Verification of a topology model of PorT as an integral outer-membrane protein in *Porphyromonas gingivalis*

Ky-Anh Nguyen,1,4 Jasiek Żylicz,2 Pawel Szczesny,3 Aneta Sroka,2 Neil Hunter1 and Jan Potempa2,4

1Institute of Dental Research, Westmead Centre for Oral Health and Westmead Millennium Institute, Sydney, Australia
2Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
3Department of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
4Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA

PorT is a membrane-associated protein shown to be essential for the maturation and secretion of a class of cysteine proteinases, the gingipains, from the periodontal pathogen *Porphyromonas gingivalis*. It was previously reported that PorT is located on the periplasmic surface of the inner membrane to function as a chaperone for the maturing proteinases. Our modelling suggested it to be an integral outer-membrane protein with eight anti-parallel, membrane-traversing β-strands. In this report, the outer-membrane localization model was confirmed by the structural and functional tolerance of PorT to hexahistidine (6×His) tag insertions at selected locations within the protein using site-directed mutagenesis. Interestingly, those PorT mutations adversely affecting gingipain secretion enhanced expression of the *porT* gene but at the same time suppressed the transcription of the gingipain *rgpB* gene. Further, PorT mutants deficient in gingipain activities produced significantly more di- and triaminopeptidase activities. PorT homologues have been found in restricted members of the *Bacteroidetes* phylum where there is potential for PorT to participate in the maturation and secretion of proteins with characteristic C-terminal domains (CTDs). Knowledge of the cellular localization of PorT will enable analysis of the role of this protein in a new secretory pathway for the export of gingipains and other CTD-class proteins.

INTRODUCTION

Gingipains are a class of cysteine proteinases from the Gram-negative pathogen *Porphyromonas gingivalis* important in the pathogenesis of periodontal disease or 'gum disease'. Accounting for 85% of the general proteolytic activity of the organism, the gingipains provide an important proteolytic tool for the generation of proteinaceous nutrients essential for growth (Potempa et al., 1995). There are three members of the gingipain family, with Kgp having specificity for cleavage after lysine residues, and two highly homologous enzymes, RgpA and RgpB, having specificity for arginine residues (Potempa et al., 2003). As indispensable virulence factors, gingipains play a critical role in the colonization and survival of *P. gingivalis* in the human host by facilitating bacterial attachment (Kamaguchi et al., 2001; Weinberg et al., 1997), by dysregulating the local host immune response through cytokine and receptor cleavage (Imamura et al., 2003) and by disruption of the coagulation and fibrinolytic pathways to promote the release of erythrocytes and plasma proteins to obtain essential nutrients for growth of the organism (Imamura, 2003). In keeping with this, gingipain isogenic mutants are attenuated in a murine virulence model (O’Brien-Simpson et al., 2001), confirming the importance of this class of proteinases in pathogenicity.

Recently, evidence has emerged that gingipains together with a number of other surface proteins from distinct members of the *Bacteroidetes* (formerly *Cytophaga–Flavobacterium–Bacteroidetes*) phylum of Gram-negative
bacteria sharing a characteristic C-terminal domain (CTD), are exported through the outer membrane (OM) by a novel secretory pathway (Nguyen et al., 2007; Seers et al., 2006). The exclusive presence of two novel proteins, PorT and Sov, in organisms with CTD proteins suggested a functional relationship that was supported by the failure of gingipain maturation and export in P. gingivalis strains bearing inactivation mutants of porT and sov (Nguyen et al., 2007; Saiki & Konishi, 2007; Sato et al., 2005). It is unclear, however, how these proteins participate in the maturation and secretion process. Although the localization of Sov is yet to be determined, PorT was reported to be located on the periplasmic surface of the inner membrane (IM) in P. gingivalis (Sato et al., 2005). Due to the perceived location of the protein and its effect on gingipain maturation, it was suggested that PorT may function as a periplasmic chaperone. In the present study, structural modelling for PorT indicated it to be an integral OM protein comprising eight anti-parallel, amphipathic membrane-traversing β-strands. Evidence to validate this prediction is presented along with characterization of the response of the organism in coping with deficiencies imposed by mutations of PorT.

