Characterization of the *Aspergillus fumigatus* phosphomannose isomerase Pmi1 and its impact on cell wall synthesis and morphogenesis

Wenxia Fang, Xiaoying Yu, Bin Wang, Hui Zhou, Haomiao Ouyang, Jia Ming and Cheng Jin

Correspondence
Cheng Jin
jinc@sun.im.ac.cn

Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China

Phosphomannose isomerase (PMI) is an enzyme catalysing the interconversion of mannose 6-phosphate (Man-6-P) and fructose 6-phosphate (Fru-6-P). The reaction catalysed by PMI is the first committed step in the synthesis of mannose-containing sugar chains and provides a link between glucose metabolism and mannosylation. In this study, the *pmi1* gene was identified to encode PMI in the human fungal pathogen *Aspergillus fumigatus*. Characterization of *A. fumigatus* Pmi1 expressed in *Escherichia coli* revealed that this PMI mainly catalysed the conversion of Fru-6-P to Man-6-P and that its binding affinity for Man-6-P was similar to that of yeast PMIs, but different to those of PMIs from bacteria or animals. Loss of *pmi1* was lethal unless Man was provided in the growth medium. However, a Δ*pmi1* mutant cell showed a significantly reduced growth rate at a high concentration of Man. Biochemical analysis revealed that both inadequate and replete Man led to an accumulation of intracellular Man-6-P and a reduction in the amount of α-glucan in the cell wall. Uncoupling of the link between energy production and glycosylation by deletion of the *pmi1* gene led to phenotypes such as defects in cell wall integrity, abnormal morphology and reduced conidiation. Our results reveal that PMI activity is essential for viability and plays a central regulatory role in both cell wall synthesis and energy production in *A. fumigatus*.

INTRODUCTION

Aspergillus fumigatus is the predominant mould pathogen of humans, causing fatal invasive aspergillosis among the immunocompromised population (Latgé, 1999, 2001; Krappmann, 2006). The crude mortality is 60–90 % and remains around 29–42 % even when treatment is given (Zmeili & Soubani, 2007). A deep understanding of *A. fumigatus* at the molecular level will help in the development of efficient drug therapies to treat invasive aspergillosis. Since the fungal cell wall has a variety of biological functions, such as maintaining cell shape and providing osmotic and physical protection against an adverse environment (Yoda et al., 2000; Agaphonov et al., 2001), it has been recognized for a long time as essential and as a focus for the discovery of unique, specific drug targets. The *A. fumigatus* cell wall mainly consists of a covalently connected polysaccharide skeleton interlaced and coated with glycoproteins and glycosylphosphatidylinositol (GPI) proteins, which contain N- and O-glycans derived primarily from the process of glycosylation (Latgé, 2007). Although these glycoproteins are involved in morphogenesis and cell wall organization (Mouyna et al., 2000, 2005; Bruneau et al., 2001; Chabane et al., 2006; Romano et al., 2006; De Groot et al., 2005; Li et al., 2007), it is poorly understood how glycosylation affects the cell wall organization.

Mannose (Man) is a major component of galactomannan and glycoprotein. Man activation first requires conversion to mannose 6-phosphate (Man-6-P), which occurs by one of two routes: direct phosphorylation of Man by hexokinase or interconversion from fructose 6-phosphate (Fru-6-P) via phosphomannose isomerase (PMI), the latter linking glycolysis to protein glycosylation. Man-6-P is converted to mannose 1-phosphate (Man-1-P) and then to GDP-mannose (GDP-Man), the central activated Man donor in glycosylation reactions. The interconversion of Man-6-P and Fru-6-P catalysed by PMI is the first committed step in the synthesis of Man-containing sugar chains and provides a link between glucose metabolism and mannosylation. In humans, PMI deficiency is the cause of carbohydrate-
deficient glycoprotein syndrome type lb (CDG-Ib, OMIM 602579), but the clinical symptoms and aberrant glycosylation can be corrected with dietary Man supplements (Davis et al., 2002). Although Man is beneficial for CDG-Ib patients, it is toxic to honeybees and becomes teratogenic to mid-stage rat embryos when given in high concentrations (Sols et al., 1960; de la Fuente et al., 1986; Freinkel et al., 1984; Moore et al., 1987; Buchanan et al., 1985; DeRossi et al., 2006). The toxicity appears to stem from an accumulation of Man-6-P which cannot efficiently enter glycolysis, instead becoming trapped in a cycle of dephosphorylation and rephosphorylation resulting in depletion of intracellular ATP.

To date, genes encoding PMIs have been isolated from several fungal species, including Saccharomyces cerevisiae, Candida albicans, Aspergillus nidulans and Cryptococcus neoformans (Wells et al., 1993; Coulin et al., 1993; Smith & Payton, 1994; Wills et al., 2001; Smith et al., 1992). The S. cerevisiae PMI is encoded by the PMI40 gene (Smith et al., 1992). Loss of pmi40 is lethal unless Man is provided in the growth medium (Payton et al., 1991). However, the pmi mutant cells show a significantly reduced growth rate at a high concentration of Man. Biochemical and genome-wide analysis reveals that excess Man leads to an accumulation of intracellular Man-6-P, which mainly inhibits the activity of intracellular ATP. The aforementioned reports imply important roles for GDP-Man biosynthesis in fungi, insects and mammals; As PMI has been recognized as an antifungal drug target (Proudfoot et al., 2006; Buchanan et al., 1985; DeRossi et al., 1986; Freinkel et al., 1987). The toxicity appears to stem from an accumulation of Man-6-P which cannot efficiently enter glycolysis, instead becoming trapped in a cycle of dephosphorylation and rephosphorylation resulting in depletion of intracellular ATP.

