FLO11 gene length and transcriptional level affect biofilm-forming ability of wild flor strains of *Saccharomyces cerevisiae*

Giacomo Zara,† Severino Zara,† Claudia Pinna, Salvatore Marceddu and Marilena Budroni

†Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-alimentari (DISAABA), University of Sassari, Viale Italia 39, 07100 Sassari, Italy

Istituto di Scienze delle Produzioni Alimentari (ISPA CNR Sassari), Via dei Mille 48, 07100 Sassari, Italy

In *Saccharomyces cerevisiae*, **FLO11** encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air–liquid biofilm formation. In the present study, we analysed **FLO11** allelic polymorphisms and **FLO11**-associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that **FLO11** is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the **FLO11**-associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and **FLO11** length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air–liquid biofilm-forming ability on the basis of transcription levels and lengths of **FLO11** alleles in a population of *S. cerevisiae* flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that **FLO11** transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.

INTRODUCTION

Saccharomyces cerevisiae adapts to environmental changes by remodulating the composition of the cell wall. Under nutrient starvation, *S. cerevisiae* cells can interact with each other, and with biotic and abiotic surfaces (Verstrepen & Klis, 2006). The resulting cell aggregation is mediated by adhesins, the **FLO** gene family proteins that confer phenotypic diversity and great plasticity to the cell wall. Among these **FLO** genes, **FLO11//MUC1** is involved in adhesion to plastic surfaces and invasive growth on agar. **FLO11** encodes a GPI-anchored glycoprotein that is rich in serine and threonine, and that mediates homotypic adhesion between cells (Douglas et al., 2007). **FLO11** is also involved in substrate–cell interactions, such as biofilm formation on plastic and liquid surfaces (Reynolds & Fink, 2001; Zara et al., 2005). Δf11 mutants cannot form biofilms, allowing for the determination of the role of **FLO11** in biofilm formation on liquid surfaces (Ishigami et al., 2004; Zara et al., 2005; Fidalgo et al., 2006).

As with other cell-wall-related genes, the **FLO11** ORF is characterized by intragenic repeat sequences (Mannazzu et al., 2002; Marinangeli et al., 2004; Verstrepen et al., 2005). In *S. cerevisiae*, polymorphism of protein size is quite frequent and is often associated with insertion/deletion (indel) events in the DNA that result in repeated regions that are rich in serines and threonines (Bowen et al., 2005; Verstrepen et al., 2005; Bowen & Wheals, 2006). Recent evidence has suggested that this polymorphism is likely to be under selection, as differently sized orthologues show differing levels of mutual attraction (Verstrepen et al., 2005). The **FLO11** gene carries one of the largest promoter regions of the yeast genome. The **FLO11** promoter is at least 2,800 bp (Lo & Dranginis, 1998) and it is complex: it consists of four upstream activation sequences and at least nine upstream repression sequences (Pan & Heitman, 1999; Rupp et al., 1999; Pan & Heitman, 2002; Kuchin et al., 2002), the activities of which depend on growth stage and nutritional conditions (Rupp et al., 1999). Some of these regulatory regions are targets for the MAP kinase pathway, the adenyl cyclase/cAMP cascade and the Snf1-Nrg1/Nrg2 pathway (Kuchin et al., 2002). Fidalgo et al. (2006) identified a 111 nt deletion within an upstream repression sequence of the **FLO11** promoter of a flor strain which increased gene expression. Apart from being targeted by

†These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession numbers for the **FLO11** promoter sequences of strains A9, V23, M23 and V80 are FJ526742, FJ526743, FJ526744 and FJ526745, respectively.
these different signalling cascades, FLO11 is also under epigenetic control and chromatin remodelling complexes have fundamental roles (Frieman & Cormack, 2004; Halme et al., 2004; Barrales et al., 2008).

In the present study, we have evaluated the gene polymorphism of FLO11 in 20 wild flor strains of S. cerevisiae isolated from three wine-producing areas of Sardinia, Italy. We show that in flor strains, the propensity for biofilm formation depends on the length and transcription level of FLO11 alleles, and that FLO11 transcriptional levels are strongly influenced by the genetic background.