METHODS

Materials and reagents. All bacterial media were sourced from Oxoid; enzymes for molecular biology work were from Promega unless stated otherwise. Qiagen kits were used in DNA purifications, including the QIAPrep Spin Miniprep kit (for plasmid extraction), DNA Tissue kit (for genomic DNA purification); the Ambion RNAqueous kit was used for RNA purification. All general chemicals were bought from Sigma-Aldrich unless noted otherwise. DNA oligonucleotide primers were synthesized either by IDT Inc. (Iowa, USA) or Sigma-Genosys (Sydney, Australia) and ethidium bromide was obtained from Bio-Rad. Anti-RgpB (186E) mAb was produced on-site in a monoclonal facility at the University of Georgia and the P. gingivalis anti-glycan (1BS) mAb was a kind gift from Dr Mike Curtis, St Bartholomew’s & the Royal London Queen Mary’s School of Medicine & Dentistry, UK. Alkaline phosphatase-conjugated secondary antibodies and streptavidin were purchased from DakoCytomation.

Bacterial strains and general growth conditions. Porphyromonas gingivalis strains and Escherichia coli DH5α (used for all plasmid construction work) were grown as described previously (Nguyen et al., 2007). Ampicillin was used at 100 μg ml⁻¹ for plasmid selection and tetracycline was used at 1 μg ml⁻¹ for P. gingivalis mutant selection. For growth curve experiments, initial starter cultures were grown under antibiotic selection as appropriate but subsequent passage cultures for growth kinetics were carried out without antibiotic supplementation as described previously (Nguyen et al., 2007). Cells collected at OD₆₀₀ 0.8–0.9 were stabilized in RNAProtect Bacteria reagent (Qiagen) and stored at −80 °C to preserve mRNA for gene expression studies.

Cell fractionation procedures. Cell fractionation procedures and separation of IM and OM membrane fractions by Sarkosyl treatment were essentially the same as previously published (Nguyen et al., 2007) but with the addition of 2 mM tosyl-l-lysine chloromethyl ketone (TLCK) protease inhibitor at all stages of purification. Purity of the OM fraction was confirmed by the exclusive presence of LPS as detected by Western blotting using anti-LPS 1B5 mAb. Purity of the IM fraction was confirmed by the exclusive presence of a biotin-containing protein as detected by Western blotting using alkaline-phosphatase AP-conjugated streptavidin. N-terminal sequencing of the protein purified over streptavidin-agarose revealed the protein to be an oxaloacetate decarboxylase (odaA gene; TIGR ID PG1609). This protein has been predicted to be on the IM, and as biotin is an essential co-enzyme for carboxylases, the biotin association with the odaA gene product on the IM was as expected.

Western blot analysis. Western blot analysis was carried out using essentially the same method as previously published (Nguyen et al., 2007). Anti-PorT polyclonal antibodies were produced through a subcontractor (21st Century Biochemicals) by immunizing rabbits with a synthetic peptide, ERPDLDDYKLYITQISSRA, present on the putative fourth external loop of PorT. AP-conjugated goat anti-rabbit pAb was used as the secondary antibody and chromogenic development was carried out using the AP Conjugate Substrate kit (Bio-Rad).

Heat-modifiability assay of PorT. The OM fraction of the wild-type W83 P. gingivalis was pre-reduced with 0.5% β-mercaptoethanol and 4 mM TLCK for 10 min at 37 °C for complete inactivation of gingipain proteases before being mixed 1:1 with SDS-PAGE sample buffer. Samples were incubated at various temperatures for 15 min before being subjected to SDS-PAGE and transferred onto 0.2 μm nitrocellulose membranes for Western blot procedures.

Plasmid construction for the PorT* mutant. Using a similar strategy to that as described previously to create the RgpB+ construct (Nguyen et al., 2007), a 1.4 kb segment comprising the porT gene (TIGR accession no. PG0751) and a region 5' to the gene was amplified by PCR using Accuprime Pfu DNA polymerase (Invitrogen) and inserted into plasmid pUC19 (New England Biolabs). All primers used in this study are listed in Supplementary Table S1, available with the online version of this paper. An intervening tetracycline-resistance cassette (tetQ) from the plasmid pNFD13-2 (Nikolich et al., 1992) was amplified and inserted 3' to the porT gene on the modified pUC19. The resultant plasmid was further modified by incorporation of a 1 kb 3' flanking region to the porT gene to create the final master plasmid pPorTAb-C. Correct placement and orientation of the DNA segments were confirmed by sequencing.

