GFP plasmid-induced defects in *Salmonella* invasion depend on plasmid architecture, not protein expression

Leann Clark,1 Isabel Martinez-Argudo,1 Tom J. Humphrey2 and Mark A. Jepson1

Correspondence
Mark A. Jepson
m.a.jepson@bristol.ac.uk

1Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
2Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK

We have investigated the impact of plasmids and GFP expression on invasion of cultured epithelial cells by *Salmonella enterica* Typhimurium strain SL1344. The invasiveness of SL1344 carrying plasmids derived from pBR322, encoding promoterless GFP or constitutively expressed *rpsM*-GFP, was compared under optimal growth conditions with that of SL1344(pBR322), unmodified SL1344 and a strain with chromosome-integrated *rpsM*-GFP. The strain carrying pBR322 exhibited normal invasion, but the presence of modified plasmids impaired invasiveness, and impairment was exacerbated by plasmid-encoded chloramphenicol resistance (CmR). Using a different antibiotic resistance marker, kanamycin (KmR), did not impair invasiveness. Despite the effect of plasmid-encoded CmR, the strain containing chromosomally encoded GFP, also carrying a CmR gene, was as invasive as the wild-type. To investigate the mechanism by which plasmid carriage decreases invasion, we monitored SPI-1 gene expression using *prgH* promoter activity as an index of SPI-1 activity. An SL1344 strain with a chromosome-integrated *prgH*::gfp reporter construct exhibited lower GFP expression during exponential phase when carrying plasmids incorporating CmR or gfp, mirroring invasion data. These data provide evidence that suppression of SPI-1 gene expression is a major factor in the loss of invasiveness associated with plasmid carriage. Our findings also indicate that some plasmids, especially those carrying CmR, should be used with caution, as virulence traits and gene expression may be affected by their presence. Integration of reporter proteins into the bacterial chromosome, however, appears to circumvent the adverse effects observed with plasmids.

INTRODUCTION

*Salmonella enterica* is an important pathogen responsible for one of the most common food-borne diseases in humans. There are reported 1.3 billion cases of salmonellosis worldwide per year with 3 million fatalities (Hansen-Wester & Hensel, 2001). Thus salmonellosis represents a serious public health and economic burden (Schlumberger & Hardt, 2006).

There is still much to learn about the virulence of *Salmonella* and how it is affected by environment. These pathogens have two specialized type 3 secretion systems that translocate bacterial effector proteins directly into the host cell to manipulate cellular functions for their own benefit. The type 3 secretion systems are encoded by *Salmonella* pathogenicity islands 1 and 2 (SPI-1 and SPI-2). SPI-1 is required for invasion and SPI-2 promotes intracellular survival by modulating the *Salmonella*-containing vacuole and preventing the oxidative killing responses of the host cell (Schlumberger & Hardt, 2006). SPI-1-mediated invasion results in actin rearrangements, allowing cellular engulfment of the bacterium, as a result of activity of several translocated effectors, including SopE, SopE2, SopB, SptP, SipA and SipC (Dreke et al., 2006; Raffatellu et al., 2005). These proteins are transported into the target cell via the needle complex, a supramolecular complex composed of SPI-1-encoded proteins, including PrgH, PrgK and InvG, each of which is essential for needle complex formation, effector translocation and SPI-1 stimulated invasion (Kubor et al., 1998).

Infectious disease is a continual burden in both developed and developing countries, hence there is still pressure to increase the depth of understanding of pathogens, including their cellular signalling and host–pathogen interactions. Many molecular techniques have been
deployed to aid visualization of bacteria and monitor gene expression within cells. One of the most important of these is GFP from *Aequoria victoria* that fluoresces without any exogenous cofactors or substrates (Chalfie *et al.*, 1994). The *gfp* gene, most commonly inserted into bacteria on plasmids or alternatively integrated into the chromosome, is used in many studies and has a wide range of applications. Reporter GFP constructs have now been successfully produced, allowing the investigation of bacterial gene expression within particular environments or under specific conditions (Bongaerts *et al.*, 2002; Lee & Keasling, 2006). GFP expression can be studied microscopically, allowing visualization of gene expression within individual bacterial cells, or by the use of flow cytometry to determine the GFP expression level within a population.