METHODOLOGY

Yeast strains and media. The yeast strains used in this study are listed in Table 1. S. cerevisiae flor strains from the DISAABA culture collection (University of Sassari) were subdivided into three different clades, as suggested by previous results from PFGE, internal transcribed spacer (ITS)-RFLP, non-transcribed spacer (NTS)-RFLP and mtDNA-RFLP analyses (Farris et al., 2002). Strain BY4742 is isogenic to S288C, which bears a nonsense mutation in the FLO8 gene that abolishes FLO11 expression (Liu et al., 1996). All of the strains were cultivated on YPD (1 % yeast extract, 2 % peptone, 2 % glucose) and synthetic complete (SC) medium (0.67 % yeast nitrogen base without amino acids, 2 % glucose, supplemented with bases and amino acids at standard concentrations) at 30 °C (Sherman et al., 1986). The flor medium was Yeast Nitrogen Base (YNB), containing 4 % ethanol as sole carbon source, which was supplemented where necessary with bases and amino acids at standard concentrations (Zara et al., 2005).

Molecular methods. Genomic DNA isolation was performed according to Burke et al. (2000). PCRs for FLO11 gene amplification were performed using the MUC1up and MUC1lo primers (Table 2), with 100 ng genomic DNA, 3 mM MgCl2, 0.25 mM dNTP, 50 pmol primer Up, 50 pmol primer Lo, and 0.5 U Taq DNA polymerase (EuroClone) in a 50 µl volume. The temperature cycling parameters were as follows: an initial hold at 95 °C for 5 min; 40 cycles at 95 °C for 1 min, 52.9 °C for 50 s and 72 °C for 4 min; and a final elongation at 72 °C for 15 min.

The EMBOSS programs EQUICKTANDEM and ETANDEM (Rice et al., 2000) were used to identify intragenic repeats in FLO11 reference sequences in databases (Saccharomyces Genome Database, www.yeastgenome.org; GenBank www.ncbi.nlm.nih.gov/Genbank). PCRs for tandem repeat domains in each FLO11 allele were carried out using the primers Up776flo11 and Lo2973flo11, which were designed on the basis of the S288C sequence (Table 2). The temperature cycling parameters were as follows: an initial hold at 94 °C for 5 min; 30 cycles at 94 °C for 1 min, 60 °C for 50 s and 72 °C for 3 min; and a final elongation at 72 °C for 10 min. The amplification of FLO11 intragenic repeats was followed by a high-resolution melting analysis which allows the estimation of the base composition of the PCR products (Stephens et al., 2008).

FLO11 ORFs of A9 and M23 strains were cloned into the pYES2.1/V5-His-TOPO vector (Invitrogen), which contains a GAL1 promoter and a CYC1 transcriptional terminator downstream of the insertion site. Insertion was confirmed by PCR using the primers GAL1 Forward and V5 C-term (Invitrogen). The laboratory strain BY4742 was transformed with the two plasmids, yielding new strains FA9 and FM23, which contained the FLO11 ORF of A9 and M23, respectively.

The FLO11 promoters of the M23, V23, A9 and V80 strains were amplified using primers Up from flo82 and Lo from flo3022 (Table 2). The PCR products were directly sequenced at BMR Genomics, Padova, Italy, by Genome Sequencer FLX (Roche) using the primers listed in Table 2. Sequence alignments were performed using BLAST 2 (www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi) and CLUSTAL W (www.ebi.ac.uk/Tools/clustalw2/index.html) for single and multiple alignments, respectively.

FLO11-associated phenotypes. Formation of an air–liquid interfacial biofilm was performed as follows. The strains were grown in 2 ml YPD overnight at 30 °C in an incubator-shaker, recovered by centrifugation, washed once in sterile distilled water, and resuspended in 2 ml flori medium in borosilicate test tubes. Samples were incubated at 30 °C for 3–5 days under static conditions. The biofilms were harvested by aspiration with a vacuum pump and filtered using previously weighed 2 µm nitrocellulose filters. The filters were then oven-dried at 50 °C for 72 h and weighed again. The biofilm was expressed as the difference between the weights of the filters with the dried pellets and the original weights of the dried filters.