Molecular cloning of the A. fumigatus pmi1 gene. The pmi1 gene was identified in a search of the A. fumigatus genome database (http://www.tigr.org/tdb/ekl1/afsl1/), using a BLAST program to search for sequences corresponding to the conserved amino acid sequence of Can. albicans PMI1 that are homologous between A. nidulans, S. cerevisiae and Cry. neoformans. A 1637 bp genomic DNA fragment was found to contain the entire ORF. Based on the nucleotide sequence, the forward primer P1 (5’-ATGCTCAGTACCACTATGCACGAC-3’) and the reverse primer P2 (5’-CTAGTTTCAATGCCCTCTGAC-3’) were designed for cloning the cDNA of the A. fumigatus pmi1 gene by PCR. The PCR products were subcloned into the pGEM-T easy vector (Promega) to obtain T-manA.

Expression of the pmi1 gene in E. coli. The cDNA of the A. fumigatus pmi1 gene was amplified from T-manA with primers P3 (5’-GGTGTCATGCGCAGTACCACTATGCACGAC-3’) and P4 (5’-ACCGCTGTCGATCTGCCTTCG-3’). The PCR product was subcloned into pPET30x (Novagen). The resulting recombinant plasmid was designated pET30-PMI. The recombinant E. coli BL21(DE3) strain (Novagen) harbouring pET30-PMI was grown in 5 ml Luria–Bertani (LB) medium containing 50 μg kanamycin ml⁻¹ at 37 °C overnight. A miUllitre of cell culture was inoculated into 100 ml LB containing 50 μg kanamycin ml⁻¹, and incubated at 37 °C. When the OD₅₆₂ value of the cell culture reached 0.6, the recombinant protein was induced by the addition of IPTG (Sigma-Aldrich) to a final concentration of 0.4 mM, followed by incubation at 20 °C for 8 h. The cells were harvested by centrifugation and resuspended in 50 ml 1× binding buffer (0.02 M sodium phosphate, 0.5 M NaCl, 80 mM imidazole, pH 8.0). After sonication, the cell lysate was collected by centrifugation (17 500 g for 30 min at 4 °C), filtered through a 0.45 μm membrane, and run on a HiTrap chelating HP column (Amersham Pharmacia Biotech). After washing with 20 column-volumes of binding buffer, the recombinant protein was eluted with a gradient of imidazole (80–500 mM) and dialysed against 50 mM Tris buffer, pH 7.6. The purity of the recombinant protein was judged by SDS-PAGE. The protein concentration was determined by the Bradford assay (Bradford, 1976).

Activity assay. PMI activity was assayed in the reverse direction by the method described by Stein (1950) using a modified assay mixture. A 0.5 ml reaction mixture contained 50 mM Tris/HCl (pH 7.6), 1 mM EDTA, 2.5 mM ZnCl₂, 0.5 mM Man-6-P, 0.5 mM NADP⁺, 1 unit phosphoglucose isomerase, 1 unit glucose 6-phosphate (Glc-6-P) dehydrogenase and 4 ng purified recombinant enzyme. The rate of NADP⁺ reduction was monitored at 340 nm at 37 °C. One unit of enzyme activity is defined as 1 μmol NADP⁺ reduced per minute under the above-specified conditions.

Kinetics and activity assay using HPAEC-PAD. For measurement of the reversible isomerization between Fru-6-P and Man-6-P, the
product of the enzyme reaction was accurately analysed with a high-performance anion-exchange chromatography pulsed amperometric detector (HPAEC-PAD, Dionex). Ten nanograms of purified recombinant Pmi1 was incubated with 0.297–11.88 mM Fructose-6-P (Roche) or 0.25–12.5 mM Man-6-P, at 37 °C for 5 min. The reaction was terminated by heating to 100 °C for 15 min. Upon addition of 2 vol. ethanol, proteins in the reaction mixture were precipitated and removed by centrifugation. The product in the supernatant, Man-6-P or Fructose-6-P, was analysed by a CarboPac PA-1 anion-exchange column (Dionex). The products were eluted with 100 mM NaOH and 200 mM sodium acetate at a flow rate of 1.0 ml min⁻¹.

Generation of polyclonal antibodies against rPmi1 and Western blot analysis. Purified recombinant Pmi1 was lyophilized, dissolved in PBS and injected subcutaneously into a mouse four times in 45 days. The collected serum was tested by Western blot analysis. Proteins in the cell lysate were run on a 12 % SDS-PAGE gel and transferred to PVDF (Bio-Rad) at 300 mA for 1.5 h. The anti-rPmi1 mouse serum was diluted 1:500. Protein was detected with the enhanced chemiluminescence substrate (Pierce Biotechnology) and autoradiography film.