Despite widespread use, there are reports describing a fitness cost associated with maintaining plasmids or high levels of GFP expression (Abromaitis *et al.*, 2005; Knodler *et al.*, 2005; Rang *et al.*, 2003; Coulson *et al.*, 1994). In *Salmonella* studies, it has been shown that some plasmids can reduce invasion and/or intracellular survival in both *in vivo* and *in vitro* models (Abromaitis *et al.*, 2005; Coulson *et al.*, 1994; Knodler *et al.*, 2005). Coulson *et al.* (1994) showed that the cloning vector pUC19, derived from the commonly used pBR322, can reduce infection of mice spleens 200-fold compared to wild-type strains. Knodler *et al.* (2005) demonstrated that the pBR322 vector significantly reduces phagocytic uptake in mice, and reduces bacterial replication in RAW 264.7 cells. When plasmid-encoded GFP is expressed, invasion of HeLa and RAW 264.7 cells was also reduced under normal exponential-phase growth, an effect not seen with pBR322 (Knodler *et al.*, 2005). Previous studies have attempted to address the disadvantages associated with plasmid-encoded GFP expression, including plasmid instability, by integrating *gfp* genes with a promoter into the bacterial chromosome (Hautefort *et al.*, 2003). While use of traditional *gfp* genes, namely *GFPmut1* and 2, in single-copy transcriptional fusions produces GFP fluorescence bright enough to report only high levels of promoter activity, Hautefort *et al.* (2003) overcame this problem by the use of the GFP+ variant (Scholz *et al.*, 2000). GFP+ contains mutations resulting in improved protein folding and enhanced brightness, and with this variant a single-copy *gfp* gene fusion can be stably and reliably expressed within the chromosome, and readily detected even with low promoter activity (Hautefort *et al.*, 2003).

In this study we compared the effect of carrying pBR322 and derivative plasmids containing promoterless *gfp* or the constitutively expressed *rpsM::gfp*, and chromosome-integrated *rpsM::gfp* on *Salmonella enterica* serovar Typhimurium SL1344 under optimal growth conditions. To date, the mechanism by which GFP expression or plasmid presence reduces invasion has not been explored. To address this, we investigated whether plasmid carriage causes a reduction in SPI-1 gene expression using *prgH* promoter activity as a marker for this. Our findings indicate that some studies using plasmid-encoded proteins should be treated with caution, as both invasion and gene expression were affected by their presence. Integration of reporter proteins into the bacterial chromosome, however, appears to circumvent the adverse effects observed with plasmids and may be the most reliable way to use this genetic technique.

**METHODS**

**Bacterial strains.** Details of *Salmonella* strains are given in Table 1. The GFP variant used in these strains was GFP+ (Scholz *et al.*, 2000); this contains the GFPuv mutations F99S, M153T and V163A (Crameri *et al.*, 1996) as well as the enhanced GFP mutations F64L and S65T (Cormack *et al.*, 1996). These mutations lead to improved folding of the protein and enhanced brightness.

All bacterial strains were grown routinely in Luria–Bertani broth (LB) and on LB agar plates, with 30 µg chloramphenicol ml⁻¹ or 100 µg carbenicillin ml⁻¹ as appropriate.

**Plasmid construction.** The promoterless pZEP07 plasmid contains a Cm⁸ gene flanked by two EcoRV sites (Hautefort *et al.*, 2003). Thus the Cm⁸ gene was removed to produce pZEP07.1 via digestion with EcoRV. To produce pBR322.1, the primers Chloro_F (5′-CATGAGTTCCGTCAATTCTGCCATTATCC-3′) and Chloro_R (5′-CGATATTGCCTAGCCGCGGACC-3′) were used to amplify the Cm⁸ gene with pZEP07 as a template. A Km⁸ gene was added to pBR322 to produce pBR322.2. The kanamycin cassette was amplified from pKD4 using Kan_F (5′-CATGAGTTCCGTCAATTCTGCCATTATCC-3′) and Kan_R (5′-GTGCGCATGATTCTCGGAAAGA-3′). These PCR cassettes were cloned into the EcoRI site of pBR322, pZEP07.1, pBR322.1 and pBR322.2 were isolated from DH5α cells and electroporated into SL1344.