Yeast adherence to polystyrene, aqueous-hydrocarbon biphasic hydrophobicity and colony morphology were evaluated as described by Reynolds & Fink (2001). For determination of the adherence to polystyrene surfaces, the cells were grown overnight at 30 °C in SC supplemented with 2 % (w/v) glucose, washed once in sterile water, resuspended in SC supplemented with 0.1 % glucose, and brought to an OD600 of 1.0. Ten repetitions of 100 µl aliquots were then transferred into the wells of 96-well polystyrene plates and the cell suspensions were incubated at 30 °C for 3 h. An equal volume of 1 %

Table 1. Saccharomyces cerevisiae strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V16, V19, V23, V30, V44, V75, V80</td>
<td>Wild flor strains of S. cerevisiae</td>
<td>Isolated from Vernaccia wine (DISAABA collection)</td>
</tr>
<tr>
<td>M12, M23, M25, M39, M46, M49, M66</td>
<td>Wild flor strains of S. cerevisiae</td>
<td>Isolated from Malvasia wine (DISAABA collection)</td>
</tr>
<tr>
<td>A9, A43, A28, A68, A51, A41</td>
<td>Wild flor strains of S. cerevisiae</td>
<td>Isolated from Arisionadu wine (DISAABA collection)</td>
</tr>
<tr>
<td>BY4742</td>
<td>MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0</td>
<td>Brachmann et al. (1998)</td>
</tr>
<tr>
<td>FM23</td>
<td>BY4742 transformed with plasmid pYES2.1/V5-His-TOPO bearing FLO11 gene from M23 wild strain</td>
<td>This study</td>
</tr>
<tr>
<td>FA9</td>
<td>BY4742 transformed with plasmid pYES2.1/V5-His-TOPO bearing FLO11 gene from A9 wild strain</td>
<td>This study</td>
</tr>
</tbody>
</table>
wrapped with Parafilm and photographed after 10 days incubation at toothpick 1–2 days after the plates were poured. The plates were then
the yeast strains onto YPD soft agar plates (0.3 % agar) with a
Finally, colony morphology on soft agar was evaluated by inoculating

\[n \]

examined in a Zeiss DSM 962 scanning electron microscope.

with gold/palladium in an Edwards S150A sputter coater, and finally

dried under CO2 with a Polaron critical-point device, sputter-coated
increasing acetone concentrations (20, 50, 70, 80, 95 and 100 %),
tetroxide solution for 1 h. They were then dehydrated in a series of
2.5 % glutaraldehyde in 0.1 M sodium cacodylate buffer for 90 min,
the velum formed by some strains (Fig. 3).

in an air–liquid biofilm, SEM revealed the presence of an

morphologies on soft agar were different both for the

2.5 % octane were used to determine the hydrophobicity.

(w/v) crystal violet was then added to each well. After 30 min, the
wells were washed with sterile water, and the adherence of the cells
was quantified by solubilizing the retained crystal violet in 100 µl
10 % (w/v) SDS and an equal volume of sterile water. After 30 min,
50 µl of these solutions was transferred to fresh polystyrene 96-well
plates, and A570 and A590 were measured spectrophotometrically.

For determination of the aqueous-hydrocarbon biphasic hydrophobicity, the cells were grown overnight in SC supplemented with 2 %
(w/v) glucose, washed once with water, and resuspended in SC supplemented with 0.1 % glucose to an OD600 of 0.5. After a
stationary incubation of 3 h at 25 °C, the OD600 of the cultures was measured again. Then, 1.2 ml of the cultures was added to each of
three borosilicate glass tubes and overlaid with 600 µl–octane. After vortexing the tubes for 3 min, the phases were allowed to separate and
measured again. Then, 1.2 ml of the cultures was added to each of
three borosilicate glass tubes and overlaid with 600 µl–octane. After vortexing the tubes for 3 min, the phases were allowed to separate and
the OD600 of the aqueous layers was measured. The differences
between the OD600 of the aqueous phase before and after the addition of n-octane were used to determine the hydrophobicity.

Finally, colony morphology on soft agar was evaluated by inoculating the yeast strains onto YPD soft agar plates (0.3 % agar) with a
toothpick 1–2 days after the plates were poured. The plates were then wrapped with Parafilm and photographed after 10 days incubation at
25 °C.

Scanning electron microscopy (SEM). The biofilms were fixed in 2.5 % glutaraldehyde in 0.1 M sodium cacodylate buffer for 90 min, then washed in the same buffer and post-fixed in 1 % osmium tetroxide solution for 1 h. They were then dehydrated in a series of
increasing acetone concentrations (20, 50, 70, 80, 95 and 100 %),
dried under CO2 with a Polaron critical-point device, sputter-coated with gold/palladium in an Edwards S150A sputter coater, and finally examined in a Zeiss DSM 962 scanning electron microscope.