Construction of the pmi1 null mutant strain. A deletion construct was designed to replace the entire coding region of *A. fumigatus* pmi1 with a pyrG cassette by homologous recombination (d’Enfert, 1996). PCR primers were designed to amplify a 1.6 kb upstream flanking region of the *pmi1* gene before the ATG start codon (5' primer pair: 5'-GGTTGTTGAC GGGCCGCTGATCATTTCTCCTGTTT- TTC-3' and 5'-ACCAGGGATATCCACAGCAAAACCTACCCGACTTGAG-3'), the Sfu, NotI and EcoRI restriction sites are underlined), and a 1.6 kb downstream flanking region of the *pmi1* gene after the stop codon (3' primer pair: 5'-CCGGATTTAG CACATCCATGACACTACATTTGCGCC-3' and 5'-GACACTCTAGAATCCACACAAACCCTTACAGCCGGC-3'), the EcoRI, EcoRV and XbaI restriction sites are underlined). These PCR fragments were cloned into the relevant sites of pBlueScript II SK. The *pyrG*-blaster cassette (8.6 kb), released by the digestion of pCDA14 (d’Enfert, 1996) with *HpaI* and *NotI*, was inserted into the *pmi1* gene before the ATG start codon (5'-CAATTCCGGTGTTGGTAACACG-3') and 5'-GGTG-3') and resulted in the *pmi1* mutant with the autonomously replicating shuttle vector pPTR II. PCR was performed to amplify the entire *pmi1* gene and flanking region (from -279 to +2443) using primers P9 (5'-GGGGGTACCATGACGGTGGCATGCACCAAAT-3') and P10 (5'-GGGGATCCAGGGCAGATGGCGGATGTTGGAAC-3') to yield pPTRII-pmi1. The *pmi1* mutant was transformed with pPTRII-pmi1 and transformants were selected on CD medium supplemented with 0.1 mg pyrithiamine 1⁻¹ and 0.8 M NaCl. Three transformants were confirmed to carry pPTRII-pmi1 by PCR analysis using primers P11 (5'-CAATTGATACGGGATCCCAT-3') and P12 (5'-CTCTTTGCATCTTTTGTGATT-3') to amplify the *ptrA* gene (Kubodera et al., 2002).

Chemical analysis of the cell wall. Conidia were inoculated into 100 ml complete liquid medium at a concentration of 10⁵ conidia ml⁻¹ and incubated at 37 °C with shaking (200 r.p.m.) for 24 h. The mycelium was harvested, washed with deionized water and frozen at −80 °C. To isolate cell walls, 10 mg of dry mycelial pad was added to a tube containing 50 mM NH₄HCO₃, at pH 8.0 and 0.2 g of glass beads (1 mm diameter). The mycelium was disrupted by successively shaking the tube with a Disruptor Genie (Scientific Industries) five times for 5 min each time. The cell homogenates were then centrifuged and washed several times. Three independent samples of lyophilized mycelial pad were used for cell wall analysis, and the experiment was repeated twice.

The cell walls were boiled for 5 min in 1 ml 2 % SDS in 50 mM Tris/HCl buffer supplemented with 100 mM EDTA, 40 mM β-mercaptoethanol and 1 mM PMSF to remove noncovalently bound proteins and membrane fragments. Cell walls were collected by centrifugation, extracted for a second time and washed three times with deionized water. After washing, cell walls were treated with 1 M KOH and incubated at 70 °C for 30 min under N₂ to release glycoprotein and α-glucan. The alkali-soluble materials were acidified with acetic acid to pH 5.0 and the precipitated α-glucans were collected by centrifugation and washed with water. The glycoprotein in the supernatant was precipitated with 2 vol. ethanol, washed twice with 64 % ethanol and dissolved in distilled water. The glycoprotein concentration was determined using the Bradford assay (Bradford, 1976). Monosaccharides were liberated from glycoprotein by acid hydrolysis (6 M HCl at 100 °C for 2 h) and separated on a CarboPac PA1 anion-exchange column, equipped with an Amino Trap guard column. Elution was performed at room temperature at a flow rate of 1 ml min⁻¹ with 18 mM NaOH.

The alkali-insoluble materials were washed with water several times and digested in 6 M HCl at 100 °C for 2 h to release monosaccharides from β-glucan and chitin. After digestion, HCl was evaporated and the residues were dissolved in 0.2 ml distilled water (Eloza et al., 1985; Hearn & Sietsma, 1994; Schoffelmeer et al., 1999). The amounts of α-glucan and β-glucan present were estimated by measuring released glucose using the phenol/sulfuric acid method (Dubois et al., 1956). Chitin content was determined by measuring the N-acetylglucosamine released after digestion using the method described by Lee et al. (2005).

Analysis of intracellular metabolites. Conidia were inoculated into 100 ml liquid medium at a concentration of 10⁵ conidia ml⁻¹ and incubated at 37 °C with shaking (200 r.p.m.) for 24 h. The mycelium was harvested and quenched immediately in liquid nitrogen. The frozen suspension was lyophilized at −80 °C.

Intracellular sugars and sugar phosphates were extracted with chloroform/methanol buffer (Ruijter & Visser, 1996) with some modifications. Fifty milligrams of dry mycelial pad was resuspended in 0.5 ml cold chloroform (−40 °C), followed by 0.25 ml cold methanol (−40 °C). The sample was then incubated for 30 min to allow permeabilization of cells and denaturation of enzymes. Subsequently, 0.2 ml ice-cold buffer (3 mM HEPES, 3 mM EDTA, pH 7.0) was added to the mixture, followed by vigorous mixing and shaking at 200 r.p.m. for 30 min at <0 °C. The water/methanol and chloroform phases were separated by centrifugation at 5000 g for 5 min at <0 °C. The upper aqueous phase containing the polar metabolites was taken off and transferred to another tube. A second extraction was initiated by adding 0.2 ml methanol (−40 °C) and 0.2 ml ice-cold buffer to the chloroform phase, followed by vigorous mixing. After centrifugation at 5000 g for 5 min at less than 0 °C, the...
upper aqueous phase was collected and incorporated with the previous extract and the solvents were removed by lyophilization.

