycin-resistance cassette was inserted into the BamHI site; this process utilized the adaA⁺ cassette from pHP450 (Prenkí & Krisch, 1984). The entire construct was then cloned into the EcoRI and PstI sites of the suicide vector pSUP202-1 (Simon et al., 1983). The construct was transformed into *E. coli* S17-1 and conjugated into *R. sphaeroides* 2.4.3. Transconjugants were selected on streptomycin medium and subsequently screened to confirm tetracycline sensitivity. The insertion in ccoN was then verified by PCR.

nirK overexpression construct. For overexpression of nirK, an existing overexpression construct (pWLNI) fusing prrnB and nirK was moved into a new vector background, pBBR1-MCS5, by using HindIII and EcoRI. This new overexpression vector was termed pAKHNIR.

Enzyme assays. Relative gene expression levels for lacZ fusions were measured by determining β-galactosidase activity (Maniatis et al., 1982). Activity was determined based on three independent cultures, and the mean values were calculated. Nir activity was determined using a colorimetric Nir assay (Laratta et al., 2002). Activity was determined for at least three independently grown cultures, and the mean values were calculated. Error bars represent one standard deviation in the figures. Oxygen uptake was measured using a Clark-type oxygen electrode.

Special culture conditions. For denitrifying growth at high r.p.m., cells were grown in sealed flasks as previously described (Tosques et al., 1996, 1997) at 250 r.p.m. For denitrifying growth at low r.p.m., flasks were grown in the dark on a bench-top rotary shaker at 50 r.p.m. For photo-denitrifying growth at high and low r.p.m., flasks

Table 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strains or plasmid</th>
<th>Genotype or description*</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td>For conjugal transfer of plasmids: recA thi pro hasdRM⁺ RP4-2-Tc:MuKm:TnZ.</td>
<td></td>
</tr>
<tr>
<td>S17-1</td>
<td>Wild-type strain of R. sphaeroides</td>
<td>ATCC 17025</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Wild-type strain of R. sphaeroides</td>
<td>Type strain</td>
</tr>
<tr>
<td>2.4.1</td>
<td>ΔccoN 2.4.3 derivative with ΔSm/Sp in ccoN, deletion mutant</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>pUC19</td>
<td>Used for cloning in E. coli DH5α (Ap⁺)</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>pBBR1MCS-5</td>
<td>Broad-host-range plasmid (Gm⁺)</td>
<td>Kovach et al. (1995)</td>
</tr>
<tr>
<td>pSUP202-1</td>
<td>Mobilizable suicide vector (Tc⁺ Ap⁺ Sm⁺)</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>pNiR-298</td>
<td>pRK415 with nirK-lacZ transcriptional fusion containing 298 bp of the nirK promoter (Tc⁺ Km⁺)</td>
<td>Laratta et al. (2002)</td>
</tr>
<tr>
<td>ccoNKO</td>
<td>pSUP202-1 with ccoN::ΔadaA⁺ (Tc⁺ Sm⁺)</td>
<td>This study</td>
</tr>
<tr>
<td>pWLNI</td>
<td>pRK415 with prrnB⁻-nirK fusion (Tc⁺)</td>
<td>Laratta et al. (2002)</td>
</tr>
<tr>
<td>pAKHNIR</td>
<td>pBBR1MCS-5 with prrnB⁻-nirK fusion (Tc⁺)</td>
<td>This study</td>
</tr>
</tbody>
</table>

*Tc, tetracycline; Km, kanamycin; Sm, streptomycin; Ap, ampicillin; Gm, gentamicin; Cm, chloramphenicol.
were grown next to an incandescent light source at the r.p.m. mentioned above. For micro-oxic growth, plates were incubated in a polycarbonate anaerobic jar with the atmosphere three times evacuated and replaced with high-purity (minimum 99.995%) N₂ from Airgas.

