INTRODUCTION

An increasing number of wastewater treatment plants (WWTPs) are designed, or have been upgraded, to remove C, N and P by using microbial activity in the process known as enhanced biological phosphorus removal (EBPR). This process is popular mainly because it is more environmentally friendly, due to reduced use of chemicals and low sludge production, compared to P removal by chemical precipitation (Seviour et al. 1995), as reviewed in detail by Mino et al. (1998) and Seviour et al. (2003). Some potentially important micro-organisms involved in the EBPR process have been identified in such laboratory-scale reactors, but only a few of them have been shown to be important in full-scale WWTPs. These are all uncultured organisms and can thus only be detected and quantified by using molecular methods such as fluorescence in situ hybridization (FISH) using group- or clone-specific oligonucleotide probes. FISH studies (Crocetti et al., 2000; Kong et al., 2004; Wong et al., 2005) in EBPR WWTPs have shown that polyphosphate-accumulating organisms (PAOs) related to *Rhodocyclus* (RPAO or Accumulibacter) (Crocetti et al., 2000; Hesselmann et al., 1999) and certain *Actinobacteria* (Kong et al., 2005) are abundant. Glycogen-accumulating organisms (GAOs) are present in many WWTPs and insufficient knowledge of the ecophysiology of the key microbial populations.

Our understanding of the microbiology of EBPR WWTPs is to a large extent obtained from culture-independent studies using enriched cultures in well-controlled laboratory-scale reactors by using the full-cycle rRNA approach (Amann, 1995), as reviewed in detail by Mino et al. (1998) and Seviour et al. (2003). Some potentially important micro-organisms involved in the EBPR process have been identified in such laboratory-scale reactors, but only a few of them have been shown to be important in full-scale WWTPs. These are all uncultured organisms and can thus only be detected and quantified by using molecular methods such as fluorescence in situ hybridization (FISH) using group- or clone-specific oligonucleotide probes. FISH studies (Crocetti et al., 2000; Kong et al., 2004; Wong et al., 2005) in EBPR WWTPs have shown that polyphosphate-accumulating organisms (PAOs) related to *Rhodocyclus* (RPAO or Accumulibacter) (Crocetti et al., 2000; Hesselmann et al., 1999) and certain *Actinobacteria* (Kong et al., 2005) are abundant. Glycogen-accumulating organisms (GAOs) are present in many WWTPs and are mainly *Gammaproteobacteria* of the GB group (*Comtebacter*) (Crocetti et al., 2002; Kong et al., 2002,

Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant

Yunhong Kong, Yun Xia, Jeppe Lund Nielsen and Per Halkjær Nielsen

Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark

The structure and function of the microbial community in a full-scale enhanced biological phosphorus removal wastewater treatment plant (WWTP; Skagen) were investigated using the full-cycle rRNA approach, combined with ecophysiological studies. A total of 87 16S rRNA gene sequences were retrieved, and 78 operational taxonomic units (OTUs) were identified. Novel oligonucleotide probes were designed, and quantitative fluorescence in situ hybridization revealed that six hitherto undescribed probe-defined groups within the phylum *Bacteroidetes* (two groups), and classes *Betaproteobacteria* (two groups) and *Gammaproteobacteria* (two groups), were relatively abundant (>1 % of total biovolume) in the Skagen WWTP and 10 other full-scale WWTPs with biological P removal. The most abundant was a group of rod-shaped *Bacteroidetes* attached to filamentous bacteria, which is distantly related to the genus *Haliscomenobacter* of the family *Saprospiraceae*, and comprised 9–19 % of the bacterial biovolume in all the WWTPs investigated. The other five probe-defined groups were found in all WWTPs, but they were less abundant (1–6 %). Two groups had a glycogen-accumulating phenotype and one *Dechloromonas*-related group had a polyphosphate-accumulating phenotype, and they were potentially all involved in denitrification. In total, about 81 % of all bacteria hybridizing with the general eu-bacterial probe were detected in the Skagen WWTP by using clone- or group-specific probes, indicating that most members of the microbial community had been identified.
2006; Nielsen et al., 1999), and in some WWTPs alphaproteobacterial *Defluvicoccus* (Burov et al., 2007). Otherwise, very little information exists about the other potentially important micro-organisms. Some filamentous bacteria, such as *Chloroflexi* (Bjornsson et al., 2002; Kragelund et al., 2007) and ‘*Candidatus Microthrix parvica’* (Blackall et al., 1996), may occasionally be present and cause bulking problems. Micro-organisms involved in N removal (nitrification/denitrification) may be present and include betaproteobacterial ammonia-oxidizing bacteria (Mobbary et al., 1996) and nitrite oxidizers belonging to the phylum *Nitrospira* (Daims et al., 2001). Potential denitrifiers may be RPAO, *Azoarcus*, *Thauera* and *Aquaspirillum* (Thomsen et al., 2004, 2007; Wagner & Loy, 2002).

The probe-defined microbial groups with known functions (ecophysiology) described above seem to account for only a small part of the total microbial communities in full-scale EBPR WWTPs. The PAOs and GAOs described above have been quantified in several studies (Kong et al., 2004, 2005, 2006) and form less than 30% of the total bacterial biovolume (measured by FISH against an EB/MBix probe), often around 5–10% each. Nitrifying bacteria are present, but their abundance is uncertain, while recent information about the denitrifiers suggests that they are fairly abundant (Thomsen et al., 2007). Thus, the identity and function of a significant fraction of the biomass in full-scale EBPR WWTPs may still be unresolved, stressing a need for more studies in full-scale WWTPs to identify other potentially important micro-organisms.