FLO11 transcription analysis. Transcription analysis was performed on yeast strains grown on YPD and on flour medium. For each sample, 1 × 10^6 cells were collected after 8 h incubation in YPD and after 48 h static incubation in flour medium just before a visible biofilm was formed. RNA extraction and reverse transcription were carried out using RNAqueous-4 PCR (Ambion) and the SuperScript First-Strand Synthesis System for RealTime-PCR Kit (Invitrogen), respectively. The cDNA was quantified using an iCycler IQ RealTime-PCR detection system (Bio-Rad). The primers used were ACT1 up

and ACT1 lo for ACT1 amplification, and FLO11RTup and FLO11RTlo for FLO11 amplification (Table 2). The SYBR-Green I
dye (Sigma-Aldrich) was used as the fluorescence system. The reaction conditions were: 1 cycle at 95 °C for 3 min; 50 cycles at
95 °C for 20 s, 60 °C for 30 s and 72 °C for 30 s; and a final
elongation at 72 °C for 3 min. The ACT1 gene was used as the housekeeping gene to normalize the expression data across the
different samples. The relative expression values were determined using the formula proposed by Pfaffl (2001).

Statistical analyses. To test the null hypothesis that the data
sampled came from a normally distributed population, the Shapiro–
Wilk test was used. The significance of the differences among samples
was assessed by using the t-test. Considering the lack of information about the population distributions underlying the phenotypic
variables measured, the non-parametric Spearman rank correlation
coefficient was calculated. Regression analysis was used to estimate
the linear model \[y_i = f_1(x_{i1}) + f_2(x_{i2}) + \varepsilon \]. The length of the intragenic repeats (x1) and the transcription levels (x2) of FLO11 were the predictor variables and the weight of the biofilm formed was the response variable (γ). The validity of the linear model was assessed by checking the absence of multicollinearity among the predictor variables and model departures from: (i) linearity, by non-parametric smoothing techniques (smoothing splines); (ii) normality, by graphic analyses (normal quantile–quantile residual plots); (iii) homoscedasticity, by graphic analyses (residual vs predictor plots). All of the statistical tests and calculations were performed using the free
software R (version 2.8.1) (R Development Core Team, 2008).

RESULTS

FLO11-associated phenotypes are highly variable

The 20 S. cerevisiae flor strains exhibited a high diversity in their FLO11-associated phenotypes (Table 3). Colony morphologies on soft agar were different both for the
diameters of the mat formed (ranging from 4.43 to 7.73 cm) and for the presence/absence of structures, such as cables and radial spokes emanating from the central hub (Fig. 1). The hydrophobicity values ranged from 61.26 to
98.95 %, while the adhesion values ranged from 1.04 to
2.44 (A570). Interesting differences were also seen for the
weights (ranging from 0.12 to 0.32 mg), and the morphologies of the biofilm formed (Fig. 2). Also, for the first time in an air–liquid biofilm, SEM revealed the presence of an abundant extracellular matrix of unknown composition in the
velum formed by some strains (Fig. 3).

FLO11 is highly polymorphic

PCR analysis of the 20 flor strains revealed that FLO11 is highly polymorphic in length, varying from 3.0 to 6.1 kb. As expected, this length polymorphism is due to the expansion or contraction of a specific region of the FLO11 gene that contains a 36bp tandemly repeated consensus sequence (AACCACTKCWACCCACACTGCAAACCAYKCW-
ACYACYG). Thirteen different alleles containing 11, 28, 33, 44, 53, 56, 58, 61, 64, 69, 72, 75 and 78 repeats were seen (Fig. 4). The most frequent allele in the population
contained 58 repeats, and this was seen in seven strains. Among the 20 strains tested, only six were heterozygous at