Oxygen dilution experiments. Cells were grown in 125 ml serum vials on solid slants of Sistrom’s medium. Solid medium slants were made using 15 ml culture medium. After inoculation the vials were sealed and evacuated for 40 s. The vials were then flushed with N₂ gas for 45 s. Vials were equilibrated to atmospheric pressure using a water-filled syringe to allow trapped gas to escape without allowing atmospheric exchange. Leaving the gas-escape syringe in place, the desired amount of air was added back using a gas-tight syringe. Finally the gas-escape syringe was removed and the vials were incubated at 32 °C in the dark. For each percentage of oxygen in the headspace the following volumes of air were added back: 2%, 11.1 ml; 1.3%, 7.4 ml; 0.67%, 3.7 ml; 0.45%, 2.5 ml; 0.22%, 1.2 ml; 0.13%, 0.73 ml; 0.07%, 0.36 ml and <0.07%, no addition. The ‘no addition’ condition was also the micro-oxic condition used, since the N₂ gas used contained enough oxygen to allow growth under dark conditions on medium lacking nitrate. The atmospheric control (20% oxygen) was evacuated and then allowed to equilibrate with atmospheric air using an open syringe.

RESULTS

nirK expression in a cbb₃ oxidase mutant

The expression of nirK in a ccoN mutant background was previously studied using a strain in which ccoN was inactivated via Campbell insertion of a suicide plasmid (Laratta *et al.*, 2002). More recent work found that this insertion was unstable following prolonged incubation under micro-oxic conditions, allowing the restoration of cbb₃ activity. Therefore, a second ccoN mutant was made in which 700 bases of ccoN were deleted to eliminate the possibility of the restoration of cbb₃ activity. This strain was designated ΔccoN. As with the previous ccoN mutant, ΔccoN could not grow under micro-oxic conditions. Unlike the previous mutant, however, ΔccoN did not regain the ability to grow under these conditions, even after prolonged incubation. Like other cbb₃ mutants of *R. sphaeroides* (O’Gara *et al.*, 1998), ΔccoN had elevated pigmentation under oxic conditions (data not shown).

As expected, nirK was not expressed in ΔccoN cells grown under non-photosynthetic conditions in sealed flasks that were made micro-oxic by the respiratory activity of the growing cells. Under these conditions the cells lacked detectable Nir activity (Fig. 1), nitrite levels of >3 mM were observed, and the nitrite was not consumed even after incubation for up to 72 h (data not shown). However, when ΔccoN was grown under photosynthetic conditions in sealed vials that were made micro-oxic via cell respiration, Nir activity was detected during active growth and no nitrite accumulated in the medium (Fig. 1). Cells from these cultures did not regain the ability to grow under low-oxygen conditions. Wrapping the vials in foil to prevent photosynthetic growth restored the Nir-deficient phenotype of ΔccoN.

Besides the difference in light conditions, photosynthetic cultures were also grown at slower agitation rates than cultures growing under non-photosynthetic conditions. To test if the restoration of Nir activity was influenced by agitation rate, cells were grown under photo-denitrifying conditions at the faster agitation rate of the dark experiments. Under these conditions ΔccoN had no Nir activity (Fig. 1) and nitrite accumulated to high levels. These results show that the Nir-deficient phenotype is conditional. Manipulation of culture conditions can restore nirK expression and Nir activity, indicating that cbb₃ activity or expression is not obligatory for nirK expression.

Impact of constitutive nirK expression in a ΔccoN background

The simplest interpretation of the phenotype caused by inactivation of ccoN is that the loss of cbb₃ affects the function of one of the regulatory proteins required for nirK expression. However, since Nir activity is required for nirK expression (Tosques *et al.*, 1997) it cannot be excluded that it is Nir assembly or activity that is being affected in ΔccoN. To test this possibility, the plasmid pAKHNIIR, which contains nirK under control of a constitutive promoter, was conjugated into ΔccoN. This expression system has been used previously to demonstrate that the loss of Nir activity in a mutant of *R. sphaeroides* 2.4.3 lacking both cytochromes c₂ and c₅ was due to a change in nirK expression, not to the loss of electron donors to Nir (Laratta *et al.*, 2006). Unexpectedly, ΔccoN with pAKHNIIR

![Fig. 1. Nir activity of 2.4.3 and ΔccoN under denitrifying (DN) and denitrifying-photosynthetic (DN, PH) conditions. Under each condition, cultures were grown for at least 48 h at two different mixing rates; high (250 r.p.m.) and low (50 r.p.m.).](image-url)
showed very slow growth in nitrate-supplemented medium, even under oxic conditions (Fig. 2). The slow growth of the ΔccoN strain was nitrate dependent since growth was not slowed in medium lacking nitrate (Fig. 2). Nir activity could be detected in cells of the ΔccoN strain grown in medium without nitrate. Using a methyl-viologen-dependent assay Nir activity was 10-fold higher in ΔccoN with pAKHNIR than without (Fig. 3).