Phosphosugars were analysed on a CarboPac PA-1 column (4 x 250 mm preceded by a PA-1 guard column) with HPAEC-PAD. Ten microlitres of metabolite extraction was injected onto the column and eluted with sodium acetate (in 5 mM NaOH). The metabolism gradient was increased from 0.1 to 0.2 M between 0 and 20 min, to 0.5 M between 20 and 30 min, to 0.8 M between 30 and 40 min, and then to 0.99 M between 40 and 45 min. The flow rate of the mobile phase was set at 1 ml min⁻¹. Metabolites were quantified by comparison of calibration curves prepared with known quantities of Glc-6-P, Fru-6-P, fructose 1,6-bisphosphate (Fru-1,6-P₂), Man-6-P, Man-1-P or GDP-Man standards.

RESULTS

Expression and characterization of the pmi1 gene

The putative gene encoding PMI was identified by a tBLASTn search of the A. fumigatus genome database with the Can. albicans PMI1 gene (X82024). In the latest release of the A. fumigatus genome database, this gene is annotated as pmi1 (AFUA_1G13280) (http://www.tigr.org/tdb/e2k1/afu1/). The pmi1 gene is 1637 bp in length and contains four introns and five exons. A 1374 bp region of the pmi1 cDNA (AY700212) encodes a protein of 457 aa (AAU06585) that shares 81%, 47%, 45%, 41% and 39% identity with those from A. nidulans, Can. albicans, S. cerevisiae, Cry. neoformans, Homo sapiens and Can. neoformans, respectively.

As described in Methods, a 55 kDa recombinant PMI protein (rPmi1) was expressed and purified to homogeneity (data not shown). The purified rPmi1 exhibited a specific activity of 149.71 U mg⁻¹ toward Man-6-P. The highest activity was detected in a buffer of pH 8.0 at 40 °C. Its activity was completely inhibited by the addition of 5 mM EDTA and reactivated by cations in the following order: Mn²⁺ > Ca²⁺ > Zn²⁺ > Co²⁺ > Ni²⁺ > Mg²⁺. Complete recovery was observed in the presence of 2.5 mM MnCl₂. Incubation of the rPmi1 at 40 °C or 45 °C for 60 min caused a 25% or 70% loss of activity, respectively. When incubated at 50 °C for 5 min, the rPmi1 only retained 36% activity.

Using the method described by Slein (1950), the Kₚ of the rPmi1 for Man-6-P was determined to be 1 mM, which is similar to the Kₚ of the PMI proteins from Can. albicans (1.24 mM) or S. cerevisiae (0.65 mM), higher than those from pig (0.17 mM) and human (0.25 mM), and lower than those from Xanthomonas campestris (2 mM), Pseudomonas aeruginosa (3.03 mM) and Burkhoderia cepacia (9.01 mM) (Proudfoot et al., 1994a; b; Wells et al., 1993; Coulin et al., 1993; Darzins et al., 1985; Papoutsopoulou & Kyriakidis, 1997; Shinabarger et al., 1991; Gracy & Noltmann, 1968; Sousa et al., 2007), suggesting that binding affinity of the A. fumigatus Pmi1 is similar to that of PMI proteins from Can. albicans or S. cerevisiae but different from those from bacteria or animals.

To accurately assess the conversion rate between Man-6-P and Fru-6-P when Man-6-P or Fru-6-P was used as a substrate separately. As a result, the Kₘ values for Man-6-P and Fru-6-P were determined as 2.59 mM and 1.38 mM, respectively. The Kₘ values for Man-6-P and Fru-6-P were calculated as 9.7 and 64.9 mM⁻¹ min⁻¹, respectively. These results demonstrate that A. fumigatus Pmi1 mainly catalyses the conversion of Fru-6-P to Man-6-P.

Deletion of the pmi1 gene in A. fumigatus

To investigate the impact of the PMI activity in A. fumigatus, a null mutant was constructed by replacing a single copy of pmi1 with pyrG. We hypothesized that this gene disruption would be lethal to the A. fumigatus cells if it was not rescued by the addition of exogenous Man to the growth medium. Thus, the transformants were grown on medium supplemented with D-Man. The Man auxotroph transformants were first screened by PCR amplification of the pmi1 gene. Five transformants were identified as candidate mutant strains. Southern blotting analysis of BamHI-digested genomic DNA of the mutants confirmed only one transformant to be the correct mutant, in which the wild-type 2.2 kb BamHI fragment was converted into a 5.8 kb BamHI fragment (Fig. 1a). Western blotting confirmed that the Pmi1 protein was not expressed in this mutant (Fig. 1b). No PMI activity was detected in the Δpmi1 mutant. These results clearly showed that the pmi1 gene was completely deleted.

To complement the pmi1 gene in the Δpmi1 mutant, the recombinant plasmid pPTR-pmi1 was constructed by the insertion of the pmi1 gene into the autonomously replicating vector pPTR II and this was transformed into the Δpmi1 mutant. The transformants were screened on CD medium containing 0.1 μg pyrithiamine ml⁻¹ and three transformants were confirmed to carry pPTR-pmi1 by PCR (data not shown). An activity assay revealed that PMI activity of the complemented strain grown in CD containing 0.1 μg pyrithiamine ml⁻¹ was 66% (0.11±0.01 μg ml⁻¹) of that in the wild-type (0.17±0.01 μg ml⁻¹) grown in CD medium, while no PMI activity was detected in the Δpmi1 mutant in CD supplemented with 3 mM Man. Following incubation in CM medium, the PMI activity detected in the complemented strain was only 10% of that in the wild-type and no activity was detected in the mutant. The complemented strain grown on solid CM only showed a slight growth retardation compared to the wild-type, but its colony morphology was similar to that of the mutant grown on CM supplemented with 3 mM Man (Fig. 2a). These results indicate that pPTR-pmi1 can apparently restore the growth phenotype of the mutant; however, it is not stably maintained without the addition of pyrithiamine in the medium. On the other hand, it should be pointed out that although the complemented strain grew well on CD containing 0.1 μg pyrithiamine ml⁻¹, the wild-type strain was severely inhibited on the same medium, suggesting a toxicity of pyrithiamine to the wild-type A. fumigatus. We
therefore cultivated the complemented strain using CM or CD containing pyrithiamine in this study.