<table>
<thead>
<tr>
<th>Table 2. Primers used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
</tr>
<tr>
<td>MUC1up</td>
</tr>
<tr>
<td>MUC1lo</td>
</tr>
<tr>
<td>FLO11Rtup</td>
</tr>
<tr>
<td>FLO11Rtlo</td>
</tr>
<tr>
<td>ACT1 up</td>
</tr>
<tr>
<td>ACT1 lo</td>
</tr>
<tr>
<td>ACT1 lo</td>
</tr>
<tr>
<td>Up776lo11</td>
</tr>
<tr>
<td>Lo2976lo11</td>
</tr>
<tr>
<td>Up prim flo82</td>
</tr>
<tr>
<td>Lo prim flo3022</td>
</tr>
<tr>
<td>Seq prom flo134</td>
</tr>
<tr>
<td>Seq prom flo584</td>
</tr>
<tr>
<td>Seq prom flo1071</td>
</tr>
<tr>
<td>Seq prom flo1538</td>
</tr>
<tr>
<td>Seq prom flo1837</td>
</tr>
<tr>
<td>Seq prom fo2022</td>
</tr>
<tr>
<td>Seq prom flo2549</td>
</tr>
</tbody>
</table>
Table 3. FLO11 polymorphism and FLO11-associated phenotypes

<table>
<thead>
<tr>
<th>Strain</th>
<th>Biofilm mass (mg)</th>
<th>Mat diam. (cm)</th>
<th>Adhesion values ((A_{570}))</th>
<th>Hydrophobicity (%)</th>
<th>FLO11 gene length (kb)</th>
<th>FLO11 tandem repeats (kb)</th>
<th>FLO11 tandem repeats* (kb)</th>
<th>No. of FLO11 tandem repeats</th>
<th>FLO11 tandem repeats melting temperature ((^\circ \text{C}))</th>
<th>FLO11 relative expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A68</td>
<td>0.320</td>
<td>7.53</td>
<td>1.83</td>
<td>97.39</td>
<td>5.6</td>
<td>3.3</td>
<td>–</td>
<td>78</td>
<td>81.6</td>
<td>10.25</td>
</tr>
<tr>
<td>V75</td>
<td>0.306</td>
<td>6.47</td>
<td>1.92</td>
<td>98.96</td>
<td>5.6</td>
<td>3.3</td>
<td>–</td>
<td>78</td>
<td>81.6</td>
<td>25.32</td>
</tr>
<tr>
<td>A28</td>
<td>0.313</td>
<td>6.63</td>
<td>1.91</td>
<td>97.58</td>
<td>5.6</td>
<td>3.2</td>
<td>–</td>
<td>75</td>
<td>81.5</td>
<td>14.06</td>
</tr>
<tr>
<td>A41</td>
<td>0.294</td>
<td>6.53</td>
<td>1.77</td>
<td>97.77</td>
<td>6.1</td>
<td>3.2</td>
<td>–</td>
<td>75</td>
<td>81.5</td>
<td>13.00</td>
</tr>
<tr>
<td>V80</td>
<td>0.182</td>
<td>5.00</td>
<td>1.38</td>
<td>88.55</td>
<td>6.1</td>
<td>3.1</td>
<td>–</td>
<td>72</td>
<td>81.4</td>
<td>0.25</td>
</tr>
<tr>
<td>V19</td>
<td>0.260</td>
<td>6.60</td>
<td>1.42</td>
<td>94.58</td>
<td>4.8</td>
<td>2.7</td>
<td>–</td>
<td>61</td>
<td>81.4</td>
<td>10.25</td>
</tr>
<tr>
<td>A43</td>
<td>0.276</td>
<td>7.07</td>
<td>2.04</td>
<td>96.54</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>26.01</td>
</tr>
<tr>
<td>A51</td>
<td>0.293</td>
<td>7.10</td>
<td>2.04</td>
<td>96.95</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>17.52</td>
</tr>
<tr>
<td>A9</td>
<td>0.278</td>
<td>7.73</td>
<td>2.02</td>
<td>93.35</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>19.04</td>
</tr>
<tr>
<td>V30</td>
<td>0.293</td>
<td>6.23</td>
<td>1.32</td>
<td>91.97</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>22.75</td>
</tr>
<tr>
<td>V44</td>
<td>0.285</td>
<td>5.83</td>
<td>1.35</td>
<td>93.37</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>6.95</td>
</tr>
<tr>
<td>V23</td>
<td>0.120</td>
<td>4.73</td>
<td>1.79</td>
<td>61.26</td>
<td>3.5</td>
<td>1.5</td>
<td>–</td>
<td>28</td>
<td>81.1</td>
<td>2.09</td>
</tr>
<tr>
<td>M12</td>
<td>0.221</td>
<td>4.43</td>
<td>2.44</td>
<td>98.22</td>
<td>3.1</td>
<td>0.9</td>
<td>–</td>
<td>11</td>
<td>81.0</td>
<td>2.39</td>
</tr>
<tr>
<td>M23</td>
<td>0.246</td>
<td>4.73</td>
<td>2.15</td>
<td>94.83</td>
<td>3.1</td>
<td>0.9</td>
<td>–</td>
<td>11</td>
<td>85.4</td>
<td>7.22</td>
</tr>
<tr>
<td>V16*</td>
<td>0.245</td>
<td>4.60</td>
<td>2.06</td>
<td>94.31</td>
<td>5.0</td>
<td>2.8</td>
<td>3.3</td>
<td>64</td>
<td>78</td>
<td>–</td>
</tr>
<tr>
<td>M39*</td>
<td>0.202</td>
<td>5.90</td>
<td>1.99</td>
<td>96.55</td>
<td>4.8</td>
<td>2.6</td>
<td>3.1</td>
<td>58</td>
<td>72</td>
<td>–</td>
</tr>
<tr>
<td>M66*</td>
<td>0.247</td>
<td>6.53</td>
<td>1.53</td>
<td>84.21</td>
<td>5.0</td>
<td>2.6</td>
<td>3.0</td>
<td>58</td>
<td>69</td>
<td>–</td>
</tr>
<tr>
<td>M46*</td>
<td>0.235</td>
<td>5.77</td>
<td>2.24</td>
<td>96.16</td>
<td>4.2</td>
<td>2.1</td>
<td>2.5</td>
<td>44</td>
<td>56</td>
<td>–</td>
</tr>
<tr>
<td>M49*</td>
<td>0.253</td>
<td>4.80</td>
<td>2.44</td>
<td>95.21</td>
<td>3.0</td>
<td>1.7</td>
<td>2.4</td>
<td>33</td>
<td>53</td>
<td>–</td>
</tr>
<tr>
<td>M25*</td>
<td>0.279</td>
<td>7.57</td>
<td>1.04</td>
<td>96.28</td>
<td>3.0</td>
<td>1.7</td>
<td>2.4</td>
<td>33</td>
<td>53</td>
<td>–</td>
</tr>
<tr>
<td>FM23†</td>
<td>0.420</td>
<td>4.42</td>
<td>0.21</td>
<td>39.04</td>
<td>3.1</td>
<td>0.9</td>
<td>–</td>
<td>11</td>
<td>85.4</td>
<td>59.71</td>
</tr>
<tr>
<td>FA9†</td>
<td>0.496</td>
<td>4.40</td>
<td>0.50</td>
<td>39.01</td>
<td>5.0</td>
<td>2.6</td>
<td>–</td>
<td>58</td>
<td>81.3</td>
<td>55.90</td>
</tr>
</tbody>
</table>