pAKHNIR was mobilized into several other strains of *R. sphaeroides* 2.4.3 to determine if any had the nitrate-dependent growth inhibition shown by ΔccoN. Strains lacking either Nor or NnrR showed no significant growth inhibition in nitrate-supplemented medium until cultures reached optical densities consistent with the onset of denitrification (data not shown). Once these cultures reached optical densities where denitrification genes are typically induced, growth stopped. A strain in which *cycA*, which encodes cytochrome *c*₅₅, an important electron donor to *cbb*₃, was deleted also showed no growth inhibition in the presence of nitrate (Daldal et al., 2001).

Influence of O₂ on the growth of ΔccoN

The slow growth of ΔccoN with pAKHNIR in the presence of nitrate is consistent with Nir activity producing NO, which inhibits respiration. This suggests that the loss of the *cbb*₃ oxidase does not prevent Nir assembly or function. Therefore, the inhibition of *nirK* expression in ΔccoN is most probably due to an impact on a regulatory factor. PrrA is known to be required for *nirK* expression but the increase in PrrA-P levels seen in a *cbb*₃ mutant would seem unlikely to inhibit *nirK* expression (Laratta et al., 2002).

NnrR is the other known regulator of *nirK* expression. Current evidence suggests NnrR activity is controlled by NO (Kwiatkowski & Shapleigh, 1996). Members of the *cbb*₃ family have been shown to have NO reductase activity (Forte et al., 2001) so loss of this oxidase might lead to an increase in NO levels. Previous work has shown that the loss of Nor also leads to accumulation of NO but this does not inhibit NnrR function since *nirK* and *nor* are still expressed in a strain lacking Nor activity (Bartnikas et al., 1997; Kwiatkowski & Shapleigh, 1996). Therefore, it seems unlikely that changes in NO levels are responsible for the observed changes in *nirK* expression.

Previous work using a heterologous expression system has suggested that a member of the DNR/Nnr family is O₂ sensitive (Lee et al., 2006). *nirK* expression is most inhibited in ΔccoN in sealed vessel experiments in which O₂ levels are reduced by cellular respiration. Under these conditions, the loss of *cbb*₃ will affect the end-point level of O₂ in the cultures. The two major respiratory oxidases in *R. sphaeroides* 2.4.3 have different affinities for oxygen. The *cbb*₃ oxidases have been shown to have a *Kₘ* for O₂ that is in the low nanomolar range while the *Kₘ* of the *aaa* oxidase is at the low micromolar level (Preisig et al., 1996; Riistama et al., 2000). Loss of the *cbb*₃ oxidase will thus result in a higher end-point O₂ level inside the sealed incubations used in this work. Therefore, it is not unreasonable to suggest that the lack of *nirK* expression in ΔccoN could be due to the inhibition of NnrR by O₂. To test if this residual O₂ is responsible for inhibition of *nirK* expression a series of experiments was carried out in sealed vials with a range of headspace oxygen concentrations established using gas mixes (Fig. 4). As expected, the wild-type strain 2.4.3 grew in the dark under O₂ concentrations ranging from atmospheric (20%) down to the sample with no added O₂. Even at the lowest O₂ concentrations growth was not nitrate dependent. Nevertheless, wild-type cells began to denitrify at approximately 2 % oxygen and below, as indicated by the onset of Nir activity. In agreement with these results, *nirK* expression could be detected in cultures grown with ≤1 % O₂ (data not shown).

ΔccoN grew in vials with oxygen levels ranging from atmospheric to 2 % and this growth was not nitrate dependent. Unlike the wild-type strain, however, no growth was observed in the vials for incubations up to 10 days if O₂ levels were <2 % or >0.2 %, irrespective of the presence of...
nitrate. Growth was observed with O2 levels <0.2% after 5 days but only if nitrate was present, demonstrating that growth was due to denitrification. Cells of the ccoN mutant grown under these low O2 conditions had wild-type levels of Nir activity (Fig. 4) and nirK and nor expression. One possible explanation for the lack of growth under intermediate O2 conditions is that there is no oxidase expressed due to the absence of the cbb3 gene and a decrease in expression of the genes encoding the aa3 oxidase (Pappas et al., 2004). However, cells of ΔccoN grown at 0.07% O2 on nitrate-containing medium consumed O2 at the same rate as the wild-type strain grown under identical conditions.