Growth phenotypes of the Δpmi1 mutant

The wild-type *A. fumigatus* strain could use Man alone as a carbon source; however, the mutant was not able to grow on medium with Man as the sole carbon source (Fig. 2b). The growth of the mutant required both Glc and Man. When the mutant strain was exposed to increasing concentrations of Man (0.5, 3, 5, 10 or 25 mM), optimal growth was seen at 3 mM Man. The mutant showed a reduction in growth at concentrations higher than 3 mM, when compared to the wild-type grown on identical media. A slight reduction was seen at 5 mM, a more severe reduction at 0.5 mM and 10 mM, and complete retardation at 25 mM (Fig. 2c). These results demonstrate an essential role of Man for *A. fumigatus*; however, excess Man appears to cause toxicity in the Δpmi1 mutant. Furthermore, although its growth rate was completely restored at 3 mM Man, the mutant formed smooth colonies, in contrast to the wild-type, suggesting a defect in conidia formation. Conidia counting revealed that the mean ± SD conidia count of the Δpmi1 mutant at 3 mM Man was 9 ± 1.1 × 10⁷, which was 41% of that of the wild-type strain (22 ± 2.7 × 10⁷), and no conidia were produced by the Δpmi1 mutant grown at 0.5 or 10 mM Man.

Cell wall defect of the Δpmi1 mutant

To evaluate the impact of the initial concentration of Man on the *A. fumigatus* strain lacking PMI, we analysed the phenotypes of the Δpmi1 mutant grown under both Man-starvation (0.5 mM Man) and Man-repletion (3 mM Man) conditions. We first tested the sensitivity of *A. fumigatus* strains to various chemical reagents. As compared with the wild-type, the Δpmi1 mutant showed an increased sensitivity to Congo red, Calcofluor white and SDS under both Man-repletion and Man-starvation conditions (Fig. 3a). These results reveal that exogenous Man can not complement the defect in cell wall integrity of the mutant. The Δpmi1 mutant did not show any temperature-sensitive phenotype (Fig. 3b).

We further analysed the mycelial cell wall contents of the mutant. As summarized in Table 1, when the mutant was grown at 37 °C under Man-starvation conditions, the α-glucan content decreased by 33% as compared with the wild-type, while the mannoprotein and chitin content increased by 42% and 43%, respectively. Under Man-repletion conditions, the α-glucan content decreased by 20%, whereas the mannoprotein and β-glucan content increased by 51% and 22%, respectively. Although an increase in mannoprotein was observed under both conditions, the Man residues released from mannoproteins decreased by 43% under Man-starvation conditions and increased by 97% under Man-repletion conditions, as compared with those released from the wild-type mannoproteins. Similarly, the amount of GlcNAc and Gal residues released from the mutant mannoproteins was decreased under Man-starvation conditions and increased under Man-repletion conditions. The wild-type was also found to be sensitive to the high Man concentration; although the content of mannoprotein remained constant, the GlcNAc, Gal and Man residues released from mannoproteins were significantly increased at the higher Man concentration,
and a decrease (21%) of α-glucan in the cell wall was also observed. These results suggest that PMI is a key enzyme in the regulation of cell wall synthesis in *A. fumigatus*. Although an inappropriate extracellular Man concentration leads to an under- or overglycosylation of mannoproteins, the increase of these proteins might compensate for the decrease of α-glucan synthesis. It should be pointed out that, in addition to the increase of mannoproteins, it appeared that the mechanisms triggered to compensate for the loss of α-glucan in the mutant were different from those in the wild-type and dose-dependent on Man; Man-starvation led to an increase of chitin, and Man-repletion led to an increase of β-glucan.

Morphogenesis of the Δpmi1 mutant

To study the effect of PMI activity on hyphal development in *A. fumigatus*, the mutant conidia were allowed to adhere to glass coverslips during incubation in medium with or without Man at 37 °C. Coverslips with adhering germings were examined under a microscope. As shown in Fig. 4, when conidia were incubated in CM, both wild-type and Δpmi1 conidia appeared to begin the normal germination process by swelling slightly. After the first one or two rounds of mitotic division, the wild-type conidia began to develop the first germ tubes (6 h). The second germ tubes and the first septation occurred after four rounds of mitosis (8 h). In contrast to the wild-type, the mutant conidia ceased to grow after two rounds of mitotic division and became enlarged, misshapen and vacuolated, with irregular distribution of chitin in their cell walls. When the mutant conidia were incubated under Man-starvation conditions, 41% (7 h) and 66% (8 h) of the mutant conidia germinated the second germ tube at a random angle after the third mitotic division. After four rounds of mitotic division.
division, some basal cells were ballooned, with a thickened chitin-enriched cell wall. In particular, a prolonged incubation up to 12 h led to ballooned hyphal tips and some ballooned basal cells in the mutant (Fig. 5). Propidium iodide staining revealed that these ballooned cells were dead (Fig. 5b). Under Man-repletion conditions, 51 % of the mutant conidia germinated the second germ tube at a random angle after the third mitotic division and 36 % of the mutant conidia germinated the third germ tube (Fig. 4, Table 2). In addition, an increase in mitotic division was observed in the mutant. After 8 h incubation, 4–5 rounds of mitotic division occurred in 76 % of the mutant conidia, while only 3–4 rounds of mitotic division were seen in 72 % of the wild-type conidia, suggesting an alteration of the cell cycle in the mutant. Although the growth rate of the Δpmi1 mutant cells could be completely restored by the addition of 3 mM Man and partially restored by the addition of 0.5 mM Man, it was apparent that morphogenesis of the Δpmi1 mutant was abnormal under both conditions, indicating an essential role of the pmi1 gene in growth and morphogenesis of A. fumigatus.