Creation of deletional and insertional mutants of PorT. Using the pPorTAb-C master plasmid as template, a modified SLIM mutagenesis method (Chiu et al., 2004; Nguyen et al., 2007) was used to create various plasmids with porT excised or with affinity-tag insertions into selected regions of the porT gene (Table 1). Primer sets used for mutagenesis are listed in Supplementary Table S1. All resultant plasmids were screened for AP correct mutagenesis by DNA sequencing of the pertinent region. The purified plasmids were electroporated into competent P. gingivalis W83 cells as described previously (Nguyen et al., 2007) and integration of the modified genes into the P. gingivalis genome by a double-crossover recombination event was confirmed by PCR and DNA sequencing. Southern blots with DIG-labelled tetQ probes were used to confirm the presence of only one crossover event in the genome of each mutant.

Enzyme activity assay. Early stationary-phase cultures of mutants were adjusted to OD₆₀₀ 1.5, and 10 μl or 20 μl samples were assayed for Rgp or Kgp activity, respectively, using the chromogenic substrates benzoxy-1-Arg-p-nitroanilide (BapNA) or acetyl-1-Lys-p-nitroanilide (AcKpNA) (Bachem, Germany). Briefly, in a 96-well format, samples were pre-incubated in assay buffer (200 mM Tris/HCl, 100 mM NaCl, 5 mM CaCl₂, pH 7.6, supplemented with fresh L-cysteine to 10 mM) for 2 min prior to the addition of 0.5 mM substrate in a total volume of 200 μl. Likewise, 50 μl aliquots of the adjusted cultures were assayed for dipetidyl peptidase IV and prolyl tripeptidyl peptidase activity in 200 mM HEPES, 100 mM NaCl, 5 mM CaCl₂, pH 7.6, supplemented with fresh L-cysteine to 10 mM, for 2 min prior to the addition of 0.5 mM substrate in a total volume of 200 μl.
Table 1. P. gingivalis strains and mutants used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>W83</td>
<td>Wild-type</td>
<td>Reference strain (Nelson et al., 2003)</td>
</tr>
<tr>
<td>PorT<sup>+</sup></td>
<td>porT<sup>+</sup> (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>ΔPorT</td>
<td>porT (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H33</td>
<td>porT100::6 × His<sup>*</sup> (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H37</td>
<td>porT112::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H67</td>
<td>porT202::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H97</td>
<td>porT292::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H121</td>
<td>porT364::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H135</td>
<td>porT406::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H147</td>
<td>porT442::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H169</td>
<td>porT508::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H191</td>
<td>porT574::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H197</td>
<td>porT592::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H213</td>
<td>porT640::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>6H244</td>
<td>porT733::6 × His (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
<tr>
<td>Str213</td>
<td>porT640::Strep-tag<sup>+</sup> (Tc<sup>c</sup>)</td>
<td>This study</td>
</tr>
</tbody>
</table>

[*]Sequence for the 6 × His tag is 5′-CATCACCATCACCATCAG.
[†]Sequence for the Strep-tag is 5′-TGTTCTCATCCTCAGTTCGAAAAG.

pH 7.5 using the substrates H-Ala-Pro-p-nitroanilide (APpNA) and H-Ala-Phe-Pro-p-nitroanilide (APpNA) (Bachem, Germany), respectively. The rate of formation of p-nitroanilide was measured at 405 nm using the kinetics mode over 5 min on a Benchmark Microplate Reader (Bio-Rad). For ease of comparison between mutants and statistical analyses of independent repetitions, activity units were defined as the total activity present in the wild-type W83 culture equaling 100 U.