To further test the role of O2 in controlling the denitrifying ability of ΔccoN, a co-culture experiment was carried out. Growing ΔccoN in a sealed flask together with a strain containing an oxidase with an O2 affinity equivalent to that of the cbb3 gene and a decrease in expression of the genes encoding the aa3 oxidase (Pappas et al., 2004). However, cells of ΔccoN grown at 0.07% O2 on nitrate-containing medium consumed O2 at the same rate as the wild-type strain grown under identical conditions.

DISCUSSION

nirK expression requires the direct or indirect involvement of multiple regulators that integrate information about environmental conditions (Laratta et al., 2002; Tosques et al., 1997). In strain 2.4.3, nitrate is the initial substrate for denitrification, making all downstream denitrification

Fig. 4. Growth of 2.4.3 and ΔccoN under a range of established oxygen concentrations. Oxygen concentration is represented as a percentage, with atmospheric oxygen considered 20%. For each oxygen concentration, growth, Nir activity and nirK–lacZ expression were assessed. Expression values are in Miller units (MU).

Mutant isolation

Attempts were made to isolate mutants of ΔccoN that could grow via nitrate-dependent respiration at O2 levels between 0.2 and 2.0%. Both spontaneous and UV-induced mutagenesis were used in an effort to generate mutants. Various selective conditions were tried, including photosynthetic conditions, low-oxygen conditions without nitrate and transitions from no-nitrate to nitrate-containing medium. After repeated attempts, involving incubation times of up to 3 months, no strains of ΔccoN were isolated that would grow in nitrate-containing medium at these O2 levels.

![Fig. 5. Nir activity of co-cultures of strains 2.4.3 or ΔccoN with strain 2.4.1. In all cases cultures were grown for 36 h under photosynthetic-denitrifying conditions. Co-cultures were started in two different ratios, 3:1 and 1:3, which represent the starting quantity of 2.4.3:2.4.1 or ΔccoN:2.4.1.](image-url)
regulation dependent on the expression of nitrate reductase. Nitrate reductase is upregulated by an unknown mechanism in response to decreasing oxygen levels (A. Hartsock & J. P. Shapleigh, unpublished). The nitrite produced by nitrate reduction is then reduced to NO by the low levels of Nir produced by basal levels of nirK expression. NO then activates DNA binding by NnrR, which is necessary but not sufficient for expression of nirK (Kwiatkowski & Shapleigh, 1996; Tosques et al., 1996, 1997). nirK expression also requires activation by PrrA-P (Laratta et al., 2002). Production of PrrA-P occurs when O2 levels are low enough to limit turnover of the cbb3 oxidase (Oh et al., 2004). A decrease in O2 is not required to produce high levels of PrrA-P in cells lacking the cbb3 oxidase (O’Gara et al., 1998). If there are no additional layers of regulation involved it would be predicted that nirK expression should occur at higher O2 levels in a ccoN mutant than in the wild-type. The contradictory observation that the loss of the cbb3 oxidase reduced nirK expression suggested there are additional uncharacterized factors required for nirK expression, which motivated this study.

The experiments described here suggest that the conditional nirK expression phenotype in ΔccoN is a consequence of the loss of a high-affinity oxidase which, under certain growth conditions, leaves O2 levels so high as to prevent nirK expression. The restoration of Nir activity in ΔccoN cells grown in vials whose atmosphere has been sparged with a low-O2 gas shows that nirK expression can be readily restored in this strain and that cbb3 activity is not obligatory for nirK expression. cbb3 is only required for nirK expression when aerobic respiration is being used to lower O2 concentrations during growth.