Table 1. Chemical analysis of the Δpmi1 mutant cell wall

Conidia were inoculated into 100 ml medium at a concentration of 10⁶ conidia ml⁻¹, and incubated at 37 °C with shaking (200 r.p.m.) for 24 h. The mycelium was then harvested for isolating cell walls. Three aliquots of 10 mg lyophilized cell walls were used as independent samples for cell wall analysis, and the experiment was repeated twice. The values shown are µg cell wall component per 10 mg dry cell walls (±SD).

<table>
<thead>
<tr>
<th>Culture condition</th>
<th>Strain</th>
<th>Alkali soluble</th>
<th>Alkali insoluble</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mannoprotein</td>
<td>α-Glucan (µg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein (µg)</td>
<td>GlcNAc (µg)</td>
</tr>
<tr>
<td>0.5 mM Man</td>
<td>YJ-407</td>
<td>57 ± 5</td>
<td>0.43 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Δpmi1</td>
<td>81 ± 8</td>
<td>0.35 ± 0.03</td>
</tr>
<tr>
<td>3 mM Man</td>
<td>YJ-407</td>
<td>59 ± 5</td>
<td>0.36 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Δpmi1</td>
<td>89 ± 9</td>
<td>0.73 ± 0.06</td>
</tr>
</tbody>
</table>
Fig. 4. Germination and septation of the Δpmi1 mutant. Freshly harvested conidia (10⁷) were poured into a Petri dish containing glass coverslips, and incubated in 10 ml medium at 37 °C for the time indicated. The coverslips with adherent germings were removed and fixed in 3.7 % formaldehyde in PBS for 30 min. Coverslips were then washed with PBS, incubated for 20 min with 1 μg 4',6-diamidino-2-phenylindole (DAPI) ml⁻¹ (Sigma), washed with PBS, and then incubated for 10 min with a 10 μg ml⁻¹ solution of fluorescent brightener 28 (Sigma), washed again, and germings were photographed using a fluorescence microscope (Carl Zeiss). Typical photographs are shown. Bar, 10 μm.

Fig. 5. Germination of the Δpmi1 mutants under Man-starvation conditions at 37 °C for 12 h. Coverslips with adhering germings were removed, fixed and washed with PBS three times, incubated for 5 min with 50 μg propidium iodide ml⁻¹ (Molecular Probes), washed again, and germings were photographed using a differential interference contrast (DIC) microscope (a) or a fluorescence microscope (b) (Carl Zeiss). The mycelium was stained with Calcofluor white and DAPI and examined under a fluorescence microscope (c, d). Representative photographs are shown. Bars, 20 μm (a, b) or 10 μm (c, d).
Table 2. Statistics of germination of the Δpmi1 mutant

Coverslips with adhering germ tubes were removed from incubation in 10 ml medium at 37 °C and the numbers of germ tubes per conidium were counted under a microscope. Three independent experiments were carried out, with 100 conidia counted in each.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Wild-type</th>
<th>Δpmi1 (Man starvation)</th>
<th>Δpmi1 (Man repletion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germ tubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ± 1</td>
<td>0 ± 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ± 0</td>
<td>1 ± 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 ± 0</td>
<td>2 ± 0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Intracellular metabolites of the Δpmi1 mutant

To monitor the sugar metabolism in the Δpmi1 mutant, we analysed intracellular sugar phosphates under both Man-starvation and Man-repletion conditions (Table 3). After 24 h cultivation at 37 °C, Man-starvation led to a twofold increase in Man-6-P as compared with the wild-type. However, this increase of Man-6-P was not sufficient to drive GDP-Man synthesis. Indeed, significant decreases in Glc-6-P, Fru-6-P, Man-1-P and GDP-Man were observed in the mutant. Thus, it is reasonable to conclude that the decrease of GDP-Man was due to the insufficient supply of Man and extremely low concentration of Fru-6-P, which forced the conversation of Man-6-P into Fru-6-P instead of GDP-Man. In addition, Fru-1,6-P was significantly decreased in the mutant. Considering that Fru-1,6-P is the precursor of UDP-Glc, a substrate for glucan synthesis. Therefore, the decrease in x-glucan in the cell wall of the mutant cultivated under both Man-starvation and Man-repletion conditions can be explained by the decrease in Glc-6-P.

Moreover, the sugar phosphates in the wild-type A. fumigatus grown under Man-repletion were similar to those in this strain grown under Man-starvation, which is consistent with tolerance of the wild-type to high concentrations of Man. Indeed, we found that the wild-type grew well on CM supplemented with a high concentration of Man, up to 300 mM, or on medium with 1110 mM Man as the sole carbon source (data not shown).

Table 3. Intracellular sugar phosphates in the Δpmi1 mutant

Conidia were inoculated into 100 ml medium at a concentration of 10⁶ conidia ml⁻¹, and incubated at 37 °C with shaking (200 r.p.m.) for 24 h. The mycelium was then harvested for sugar phosphate extraction. Three aliquots of 50 mg lyophilized mycelia were used as independent samples for sugar phosphate analysis, and the experiment was repeated twice. The values shown are nmol sugar phosphate per 50 mg dry mycelium (±sd).