Restriction digests, DNA ligations, bacterial electroporations, transformations and PCR amplifications were completed using standard conditions and according to standard protocols.

**Curing strains of plasmids.** Overnight cultures of pZEP16 and pZEP07 strains were prepared with no antibiotic, plated onto LB agar with no antibiotic and grown for 16 h at 37 °C. Individual colonies were selected and streaked simultaneously onto two LB agar plates, one of which contained no antibiotic and one which contained 30 µg chloramphenicol ml⁻¹. Only isolates able to grow on LB with no antibiotic were selected.

**Cell culture and *Salmonella* infection.** Madin–Darby canine kidney (MDCK) strain I cells were grown in Eagle’s minimal essential medium supplemented with 2 mM l-glutamine, 10% fetal calf serum, 1% non-essential amino acids and 100 µg kanamycin ml⁻¹ at 37 °C in a humidified atmosphere of 5% CO₂. Cells at a concentration of 6.6 × 10⁴ were seeded onto 13 mm glass coverslips and grown for 2–3 days. For infection, the medium was replaced with 1 ml Krebs buffer (mM: NaCl, 137; KCl, 5.4; MgSO₄, 1; NaH₂PO₄, 0.3; CaCl₂, 2.4; glucose, 10; Tris/HCl, 10; adjusted to pH 7.4 at 37 °C with HCl), and 50 µl *Salmonella* culture was added and allowed to infect the cells at 37 °C for 15 min.

**Infection using exponential-phase *Salmonella* cells.** Overnight *Salmonella* cultures were prepared by inoculating colonies into 10 ml LB medium (with 30 µg chloramphenicol ml⁻¹ for plasmid- and GFP-expressing strains) and incubating for 16 h at 37 °C. Dilutions (1:100) were prepared in fresh LB medium and incubated at 37 °C.
with shaking at 100 r.p.m. for 3.5 h in order to reach exponential-phase growth. MDCK cells were infected at a mean m.o.i. of 50.

**Table 1. Strains and plasmids used in this study**

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Selectable marker</th>
<th>GFP promoter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL1344 WT</td>
<td>–</td>
<td>No GFP</td>
<td>Hoiseth &amp; Stocker (1981)</td>
</tr>
<tr>
<td>SL1344 rpsM::gfp</td>
<td>CmR</td>
<td>rpsM (constitutive)</td>
<td>Hautefort et al. (2003)</td>
</tr>
<tr>
<td>SL1344 prgH::gfp</td>
<td>CmR</td>
<td>prgH (SPI-1 reporter)</td>
<td>Hautefort et al. (2003)</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pZEP07</td>
<td>CmR, ChR</td>
<td>Promoterless</td>
<td>Hautefort et al. (2003)</td>
</tr>
<tr>
<td>pZEP16</td>
<td>CmR</td>
<td>rpsM (constitutive)</td>
<td>Hautefort et al. (2003)</td>
</tr>
<tr>
<td>pBR322</td>
<td>ChR, TcR</td>
<td>No GFP</td>
<td>This study</td>
</tr>
<tr>
<td>pZEP07.1</td>
<td>ChR</td>
<td>Promoterless</td>
<td>This study</td>
</tr>
<tr>
<td>pBR322.1</td>
<td>CmR, ChR, TcR</td>
<td>No GFP</td>
<td>This study</td>
</tr>
<tr>
<td>pBR322.2</td>
<td>KmR, ChR, TcR</td>
<td>No GFP</td>
<td>This study</td>
</tr>
</tbody>
</table>