The likely oxygen-sensitive component that is being affected by the loss of cbb3 is NnrR. The loss of the cbb3 oxidase does not affect photosynthetic growth (O’Gara et al., 1998), suggesting that a factor specifically associated with denitrification is being affected. Since nitrate reductase is functional in ΔccoN, this indicates that the factor being affected is either Nir or Nor specifically or some factor involved in regulation of nirK as well as nor. The activities of Nir and Nor are not O2 sensitive, suggesting it is the regulation of their expression that is affected (Morley et al., 2008). Since PrrA is functional in ΔccoN, this leaves NnrR as the probable O2-sensitive component. This conclusion is supported by previous work which suggested that the regulator of the genes encoding the NO-forming nitrite reductase and NO reductase in Paracoccus denitrificans, which, like NnrR, is also a member of the FNR family, is O2 sensitive (Lee et al., 2006). Having regulators of this type be sensitive to O2 ensures that NO production does not occur until O2 levels are extremely low. This reduces the possibility of the formation of reactive nitrogen oxides that can arise due to the interaction of NO with various oxygen species (Hughes, 2008; Patel et al., 1999). This layer of O2-dependent regulation also ensures that denitrification is secondary to O2-dependent regulation at a wide range of O2 levels. However, while O2 concentrations must be low for nirK expression it is notable that it can be expressed at O2 levels that are high enough to support aerobic respiration via the cbb3 oxidase (Fig. 4). This makes denitrification a micro-oxic process and suggests cells can co-respire oxygen and nitrate.

While cbb3 oxidase activity was needed for nirK expression if cell respiration was being used to reduce O2 levels in cultures growing in the dark, this was not always the case for cells growing photosynthetically. This may indicate that in addition to being O2 sensitive, the activation of NnrR function also requires ATP synthesis. In cultures growing in the dark, once O2 levels reach concentrations where the aa3 oxidase is no longer active there is no longer rapid ATP synthesis due to the absence of the cbb3 oxidase. This is evidenced by the overgrowth of strain 2.4.1 in the co-culture experiments. Cells grown in the light can generate ATP via photosynthesis after O2 levels are reduced. A lack of ATP synthesis alone, however, cannot account for the conditional nirK expression phenotype in ΔccoN. The importance of O2 sensitivity is demonstrated by the observation that there is no expression of nirK in ΔccoN at O2 levels where aa3 is functional. The impact of increased agitation on nirK expression in cells growing photosynthetically also suggests O2 plays a role in inhibiting nirK expression under these conditions. Rapid agitation would vigorously mix O2 throughout the culture medium. Slower agitation and the consequent poorer mixing of O2 may provide conditions where NnrR is functional and the ATP also necessary for its assembly or activation is available from photosynthesis. Another possibility is that the light used to allow photosynthetic growth is causing photolysis of an NO adduct that would otherwise be preventing oxygen consumption.

An unexpected observation made during these experiments was the nitrate sensitivity of the ΔccoN strain containing pAKHNIR. Since this phenotype requires both the constitutively expressed nirK and the presence of nitrate in the medium, it is likely that it is due to the constitutively expressed Nir producing NO, which inhibits respiration. This was unexpected because a wild-type strain with the same nirK expression plasmid is not nitrate sensitive and also because strains lacking Nor activity can grow in the presence of nitrate at high O2 levels (Bartnikas et al., 1997; Tosques et al., 1996). Therefore, the only strain that is affected at high O2 concentrations is the one lacking cbb3 activity with pAKHNIR. One possible explanation for this is that the cbb3 oxidase is NO resistant or is capable of mitigating NO toxicity. The latter possibility is consistent with the observation that some cbb3 oxidases have NO reductase activity (Forte et al., 2001). While the cbb3 in strain 2.4.3 may have some NO reductase activity, it is not capable of reducing NO at rates fast enough to keep up with NO production by Nir during denitrification (Bartnikas et al., 1997). Strains in which nor has been disrupted stop growing when Nir becomes active even if cbb3 is present, demonstrating the importance of Nor
under denitrification conditions (Bartnikas et al., 1997). It is also possible that an aerobic mechanism for mitigating NO toxicity is disrupted in ΔcoN, given the global nature of the PrrBA regulon (Eraso et al., 2008).

Experiments described here and in previous publications indicate that oxygen control of nirK expression, and consequently denitrification, in R. sphaeroides 2.4.3 is achieved through both PrrBA and NnrR. The activity of these two regulatory systems is directly or indirectly influenced by the cbb oxidase. This suggests a general design feature in denitrifiers whereby the O₂ level at which the expression of genes encoding products involved in NO production and reduction is adjusted to correlate with the Kₘ of the highest affinity O₂-reducing oxidase in the respiratory chain. If true aerobic denitrification does occur, it may require a bacterium lacking high-affinity oxidases.

ACKNOWLEDGEMENTS

We wish to thank Sam Kaplan and Jeong-Il Oh for the generous gifts of plasmids and strains. This work was supported by the US Department of Energy (95ER20206).

REFERENCES

Edited by: J. Moir