<table>
<thead>
<tr>
<th>Culture condition</th>
<th>Strain</th>
<th>Glc-6-P (nmol)</th>
<th>Fru-6-P (nmol)</th>
<th>Fru-1,6-P (nmol)</th>
<th>Man-6-P (nmol)</th>
<th>Man-1-P (nmol)</th>
<th>GDP-Man (nmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mM Man</td>
<td>YJ-407</td>
<td>46 ± 3</td>
<td>25 ± 5</td>
<td>95 ± 15</td>
<td>47 ± 6</td>
<td>64 ± 11</td>
<td>13 ± 2</td>
</tr>
<tr>
<td></td>
<td>Δpmi1</td>
<td>29 ± 2</td>
<td>6 ± 1</td>
<td>46 ± 5</td>
<td>99 ± 18</td>
<td>10 ± 1</td>
<td>1 ± 0.2</td>
</tr>
<tr>
<td>3 mM Man</td>
<td>YJ-407</td>
<td>73 ± 11</td>
<td>24 ± 5</td>
<td>89 ± 8</td>
<td>56 ± 14</td>
<td>75 ± 16</td>
<td>13 ± 2</td>
</tr>
<tr>
<td></td>
<td>Δpmi1</td>
<td>17 ± 3</td>
<td>23 ± 3</td>
<td>30 ± 4</td>
<td>1151 ± 111</td>
<td>135 ± 18</td>
<td>15 ± 2</td>
</tr>
</tbody>
</table>
et al., 2000; Agaphonov et al., 2001). The A. fumigatus cell wall comprises four major components: α-glucan, β-glucan, chitin and mannoprotein. Although the molecular structure of the A. fumigatus cell wall has been studied in detail (Fontaine et al., 2000; Latgé et al., 2005; Upadhyay & Shaw, 2006), very little work has been undertaken to identify the biochemical pathways involved in biosynthesis of cell wall polysaccharides and mannoprotein. We hypothesized that the GDP-mannose biosynthesis pathway in this filamentous fungus is linked to cell wall biosynthesis and is biochemically similar to that found in S. cerevisiae, Can. albicans and A. nidulans.

In our study, the pmil gene encoding PMI was identified in A. fumigatus and we expressed this gene in E. coli. The recombinant Pmil protein was shown to be a member of the type I PMIs and required bivalent metals for its activity; however, Mn\(^{2+}\) was required instead of the Zn\(^{2+}\) required by PMIs from other sources (Proudfoot et al., 1994b; Roux et al., 2007). Another interesting finding was that the K\(_m\) value of the A. fumigatus PMI for Man-6-P was close to that of the PMIs from Can. albicans and S. cerevisiae but different from that of the PMIs from bacteria or mammals, indicating a different substrate-binding affinity. Computer modelling of the human PMI has putatively identified several amino acid residues as zinc-binding (Gln\(^{110}\), His\(^{112}\), Glu\(^{135}\) and His\(^{292}\)) and substrate-binding sites (Arg\(^{295}\), Lys\(^{301}\), Ser\(^{108}\) and Tyr\(^{278}\) for Man-6-P) (Xiao et al., 2006).

However, alignment of the A. fumigatus PMI with human PMI reveals that metal-binding (Gln\(^{108}\), His\(^{110}\), Glu\(^{135}\) and His\(^{292}\)) and substrate-binding sites (Arg\(^{311}\), Lys\(^{317}\), Ser\(^{106}\) and Tyr\(^{294}\)) are conserved in the A. fumigatus PMI. It is not understood why the ApPmii exhibits a different binding affinity from the human PMI. It is also not clear whether Mn\(^{2+}\) makes a contribution to this difference. In addition, the K\(_m\) and V\(_{max}\) values of the A. fumigatus PMI were also determined in both directions. Surprisingly, the catalytic efficiency (K\(_{cat}/K\(_{m}\)) for Fructose-6-P was 6.5 times that for Man-6-P, indicating that the conversion from Fructose-6-P to Man-6-P was more efficient in A. fumigatus.

PMI allows the essential interconversion of the sugars Man-6-P and Fructose-6-P and provides a link into the GDP-mannose biosynthesis pathway and the glucose metabolism pathway, respectively. PMI mutants in other species have typically shown secretion defects and abnormal cell morphologies, such as clumping, cell wall ‘ballooning’ and an inability to separate from the mother cell (Payton et al., 1991; Smith et al., 1995; Wills et al., 2001). These defects were completely restored in some species by the addition of exogenous Man and Glc to the growth medium (Payton et al., 1991), which suggests that the utilization of exogenous Man by the cell can be accomplished without the involvement of the PMI enzyme. However, high Man concentration also has a toxic effect on growth in yeast lacking the homologue of PMI (Pitkänen et al., 2004), as well as in honeybees with a non-functional PMI (de la Fuente et al., 1986), which is called ‘honeybee effect’ and defined as a depletion of intracellular ATP through a futile cycle of Man-6-P de- and rephosphorylation (de la Fuente & Hernanz, 1988).

In our study, the addition of Glc and Man could rescue the mycelial growth of the Δpmi1 mutant but the conidiation defect that occurred in the absence of PMI could not be restored. This observation suggests that, although mannose is essential for survival of A. fumigatus, the expression of PMI activity is also needed for complete restoration of wild-type morphogenesis, such as conidia formation. Our observations demonstrate that in A. fumigatus exogenous Man is not handled in the same way as interconverted Man and that uptake of exogenous Man is inefficient.