*Wild S. cerevisiae flor strains with two alleles at the FLO11 locus.
†Flor strains derived from the laboratory strain BY4742 (this study).

Fig. 1. Mat formed on soft agar by A9, V80, V23 and M23 flor strains.
the *FLO11* locus. The results of the high resolution melting analysis performed on strains homozygous at the *FLO11* locus showed that, except for strain M23, alleles of the same length have the same melting temperature and that the melting temperature generally increases with the number of repeats (Table 3).

The length of the *FLO11* repeated sequences correlates with biofilm-forming ability

It has been reported that in the same genetic background, differences in the lengths of repeated sequences in the *FLO11* gene correlate with variations in the intensities of some *FLO11*-associated phenotypes (Fidalgo et al., 2008). To confirm this, we cloned the *FLO11* alleles from strains M23 and A9 into the BY4742 laboratory strain and analysed the *FLO11*-associated phenotypes of the FM23 and FA9 transformants obtained, respectively. For adhesion on plastic surfaces, FA9 showed adhesion of 0.50 ± 0.1 A_{570} units, and FM23 0.21 ± 0.08 units. The adherence shown by the wild-type BY4742 strain was 0.20 ± 0.02 A_{570} units, which was almost the same as that of FM23. For hydrophobicity, that of the wild-type BY4742 strain ($18.5 \pm 0.92\%$) was lower than those of FA9 ($39 \pm 0.9\%$) and FM23 ($39 \pm 0.3\%$). Also, BY4742 forms a small and smooth mat, while FM23 and FA9 exhibited larger mats with macroscopic structures. Finally, FA9 produced a biofilm of 0.496 mg and FM23 of 0.420 mg, whereas BY4742 did not form any detectable biofilm.