Real-time PCR procedure. Total RNA from mid-exponential-phase cells at OD₆₀₀ 0.8–0.9 was stabilized with RNAProtect Bacteria reagent (Qiagen) before being extracted with the RNAqueous kit (Ambion). Reverse transcription was carried out on 4 µl of total RNA using the Superscript III First-Strand Synthesis kit (Invitrogen) in a volume of 10 µl according to the manufacturer’s instructions. Singleplex real-time PCR for <i>rgpB</i> was carried out using 2 µl of 1:200 dilution of the cDNA in triplicate on a Strategene Mx3005P Real-Time PCR System with the Power SYBR Green PCR Master Mix (Applied Biosystems) as published previously (Nguyen et al., 2007). For PorT expression, singleplex real-time PCR using Platinum Quantitative PCR Supermix (Invitrogen) and 5 µl of 1:35 dilution of the cDNA along with TaqMan probes against porT and a housekeeping DNA gyrase <i>gyrA</i> gene (PG1386 TIGR database; see primer sequences in Supplementary Table S1). DNA gyrase is an essential protein to unwind genomic DNA for replication; hence it is commonly used as a housekeeping gene (PG1609) – detected by AP-conjugated streptavidin (Fig. 1b) and the exclusive presence of a biotin-containing protein in the IM fraction – an oxaloacetate decarboxylase as determined by N-terminal sequencing (oadA gene; TIGR ID PG1609) – detected by AP-conjugated streptavidin (Fig. 1b) and the exclusive presence of LPS in the OM fraction as detected by anti-LPS mAb 1B5 (Fig. 1c). Moreover, due to the extraordinary stability of OM proteins, they have been reported to exhibit heat-modifiability characteristics whereby SDS detergent cannot denature the protein unless heated above a threshold temperature (Barnard et al., 2007; Freidl et al., 1986). By Western blotting, PorT does have heat-modifiability characteristics, with denaturation in the presence of SDS occurring between 50 and 60 °C (Fig. 1d).

RESULTS

Cellular localization of PorT

Using established cell fractionation techniques including Sarkosyl solubilization of the IM and loosely bound peripheral membrane proteins (Filip et al., 1973; Nguyen et al., 2007; Nikaido, 1994), PorT was detected only in the OM fraction of wild-type <i>P. gingivalis</i> cells by Western blotting (Fig. 1a). Successful fractionation of the IM and OM was confirmed by the exclusive presence of a biotin-containing protein in the IM fraction – an oxaloacetate decarboxylase as determined by N-terminal sequencing (oadA gene; TIGR ID PG1609) – detected by AP-conjugated streptavidin (Fig. 1b) and the exclusive presence of LPS in the OM fraction as detected by anti-LPS mAb 1B5 (Fig. 1c). Moreover, due to the extraordinary stability of OM proteins, they have been reported to exhibit heat-modifiability characteristics whereby SDS detergent cannot denature the protein unless heated above a threshold temperature (Barnard et al., 2007; Freidl et al., 1986). By Western blotting, PorT does have heat-modifiability characteristics, with denaturation in the presence of SDS occurring between 50 and 60 °C (Fig. 1d).

Predicted topology of PorT

Although the web-based functional prediction server ProFunc (Laskowski et al., 2005a, b) identified PorT as...
an integral OM protein, the structure is not yet known. Prediction of the secondary structure using PSI-PRED (Jones, 1999) yielded eight β-strands, suggesting a β-barrel structure. This interpretation was subsequently confirmed using programs designed to predict β-barrels: ProfTMB (Bigelow et al., 2004) and HHomp (http://toolkit.tuebingen.mpg.de/hhomp/). A surface protein A (PDB code 1P4T) from Neisseria meningitidis was identified by HHpred (Söding et al., 2005) as the best structural template for PorT and the final model was built using Modeller (Sali & Blundell, 1993) on the basis of the manually edited alignment (data not shown). The predicted structure, comprising eight membrane-spanning β-sheets with four extensive extracellular loops and three short periplasmic turns along with a periplasmic N-terminal extension, is depicted in Fig. 2.

Generation of PorT mutants

Integral OM proteins can tolerate insertion of peptides into the extracellular-exposed loops without significant loss of function whereas disruption within the short periplasmic turns is less tolerated and disruption within the transmembrane β-strands leads to the failure to insert into the membrane, resulting in a complete loss of function (Freudl, 1989; Koebnik et al., 2000). In order to verify the predicted model of PorT, site-directed mutagenesis was used to insert hexa-histidine (6×His) residues at 12 selected locations within the protein to investigate its functional tolerance of the insertions (Fig. 2, Table 1). As PorT has been shown to be essential for gingipain maturation (Sato et al., 2005), the level of gingipain activity as compared to the wild-type strain was employed to assess the degree of impairment of PorT function for each insertional mutation.