**RESULTS**

**Salmonella invasion is decreased by GFP-expressing and -non-expressing plasmids**

To compare the impact of plasmid and/or GFP expression on Salmonella invasion we compiled a set of strains derived from wild-type S. Typhimurium SL1344 (Table 1) modified by the introduction of plasmids pBR322, pZEP07 (promoterless, non-expressing GFP) or pZEP16 (rpsM::gfp, constitutively expressing GFP), or by chromosomal insertion of an identical rpsM::gfp construct. The effect of carrying a plasmid and/or GFP expression was investigated in Salmonella cells that were grown to exponential phase in LB medium and allowed to infect MDCK cells for 15 min. Invasion was measured by differential immunolabelling of adhered and invaded bacteria. The chromosomal rpsM::gfp and pBR322-carrying strains both exhibited the same level of invasion as the wild-type (Fig. 1). However, the strains carrying plasmids rpsM::gfp and promoterless gfp both exhibited similarly attenuated invasion compared to wild-type and the chromosomal rpsM::gfp strain ($P<0.01$). Thus, the plasmid-induced invasion defect is not due to GFP expression.

To ensure the observed difference in invasion was a result of the presence of the plasmid, the SL1344(pZEP16) and SL1344(pZEP07) strains were cured of their plasmids. The cured strains were grown to exponential phase and used to infect MDCK cells for 15 min; differential immunolabelling was used to determine invasion as above. The cured plasmid strains both exhibited invasion levels which were indistinguishable from that of the wild-type strain, and were significantly ($P<0.01$) higher than the non-cured strains (data not shown).

**Growth in chloramphenicol-containing medium has no effect on invasion**

The finding that both the modified plasmids pZEP07 and pZEP16, but not their parent plasmid pBR322, decreased
SL1344 invasion led us to investigate why the modified plasmids reduce invasion. Since the overnight cultures of SL1344(pZEP07) and SL1344(pZEP16) were grown in LB containing chloramphenicol, and it is documented that chloramphenicol can have a negative effect upon bacterial physiology (Steel et al., 2004), we investigated if the presence of this antibiotic in LB medium was the cause of the observed decrease in invasion. pZEP07 encodes two resistance genes, chloramphenicol and carbenicillin. Therefore, three overnight cultures were prepared in triplicate; an SL1344 culture containing no antibiotics, and two SL1344(pZEP07) cultures, one of which contained chloramphenicol and the other carbenicillin. The overnight cultures were subcultured, grown to exponential phase in LB medium and used to infect MDCK cells for 15 min. Both SL1344(pZEP07) cultures grown in either chloramphenicol or carbenicillin showed the same impaired invasion compared to the wild-type. Following growth in carbenicillin, the level of invasion of SL1344(pZEP07) was 0.31 ± 0.05 bacteria per cell compared with 0.34 ± 0.04 following growth in chloramphenicol. This was significantly reduced (P<0.01) compared to the wild-type invasion level of 1.16 ± 0.08 bacteria per cell. Thus medium containing chloramphenicol had no effect on invasion of the plasmid-bearing strain, confirming data with the chromosomal GFP strain which exhibited invasion levels the same as wild-type, despite being grown in medium containing chloramphenicol (Fig. 1).

Salmonella invasion is decreased by modified plasmids

Having discounted growth in chloramphenicol as a significant factor in the decreased invasion of SL1344 carrying the GFP plasmids (pZEP07 and pZEP16) compared with SL1344(pBR322), we next investigated if invasion was affected by the presence of multiple copies of the gene conferring CmR. The CmR gene was removed from pZEP07 to create pZEP07.1, and for the previously chloramphenicol-sensitive pBR322, the CmR gene was added to create pBR322.1. Invasion of bacterial strains carrying these plasmids was compared to a strain carrying pBR322.2 with a KmR gene under optimal conditions by infecting MDCK cells for 15 min and differentially immunolabelling adhered and invaded bacteria. As before, SL1344(pZEP07) exhibited attenuated invasion (P<0.01) compared to wild-type and the chromosomal rpsM::gfp strain (Fig. 2). SL1344(pZEP07.1), lacking CmR, was more invasive (P<0.05) than SL1344(pZEP07); however, it did not reach wild-type levels of invasiveness (Fig. 2). Similarly, SL1344(pBR322.1), which contained CmR, was less invasive (P<0.05) than SL1344(pBR322), but remained more invasive than SL1344(pZEP07). In contrast, SL1344(pBR322.2) containing KmR had invasion levels comparable to wild-type (P<0.01) (Fig. 2). All cultures exhibited indistinguishable growth characteristics when compared by Bioscreen (data not shown), indicating that there was no prominent metabolic effect of plasmid carriage, at least under the conditions used for invasion assays.