We further assessed the impact of the PMI enzyme on cell wall synthesis by incubating the Δpmi1 mutant under Man-starvation or Man-repletion conditions. Under both conditions, the mutant displayed a decrease in α-glucan content in its cell wall. The wild-type was also affected by a high concentration of exogenous Man and showed a decrease in α-glucan. However, it is apparent that inadequate Man and replete Man trigger different responses. To compensate for the loss of α-glucan, the mutant showed an increase in chitin under Man-starvation and an increase in β-glucan under Man-repletion. Although the mechanism is not clear, these observations emphasize that a suitable Man supply and mannosylation are necessary for normal cell wall biogenesis in A. fumigatus. Furthermore, high Man in the environment appears to cause toxicity in the A. fumigatus Δpmi1 cell, such that the cell seems unable to grow at levels above 25 mM Man.

In addition to the defects in the cell wall, the morphological changes observed in the A. fumigatus Δpmi1 mutant were dose-dependent on Man. Given the involvement of glycoproteins in the synthesis and organization of the fungal cell wall, it is not surprising to observe a severe phenotype featuring an irregular cell wall and ballooned dead cells under Man-starvation conditions. Further analysis of the intracellular sugar phosphates revealed that inadequate Man caused a twofold increase in Man-6-P and significant decreases in Glc-6-P, Fructose-6-P, Man-1-P and GDP-Man in the mutant, indicating that Man-6-P can accumulate even at lower Man concentrations. Previously, it has been demonstrated that an accumulation of Man-6-P limits the flux through glycolysis in a yeast PMI40 deletion mutant (Pitkänen et al., 2004), while in a mouse mutant lacking PMI, Man-6-P accumulation has been shown to limit glycolysis and deplete intracellular ATP (DeRossi et al., 2006). Therefore, we conclude that the severe phenotypes associated with the A. fumigatus Δpmi1 mutant under Man starvation are due to an insufficient supply of GDP-Man for cell wall synthesis, limitation of energy production and depletion of intracellular ATP. Moreover, Fru-1,6-P was also significantly decreased in the mutant grown under Man-starvation. Considering that Fru-1,6-P is the precursor of UDP-GlcNAc, a substrate of chitin synthesis, the reduction of Fru-1,6-P might be caused by an increased synthesis of chitin in the mutant to compensate for the cell wall defect.
Although the mutant apparently grew well under Man-repletion conditions, an abnormal morphology and a change in cell cycle were observed. Further analysis showed that, although replete Man allowed the mutant cell to produce GDP-Man to a level similar to that of the wild-type, it also caused a marked accumulation of Man-6-P and a reduction in Fru-1,6-P and Glc-6-P. Thus, the abnormal morphology associated with the Δpmi1 mutant under Man-repletion conditions can be ascribed to limitation of energy production and depletion of intracellular ATP. In addition, considering the remarkably high level of Man-6-P detected in the mutant, it is reasonable to conclude that a futile cycle of Man-6-P de- and rephosphorylation may contribute to the phenotypes observed under Man-repletion conditions.

In our study, both inadequate and replete Man supply caused a reduction in α-glucan synthesis in the mutant, which can be explained by the decrease in Glc-6-P, a precursor of UDP-Glc that is required for glucan synthesis. It is not clear yet whether the decrease in α-glucan is the cause of the defect in conidiation associated with the mutant. However, in contrast to α-glucan, β-glucan levels in the mutant remained constant under Man-starvation and were increased under Man-repletion, as compared with the wild-type. Although Glc-6-P is also the precursor for β-glucan synthesis, it is likely that the mutant cell possesses a mechanism to ensure the synthesis of β-glucan prior to α-glucan, probably through an upregulation of 1,3-β-glucan synthase to compete for a limited substrate supply and ensure β-glucan synthesis in the mutant.

Recently, we have shown that GDP-mannose pyrophosphorylase is essential in A. fumigatus and that repression of this enzyme leads to a similar cell wall defect as seen in the Δpmi1 mutant under Man-starvation conditions; however, in comparison to a complete loss of the ability to produce conidia and the death of swollen cells in the Δpmi1 mutant under Man-starvation conditions, a severe hyphal lysis and reduced conidiation were seen (Jiang et al., 2008). These observations suggest a different mechanism. It is likely that repression of the GDP-mannose pyrophosphorylase only leads to a limitation of GDP-Man synthesis and that no significant accumulation of Man-6-P occurs, which mainly affects the biogenesis of the cell wall and therefore leads to phenotypes different from those associated with Man-6-P toxicity.

In conclusion, our functional studies showed that PMI activity is essential for viability and plays a central regulatory role in both glycosylation and energy production in A. fumigatus. Although exogenous Man can rescue the growth of the mutant deficient in PMI, it is not handled in the same way as interconverted Man. Deletion of the pmii1 gene leads to uncoupling of the link between energy production and glycosylation and accumulation of Man-6-P, which then results in phenotypes such as defects in cell wall integrity, conidiation and morphology.

ACKNOWLEDGEMENTS

This project was supported by the State ‘863’ High-tech Project (2007AA02Z164) and the National Natural Science Foundation of China (30770485 and 30621005) awarded to C.J. We thank C. d’Enfert for kindly supplying A. fumigatus strain CEAI7 and plasmid pCD1A4. Genomic sequence data for A. fumigatus were obtained from the Institute for Genomic Research website at http://www.tigr.org/db/ezk1/afa1/.

REFERENCES

A. fumigatus PMI in cell wall synthesis and glycosylation

http://mic.sgmjournals.org

W. Fang and others

Edited by: K. Haynes