The strategy to create the 6×His insertional PorT mutants involved the initial assembly of a master plasmid, pPorTAtB-C, whereby a 2.4 kb region containing the porT gene was amplified by PCR and ligated into pUC19 along with an intervening tetracycline-resistance gene tetQ, placed 3′ to the porT gene. After introduction into P. gingivalis W83 by electroporation, homologous recombination of this construct into the genome results in a fully functional PorT+ mutant to serve as a control for possible polar effects from genetic manipulations. By using the SLIM method of mutagenesis (Chiu et al., 2004), DNA encoding 6×His tags was introduced by insertional mutagenesis at 12 selected sites within the porT gene in the master plasmid pPorTAtB-C and deletional mutagenesis was used to remove the porT gene in one plasmid construct. After electroporation of the plasmids into P. gingivalis for homologous recombination, the corresponding His-tagged PorT mutants and a PorT deletional inactivation mutant were created (Table 1). As a further control against the 6×His tag causing a phenotypic change, an additional construct using a Strep tag (Schmidt & Skerra, 2007) was inserted at one location to verify that the observed effects were tag-independent (Table 1).

Production of PorT in the mutants

By semiquantitative Western blotting, PorT was found to be expressed naturally at low levels in the wild-type and PorT+ control mutant. Tag insertions into the first three extracellular loops (mutants 6H67, 6H121, 6H169) and into the first periplasmic turn (6H97) did not significantly affect the expression of PorT in the OM fraction as compared to wild-type and the PorT+ control (Fig. 3). Unfortunately, due to the immunizing epitope for antibody production being located in the fourth extracellular loop (Fig. 2), tag insertions into the fourth

Fig. 1. Localization and heat-modifiability of PorT. Wild-type P. gingivalis was fractionated as: whole cell (1), total membrane (2), IM (3), OM (4), cytoplasm (5) and periplasm (6) as described in Methods. Samples were subjected to SDS-PAGE, transferred onto nitrocellulose membranes and probed with anti-PorT pAb (panels a and d). Purity of the membrane fractions was confirmed by the exclusive presence of the biotin-containing protein oxaloacetate decarboxylase in the IM as detected with AP-conjugated streptavidin (b) (see Methods) and the exclusive presence of LPS in the OM as detected with anti-LPS 1B5 mAb (c). Heat-modifiability of PorT (d) in the OM fraction was evident after heating to various temperatures for 15 min in SDS-PAGE sample buffer with reducing agent.
extracellular loop (6H213 and Str213) disrupted the antigenic site, resulting in failure of the antibody to recognize PorT in these mutants (Fig. 3). PorT production seemed to increase slightly with tag insertion at the far N-terminal extension (6H33), moderate increase was seen with insertions into the mid-N-terminal extension (6H37) and at the C terminus (6H244), and the greatest increase was detected in mutants with insertions into the last two periplasmic turns (6H147 and 6H191) (Fig. 3). Tag insertion into the membrane-spanning regions resulted in a trace amount of PorT in one mutant (6H197) and a total loss in another (6H135). Presumably, the presence of the tag in the transmembrane regions interfered with membrane insertion; hence PorT was poorly detected in the OM fraction. PorT was undetectable in the PorT deletional mutant (ΔPorT) as expected.

Effects of PorT mutation on CTD-dependent secretion

PorT has been reported to be essential for gingipain processing and transport across the OM (Sato et al., 2005), and was suggested to be involved in the maturation and export of a class of proteins with a characteristic C-terminal domain (CTD) (Nguyen et al., 2007). To assess the effect of insertional mutation of PorT on the

Fig. 2. Membrane-spanning regions of PorT as predicted by the HHpred program. (a) Sites of 6×His insertions are indicated by arrows along with the mutant name (boxed). Mutants with fully functional PorT are represented in green, those with partially defective PorT in orange and non-functional PorT in red. A synthetic peptide corresponding to the residues in red was used to immunize rabbits for anti-PorT antibody production. The predicted cleavage site of the signal peptide is indicated by a black bar and the OM bilayer is depicted by the horizontal coloured zone. (b) The modelled stereo 3D structure of PorT without the N-terminal extension.