**Fig. 1.** Comparison of invasion of GFP-expressing and plasmid-carrying strains. *Salmonella* cultures were grown at 37 °C with shaking at 100 r.p.m. for 3.5 h. A volume (50 μl) of each culture was used to infect MDCK cells grown on coverslips resting in 1 ml Krebs buffer. Differential immunolabelling was used to determine invasion. Data are means ± SD of three independent experiments. * indicates significant difference from wild-type and chromosomal rpsM::gfp at P<0.01.

**Fig. 2.** The effect of plasmid modification on invasion. *Salmonella* cultures were grown overnight in LB medium with the appropriate antibiotic, subcultured and grown to exponential phase. A volume (50 μl) of each culture was used to infect MDCK cells grown on coverslips, and differential immunolabelling was used to determine invasion. Data are means ± SD of three independent experiments.
**prgH expression is suppressed in plasmid-bearing strains**

We hypothesized that the plasmid-induced reduction in invasion may be related to reduced SPI-1 expression. Expression of prgH has previously been used as a marker of SPI-1 activity (Hautefort et al., 2003) and was visualized here using a bacterial strain with a chromosomally integrated prgH::gfp construct. Comparisons of prgH expression were made between this strain and ones derived from the same parental prgH::gfp strain containing pBR322 and the various modified plasmids. When exponential-phase cultures were examined microscopically, it was seen that strains carrying pBR322 and pBR322.2 showed the same level of prgH::gfp expression as the wild-type culture. However, the pZEP07-carrying strain showed a significant drop in prgH::gfp expression compared to the culture lacking the plasmid (P<0.05) (Figs 3 and 4). The strains containing pZEP07.1 (without CmR) and pBR322.1 (with CmR) also showed a drop in prgH::gfp expression compared to wild-type (P<0.05), but both had a significantly higher expression level than the SL1344(pZEP07) strain (P<0.05) (Figs 3 and 4). The close correlation between the effects of plasmids on expression of the SPI-1 transcriptional reporter prgH and on invasiveness (Figs 2 and 4) provides compelling evidence that suppression of SPI-1 gene expression is a major contributory factor in reduced Salmonella invasion seen under these conditions.

**DISCUSSION**

It was observed that invasion of MDCK cells by exponential-phase Salmonella SL1344 was reduced when carrying plasmids constitutively expressing GFP (pZEP16) or containing, but not expressing the gfp gene (pZEP07). However, SL1344 carrying the chromosomal rpsM::gfp or unmodified pBR322 were as invasive as the wild-type. Previous reports on the effects of cloning vectors on bacterial virulence are equivocal; Coulson et al. (1994) and Abromaitis et al. (2005) found reduced virulence with derivatives of the popular cloning vector pBR322, while