The same analysis regarding *FLO11* alleles and *FLO11*-dependent phenotypes was carried out considering different genetic backgrounds. To this end, Spearman’s correlation coefficients (ρ) were calculated by considering the length of *FLO11* repeated sequences and mat formation, adherence to plastic, biofilm-forming ability and hydrophobicity of the 14 flor wild strains that were homozygous at the *FLO11* locus. For mat formation, the calculated ρ was 0.423 ($P=0.063$). For adherence to plastic surfaces, the calculated ρ was -0.415 ($P=0.071$). The value of ρ for the correlation of *FLO11* repeated sequences versus hydrophobicity was 0.312 ($P=0.184$). In all of these cases $P>0.05$, indicating no significant linear correlation between the phenotypes tested and the length of the *FLO11* repeated sequences at the 95.0% confidence level.

In contrast, the value of ρ calculated considering biofilm-forming abilities of these strains was 0.713 ($P=0.004$). This indicated a strong and significant linear correlation between biofilm-forming ability and length of the *FLO11* repeated sequences at the 95.0% confidence level. This linear correlation was also assessed by displaying the data as a scatter plot (Fig. 5a). Giving this strong correlation, the possibility of predicting the weight of the biofilm that would be formed (response variable) on the basis of the length of the *FLO11* repeats (predictor variable) was...
verified by a simple regression model. The linear model that best fits the data is: biofilm formation (mg) = 0.16765 + 0.03812 × FLO11 repeat length (kb). In this model, the multiple R^2 value was 0.317 ($P=0.036$). In this model not all of the validity assumptions were satisfied, thus rendering the simple linear regression model proposed inappropriate.

FLO11 transcription level and promoter sequence explain biofilm-forming ability

Considering that biofilm formation may be influenced not only by the length of FLO11 repeats, but also by the expression levels of the gene, we analysed the transcription level of FLO11 and verified the possible correlation with the weight of the biofilm formed in the 14 flor wild strains homozygous at the FLO11 locus. While the value of ρ (0.581; $P=0.02$) indicated a significant correlation among FLO11 transcription levels and the weights of the biofilm formed, the scatter plot revealed a non-linear relationship among the variables (Fig. 5b). In particular, small variations in FLO11 transcription levels have a higher impact on the weight of the biofilm formed at the lower end of the scale, while variations above a certain value (around 10) do not have any effect on the phenotype. This suggests that a log-transformation of FLO11 transcription values is appropriate to estimate a multiple regression linear model. The multiple regression model that best fits the data is: biofilm formation (mg) = 0.088236 + 0.022397 × FLO11 repeat length (kb) + 0.031168 × log(FLO11 transcription level).

Fig. 3. SEM images of strains A9, M23 and V80. (a) Biofilm cells embedded in extracellular matrix; (b) cells on the bottom of the flask.
This model is highly significant as the multiple R^2 value was 0.751 ($P=0.0004$).

As the tested strains showed important differences in the induction of $FLO11$ in flor medium, we analysed $FLO11$ promoter sequences of strains showing high (A9), medium (M23), low (V23) and almost absent (V80) levels of $FLO11$ transcription in flor medium. The lengths of the promoter regions sequenced were 2845 bp in V80, 2708 bp in M23, 2814 bp in V23 and 2738 in A9. The sequences of these promoters were subjected to multiple alignments with that of the $FLO11$ gene of S288C, which showed substitutions from 3 to 5% of the nucleotides. The four promoters were analysed in particular for the presence/absence of a 111 bp deletion, described by Fidalgo et al. (2006), localized in the upstream repression sequence at -1400 to -1200 upstream of ATG (Rupp et al., 1999; Braus et al., 2003).

The comparison across A9, M23, V23, V80 and S288C showed this deletion in A9, M23 and V23, according to Fidalgo et al. (2006), but not in V80 and S288C. In particular, the deletion occurred between nucleotides 1695 and 1799 (104 bp) in A9, 1695 and 1832 (137 bp) in M23, and 1678 and 1816 (138 bp) in V23. Other differences were also observed: A9 and V80 showed two repetitions of the short CAAATTAA sequence described by Fidalgo et al. (2006). Only one of these short sequences was seen in M23 and none in V23.