Fig. 3. Presence of PorT in the OM fraction of PorT mutants. Early stationary-phase cultures were adjusted to OD600 1.5 and the OM fraction was prepared as described in Methods. Samples (50 μl) were subjected to SDS-PAGE, transferred onto nitrocellulose membranes, probed with anti-PorT polyclonal antibodies and detected by AP-conjugated secondary antibodies. *, Insertion of the 6×His and Strep-tag into these mutants disrupted the epitope recognized by the anti-PorT antibody.
CTD-dependent secretory pathway, a number of *P. gingivalis* cell surface enzymes with or without the CTD domain were assayed (Fig. 4). CTD-dependent gingipain production – specifically, surface-bound Rgp and Kgp activities as measured using synthetic substrates – was essentially abolished in the PorT deletional mutant along with mutants having 6 × His insertion into the transmembrane regions (mutants 6H135 and 6H197) and at the C terminus (6H244). Insertions in the periplasmic turns caused a range of effects from no effect for disruption at the first turn (T1; mutant 6H97), to 80 % reduction at the second turn (T2; mutant 6H147) and a complete loss of gingipain activity at the third turn (T3; mutant 6H191). Interestingly, one insertion within the N-terminal extension (mutant 6H37) also caused a 50 % reduction in Rgp production (Fig. 4). The insertion of a different peptide (Strep tag) in mutant Str213 gave the same result as the insertion of a 6 × His tag at the same location in mutant 6H213 (Fig. 4). It is of note that active gingipains were not detected in the media fractions from any of the mutants and lysis of the cells by sonication to release internal partially processed gingipains did not significantly alter the level of active gingipains assayed (data not shown).

By Western blotting against a member of the gingipain family, RgpB, using anti-RgpB mAb 18E6 (Nguyen et al., 2007), the characteristic smear of mature, glycosylated RgpB in the wild-type was replaced by partially processed RgpB bands in the PorT-defective and deletional mutants (Fig. 5), compatible with the partially processed RgpB observed when the C terminus of the CTD domain of RgpB was truncated (Nguyen et al., 2007). The residual gingipain activity in 6H147 (Fig. 4) correlated well with the faint glycosylated RgpB smear present on the Western blot (Fig. 5).

In contrast, the cell surface enzymes dipeptidyl peptidase IV and prolyl tripeptidase do not contain a CTD domain and are presumably exported by a different pathway (Banbula et al., 1999; Nakamura et al., 1992). As predicted, the production of these enzymes was not reduced in PorT mutants, but interestingly, they were significantly upregulated in those strains with defective gingipain production, presumably in an attempt to compensate for the loss of general proteolytic activity in the absence of gingipain activity (Fig. 4). The absence of functional gingipains in a number of mutants did not reduce growth rate in the complex medium used; instead, the PorT-defective mutants mostly grew more rapidly and reached a higher cell density in culture than the wild-type and functional PorT mutants (Supplementary Fig. S2).

Analysis of mutants for transcripational activity of porT and rgpB

For accurate comparison of *porT* and *rgpB* expression levels between each mutant as quantified by real-time PCR, the
housekeeping DNA gyrase (gyrA) gene was used as an internal standard or a 'calibrator', to control for varying levels of mRNA in each sample. The level of porT transcription normalized to the gyrA gene in the mid-exponential phase of each mutant (Fig. 6) was found to correlate well with the PorT Western blot (Fig. 3). As predicted, no significant change in porT transcription was detected in mutants with similar PorT production to the wild-type (Fig. 6). In mutants with elevated PorT production such as those with insertions into the periplasmic turns (6H147 and 6H191), into the N-terminal extension (6H33 and 6H37) or into the fourth extracellular loop (6H213), porT transcription was also elevated. However, the highest level of porT transcription was detected in mutants with insertions into the transmembrane regions (6H135 and 6H197) and at the C terminus (6H244). These data suggest that a negative feedback mechanism operates to regulate porT transcription in response to a perceived functional deficiency of PorT. No transcripts were detected in the PorT deletional mutant, as expected.