![Image](http://mic.sgmjournals.org)
Knodler et al. (2005) reported that the invasion of HeLa cells and macrophages was unaffected by the presence of pBR322, but reduction in replication within macrophages was observed. Since two pBR322-derived plasmids (pZEP07 and pZEP16), differing in their expression of GFP, both had a pronounced negative impact on invasiveness, supported by other studies using pBR322 derivatives (Abromaitis et al., 2005; Coulson et al., 1994), we conclude that any effect was due to the burden or nature of the extra DNA rather than GFP expression per se. It is known that chloramphenicol treatment can lead to bacterial alterations, including the formation of filamentous cells (Steel et al., 2004); hence we considered the possibility that invasion defects were due to growth in chloramphenicol. Following growth in medium containing chloramphenicol or carbenicillin, the pZEP07 strain showed a similar decrease in invasion, verifying data provided by the chromosomal gfp strain, which exhibited invasion levels the same as wild-type despite chloramphenicol treatment. Therefore, it was deduced that the presence of chloramphenicol in the growth medium itself had no detrimental effect on invasion. Subsequently, the possibility of overexpression of CmR due to plasmid copy number was investigated. The results from the invasion assay, involving pZEP07.1 (without CmR), pBR322.1 (with CmR) and pBR322.2 (with KmR), suggest that the carriage of CmR does indeed lower the level of invasion. However, the invasion level of pZEP07.1 does not reach wild-type levels, and similarly pBR322.1 invasion was higher than that of SL1344(pBR322) strains, but reduced in strains carrying other modified plasmids, with repression being greater in SL1344 carrying pZEP07 than pZEP07.1 or pBR322.2. Therefore, although CmR has a significant negative effect on invasion, it may not be the sole cause of the invasion defects observed in this study. It is possible that the increased size of these plasmids when compared to the various derivatives of pBR322 creates a larger burden on the bacteria, leading to invasion reduction without affecting bacterial growth. In contrast, the single copy of CmR in the chromosomal rpsM::gfp had no detectable effect on invasion. This finding has important implications for many studies that use such plasmids either to label cells or to investigate the function of specific bacterial proteins using plasmid complementation. The increase in DNA content or inclusion of CmR in the plasmid could affect normal function in such a way that the importance of the protein of interest may be wrongly interpreted. On the other hand, we found that GFP expression itself has minimal, if any, effect on Salmonella invasiveness during optimal growth; the reduction in invasion being exclusively due to presence of the CmR and the gfp gene, regardless of GFP expression. The observation that chromosomally encoded GFP had no effect on invasion is of relevance to vaccine development where use of plasmids to express heterologous proteins raises issues over their safety and the need for antibiotic selection to retain plasmids. Our finding that stable integration of gfp into the chromosome led to efficient protein synthesis without appearing to affect invasiveness supports the use of similar strategies for generation of vaccine strains by chromosomal integration of heterologous proteins (McKelvie et al., 2004).

GFP expression from a chromosomally inserted gene under control of the prgH promoter has previously been used as a reporter of expression of the SPI-1 invasion machinery (Hautefort et al., 2003). It has been deduced that prgH expression is regulated in an all-or-nothing manner, meaning that individual cells within the population either fully express prgH or do not express it at all (Hautefort et al., 2003; Temme et al., 2008), enabling accurate determination of prgH status at the single-cell level by microscopical analysis. We have confirmed the utility of this reporter system and, furthermore, have shown that reduced prgH expression is closely correlated with invasiveness in plasmid-carrying strains. Thus, prgH::gfp expression was similar in wild-type SL1344, SL1344(pBR322) and SL1344(pBR322.2) strains, but reduced in strains carrying other modified plasmids, with repression being greater in SL1344 carrying pZEP07 than pZEP07.1 or pBR322.1. Thus prgH::gfp expression was closely correlated with invasiveness of all plasmid-bearing and wild-type strains. Taken together these data provide further validation of the use of chromosomal expression of a prgH::gfp fusion to monitor SPI-1 activity, since expression of GFP from this insertion correlated well with invasiveness in optimal conditions and when invasiveness was compromised by the presence of plasmid.
In summary, our data suggest that the presence of modified plasmids can place a significant burden on cells, hindering energy-expensive bacterial functions such as invasion; this effect is exacerbated by the presence of the CmrR gene. Serious implications for studies using plasmid complementation are thus inferred; those carrying out such studies should be wary of the possibility of creating biased results. GFP is a valuable molecular biology tool and may be used with plasmid expression, although our data suggest that use of even low copy plasmids should be treated with caution because of possible adverse effects of the plasmid itself. Although we observed no additional effect of GFP expression itself under optimal growth conditions, the possibility remains that, as suggested by Knodler et al. (2005), GFP expression may provide an additional burden on bacteria that can modify their behaviour under some conditions. Although more labour intensive to produce, chromosomally encoded GFP or other proteins of interest appears to be the most reliable option, since we found no effect on invasion or stress responses, despite readily detectable GFP expression levels.

ACKNOWLEDGEMENTS

We are grateful to BBSRC for project grant and studentship funding, Unilever for additional studentship support and MRC for funding of the Cell Imaging Facility. We also thank Jay Hinton and Isabelle Hautefort for generously providing GFP-expressing strains and advice, Alan Beard for technical assistance, and Peter McIlroy for helpful discussion.

REFERENCES


Edited by: P. H. Everest

http://mic.sgmjournals.org