DISCUSSION

In this study, we have shown that in a natural population of 20 flor strains of *S. cerevisiae*, the $FLO11$ gene is highly polymorphic, and that its allelic variability is mainly due to
the expansion and contraction of a central region containing different tandem repeats of a 36 bp consensus sequence. One interesting question is whether the generation and maintenance of these different alleles of the same gene offer wine yeasts an adaptive advantage in response to a particular environment, such as for must fermentation or biological ageing of wines.

We have further shown that in two transformants carrying two FLO11 alleles that contain 11 and 58 repeats, the transcription levels were not significantly different. In these transformants, as the gene length increased, so did the weight of the biofilm. The same results were obtained by Fidalgo et al. (2008), who showed the phenotypic effects of different alleles of FLO11 in flor/laboratory hybrids of S. cerevisiae. However, to conclude that the expansion and contraction of repeated sequences allow natural populations to rapidly adapt to a fluctuating environment, it is necessary to study the phenotypic effects of the different FLO11 alleles in their specific genetic backgrounds. Accordingly, we studied different FLO11-associated phenotypes in 20 S. cerevisiae flor strains carrying FLO11 alleles of different lengths. The strong and significant correlation seen only among the lengths of FLO11 alleles and the biofilm-forming abilities of the strains homozygous at the FLO11 locus, suggests that the length of FLO11 has a greater role in biofilm formation on liquid surfaces than on other FLO11-associated phenotypes in flor strains, as hypothesized also by Fidalgo et al. (2008). However, the low multiple R² value of the simple regression model tested, suggests that other factors should be included in a model able to predict biofilm-forming ability. We hypothesized that one of these factors is the transcription level of FLO11.

The multiple linear regression model that includes transcription level and the size of repeats of FLO11, is highly significant. Thus, the air–liquid biofilm-forming ability of flor strains is dependent not only on the number of repeated sequences but also on the transcriptional levels of FLO11.

In order to understand the reasons behind the differences in transcription level among the flor strains, we analysed the promoter sequences of the FLO11 alleles of strains A9, M23, V23 and V80. In the promoter of strain V80, the presence of the 111 bp sequence, localized in a well-characterized upstream repression sequence (Rupp et al., 1999; Braus et al., 2003), would explain why its FLO11 transcription is repressed in flor medium and why strain V80 formed very little biofilm. On the contrary, this deletion is present in the promoter of FLO11 in strains A9, M23 and V23, according to Fidalgo et al. (2006). Among the promoters analysed, we found two repeats of the short CAAATTAA sequence in A9 and V80. This sequence has been proposed for DNA intramolecular recombination and to be responsible for the evolutionary origin of the 111 bp deletion (Fidalgo et al., 2006). The presence of only one copy of this sequence in strain M23 and none in V23 suggests that two direct repeats of the nucleotide sequence CAAATTAA are not sufficient to explain the evolutionary origin of this 111 bp deletion in S. cerevisiae flor strains.

Some studies have shown that FLO11 expression is under epigenetic control as well as under genetic regulation (Verstrepen & Klis, 2006). Our results are consistent with the possibility that in the flor strains we have analysed here, epigenetic regulation has an important role in FLO11 transcription during biofilm formation. Indeed, the differences in FLO11 transcription levels among strains M23, V23 and A9 cannot be related solely to differences in their promoter sequences.

To our knowledge, this is the first study that proposes a multiple regression model that allows prediction of air–liquid biofilm-forming ability on the basis of transcription level and the length of the FLO11 allele in a natural population of S. cerevisiae flor strains. Our results are consistent with the hypothesis that the ability to form a biofilm is as complex as other cell–cell adhesion phenotypes and might implicate a complete rearrangement of chromosomal DNA (Budroni et al., 2005; Fidalgo et al., 2006).

Finally, we documented the presence of an extracellular matrix in which cells from an air–liquid biofilm are embedded. An extracellular matrix has been observed in S. cerevisiae fluffy colonies by Kuthan et al. (2003), and recently by Beauvais et al. (2009) who reported that flocculating cells of S. cerevisiae secrete an extracellular matrix consisting of a mixture of glucose and mannose polysaccharides. The composition of the extracellular matrix associated with the air–liquid biofilm, and the possible correlation between FLO11 expression and the amount of extracellular matrix, will be an intriguing puzzle for further investigations.

REFERENCES

Edited by: M. Schweizer