In contrast to porT, transcription of rgpB was significantly downregulated in the PorT-defective and deletional mutants and the degree of repression correlated with the severity of the defect, being as low as 40% of wild-type levels in ∆PorT and 6H197 mutants (Fig. 7).

DISCUSSION

The export of proteins through the two-membrane structure of the cell envelope in Gram-negative bacteria is
a complicated process. To date, six types of secretion pathways through the OM of Gram-negative bacteria have been described and many of these pathways have been characterized as virulence traits in a number of species (Ghosh, 2004; Mougous et al., 2006). The secretion pathways are divided into two categories, Sec-independent and Sec-dependent, depending on whether the effector proteins are exported out of the double-membrane structure via one or two steps, respectively. Type I, III, IV and VI secretion systems export the target protein through both IM and OM in a single step (Gerlach & Hensel, 2007; Pukatzki et al., 2006). In contrast, proteins exported by type II and V secretion systems are first translocated in an unfolded state through the IM by an N-terminal signal peptide and the Sec apparatus. They achieve an intermediate folded state within the periplasm before being exported through the OM via various portals (Cianciotto, 2005; Henderson et al., 2004). In the case of P. gingivalis, type II, III and VI secretion systems are not encoded in the genome and the primary sequences of the gingipains are incompatible with the remaining known secretory systems (Nguyen et al., 2007; Sato et al., 2005). As a consequence, there has been considerable interest in uncovering a new secretory apparatus operating in P. gingivalis to export a number of virulence factors, including the gingipains.

Recent discovery of two novel proteins, PorT and Sov, which are essential for the maturation and export of the gingipains and possibly other surface proteins carrying the CTD motif in a restricted group of bacteria, has suggested that these three elements play a key role in a new secretory pathway (Nguyen et al., 2007; Saiki & Konishi, 2007; Sato et al., 2005). In order to assign possible functions to the two known protein components of this pathway, knowledge of their cellular localization is essential. Previously, Sato et al. (2005) interpreted PorT localization to be on the periplasmic surface of the IM by using selective solubilization of the IM with the detergent Triton X-100 and the pattern of protease K digestion of spheroplast preparations in the presence or absence of the same detergent. Although Triton X-100 has been used successfully to fractionate E. coli membranes under specific conditions and detergent concentrations (Schmidt, 1971), the technique has not been thoroughly validated for P. gingivalis. Specific markers for the OM and IM were not used to validate the fractionation of PorT; therefore its cellular localization could not be confirmed (Sato et al., 2005). Further, the relative resistance of PorT in P. gingivalis spheroplasts to protease K digestion without Triton X-100 as compared to Kgp high-molecular-mass precursor proteins, as demonstrated by these authors, suggests that PorT is intrinsically more stable (also a feature of integral OM proteins), requiring solubilization by Triton X-100 before becoming susceptible to protease K cleavage.

On the other hand, the detergent Sarkosyl has been used extensively in membrane fractionation of E. coli (Filip et al., 1973; Nikaido, 1994) and we have used Sarkosyl to successfully fractionate IM and OM proteins in P. gingivalis previously (Nguyen et al., 2007). In this study, we found that PorT partitioned to the OM fraction by Western blot analysis and displayed heat-modifiability characteristics of OM proteins (Fig. 1). Further, due to low abundance of the protein in the wild-type strain (Fig. 3), attempts to verify PorT localization to the OM by immunofluorescence, flow cytometry and ultrastructural studies were unsuccessful. Although additional confirmation of the OM localization could have been possible by using a detergent-independent membrane fractionation procedure such as sucrose gradient fractionation, we have gone a step further and modelled the OM topology of the protein and verified this model by studying the functional tolerance of PorT to peptide insertions at various positions within the predicted structure (Fig. 2). Web-based structure prediction programs have predicted PorT to be an eight-stranded OM β-barrel with characteristic OM protein features such as an even number of anti-parallel β-strands, long extracellular loops, short periplasmic turns and both termini facing the periplasmic side (Galdiero et al., 2007; Schulz, 2002). Functional tolerance to disruption by peptide insertion at selected sites within PorT accurately correlated with the model: all insertions into the extracellular loops were tolerated well, insertions into the short periplasmic turns were tolerated to a variable degree, while insertions into the transmembrane β-strands interfered with membrane insertion and hence were not tolerated. Interestingly, peptide insertion into the periplasmic N-terminal extension at position 37 also reduced gingipain maturation to some degree, suggesting that this region may be important in binding to its substrate or to other subunit component(s) of the secretory pathway. Further, insertion at the C terminus totally inhibits maturation of the gingipains but did not interfere with membrane insertion, as PorT was readily detected in the OM fraction of this mutant (6H1244; Fig. 3). This may indicate that the ultimate glutamate residue is either critical for the function of the protein or is essential for the correct folding of the protein within the OM. OM porins have previously been shown to possess distinct C-terminal motifs for binding to OM assembly factor proteins, such as Omp85, for proper assembly into the OM (Robert et al., 2006; Voulhoux et al., 2003). Although the P. gingivalis genome has an Omp85 analogue and predicted OM proteins carrying an Omp85 binding motif such as a terminal aromatic residue followed by hydrophobic residues at positions 5, 7 and 9 from the C terminus (Robert et al., 2006), the PorT C terminus does not have this signature. However, it is possible that the PorT C terminus may possess a recognition motif for an unknown OM assembly factor. Indeed, an alignment of 23 PorT homologues from other members of the Bacteroidetes phylum shows not only a high conservation of a terminal glutamate or glutamine residue but a strict conservation of a phenylalanine at positions 2 and 4 from the C terminus. The presence of hydrophobic residues at positions 6 and 8 as well as a highly conserved arginine at position 10
suggestions that this region may similarly act as a recognition motif for an unknown OM assembly apparatus (Supplementary Fig. S3). Also of note in the multiple alignment is the high conservation of residues within the predicted transmembrane β-strands but a considerable heterogeneity of the extracellular loops in PorT analogues (Supplementary Fig. S3) – a feature that is characteristic of many families of OM proteins (Galdiero et al., 2007; Schulz, 2002).

Apparent negative feedback operating to regulate PorT expression was indicated by significant upregulation of transcriptional activity for this gene in mutants with defective PorT, with the highest number of transcripts being found in mutants with non-functional PorT (Fig. 6). Moreover, porT transcription was also upregulated in two fully functional PorT mutants, 6H33 and 6H213, with His-peptides inserted near to the N terminus and within the L4 loop, respectively. Whether these areas are important in the regulatory signalling pathway and their disruption causes an elevated negative feedback response requires further investigation. In contrast, transcription of the gingipain rgpB gene was significantly downregulated in mutants with defective PorT, with the most severe suppression being found in non-functional PorT mutants (Fig. 7). Despite the indication that these genes could be coordinately regulated, the absence of detectable suppression of rgpB transcription in the functional PorT mutants 6H33 and 6H213 (which have elevated porT transcription) argues against this possibility. It is more likely that an excessive accumulation of partially processed RgpB within the defective PorT mutants (Fig. 5) is the stimulus for an unknown negative feedback mechanism to slow down rgpB transcription until the bottleneck in RgpB maturation and export has been cleared. These data seem to indicate that the expression and maturation of gingipains are regulated on many levels and their dissection in future studies will be a challenging endeavour.

In conclusion, PorT – an essential component in a new CTD-dependent secretion pathway – has been shown to be an integral OM protein. Knowledge of location and structure of PorT will provide valuable insight into its possible role in the pathway for the export of a number of surface proteins, including virulence factors such as proteases and adhesins from three periodontal pathogens: P. gingivalis, Prevotella intermedia and Tannerella forsythia. An understanding of this secretion pathway could provide an important strategy for the simultaneous control of a number of virulence factors in the prevention and treatment of periodontal disease.

ACKNOWLEDGEMENTS

We would like to thank Dr M. Curtis for the 1B5 mAb. This work was supported by an NIH grant (DE 09761) and a grant 1642/B/P01/2008/35 from the MNiSW (Warsaw, Poland) to J.P. and a Ramaciotti Grant RN38/08 to K.-A.N.

REFERENCES

Edited by: P. E. Kolenbrander