In this study we have chosen a full-scale EBPR WWTP with N removal and investigated the composition and biodiversity of its microbial community by using the full-cycle rRNA approach. Based on phylogenetic analysis and FISH probing, several novel probe-defined microbial groups were found in addition to other well-known microbial groups in EBPR WWTPs. Their potential functions were investigated using microautoradiography (MAR) combined with FISH (MAR-FISH) and FISH combined with histochemical staining. Quantitative FISH screening of samples from 10 full-scale EBPR WWTPs revealed that some of the novel groups were abundant in most EBPR WWTPs investigated, indicating the potential importance of these hitherto unknown groups in full-scale EBPR WWTPs.

METHODS

Sampling and WWTP description. Activated-sludge samples for DNA extraction were obtained from the Skagen WWTP. The Skagen WWTP has a Biodenipho configuration (Sevour et al., 1999) in which influent is mixed with the activated sludge in anaerobic tanks before entering tanks with alternating denitrifying and nitrifying conditions. The Skagen WWTP has operated with stable biological P removal, nitrification and denitrification for many years (effluent standards: total P < 1 mg P l\(^{-1}\), total N < 8 mg N l\(^{-1}\)). Anaerobic P release tests performed regularly after acetate addition (Tykesson et al., 2006) have shown a P release of 5–8 mg P (g volatile suspended solids)\(^{-1}\) during this period. The Skagen plant receives wastewater with a high content of organic matter (fish industry and domestic wastewater) and a typical influent has a total chemical oxygen demand (COD) of 1500 mg O\(_2\) l\(^{-1}\) and a total P of 25 mg P l\(^{-1}\). The plant treats wastewater corresponding to 280 000 population equivalent (PE). Sludge samples for clone library construction were collected in July 2003 from the oxic (nitrifying) tanks and transferred within 1–2 h to the laboratory. Sludge samples for quantitative FISH were collected in February 2006. Quantitative FISH was also performed on sludge samples from the WWTPs Aalborg East [AAE; PE 160 000, 475 mg O\(_2\) l\(^{-1}\)] influent total COD (ITC) and 7 mg P l\(^{-1}\) total P (TP)], Aalborg West (AAV; PE 300 000, 446 mg O\(_2\) l\(^{-1}\) ITC, 6 mg P l\(^{-1}\) TP), Egaa (PE 90 000, 592 mg O\(_2\) l\(^{-1}\) ITC, 9 mg P l\(^{-1}\) TP), Helsingborg (PE 120 000, no data available for ITC and TP), Bjergmarken (PE 83 000, 650 mg O\(_2\) l\(^{-1}\) ITC, 10 mg P l\(^{-1}\) TP), Eby Mølle (PE 284 000, 905 mg O\(_2\) l\(^{-1}\) ITC, 8 mg P l\(^{-1}\) TP), Odense Nordøst (PE 25 000, 407 mg O\(_2\) l\(^{-1}\) ITC, 7 mg P l\(^{-1}\) TP), Varde (PE 22 000, 321 mg O\(_2\) l\(^{-1}\) ITC, 6 mg P l\(^{-1}\) TP), Lynetten (PE 650 000, 730 mg O\(_2\) l\(^{-1}\) ITC, 10 mg P l\(^{-1}\) TP), and Damhusøen (PE 220 000, 500 mg O\(_2\) l\(^{-1}\) ITC, 8 mg P l\(^{-1}\) TP). The total effluent P of all these plants is <1 mg l\(^{-1}\). All data about the influent COD and total P were mean values for 2006. All these WWTPs, except AAE, AAV, Egaa and Helsingborg, which were sampled three times on different dates over a period of 12–31 months, were sampled once. All WWTPs, except Helsingborg, which is a Swedish WWTP, are Danish WWTPs mainly treating domestic wastewater with some industrial contribution, and all have a Biodenipho configuration (most Danish EBPR WWTPs have a Biodenipho configuration).

FISH. Sludge fixation and FISH probing were carried out as previously described (Kong et al., 2006). The oligonucleotide probes EUBmix [equimolar concentrations of EUB338 (Amann et al., 1990) EUB338II and EUB338III (Daims et al., 1999)], NONEUB (Wallner et al., 1993), ALF 968 (Neef, 1997), HGC69a (Roller et al., 1994), LGcmix [equimolar concentrations of LGC354A, LGC354B and LGC354C (Meier et al., 1999), TM7905 (Hugenholtz et al., 2001), NspA1413 (Maixner et al., 2006), HoAc1402 (Juretschko et al., 2002), CFX1223 and GNSB-941 (Bjornsson et al., 2002), Actino-221, Actino-651 (Kong et al., 2005), and PAOmix [equimolar concentrations of PAO651, PAO462 and PAO846 (Crocetti et al., 2000)], GB_G1 (GAAQ989) (Crocetti et al., 2002) and GB_G2, GB_182, GB_3, GB_4, GB_5, GB_7 (Kong et al., 2002), GB_6 (Gam1019 (Nielsen et al., 1999)), Cluster 6a-192 (Adamczyk et al., 2003), ZRA23a (Rossello-Mora et al., 1995), Az0644 (Hess et al., 1997), Thau-646 (Lajoie et al., 2000), Aqsp997 (Thomsen et al., 2004), Sap309 (Schauer & Hahn, 2005), CF319a and CF319b (Manz et al., 1996) were used for FISH. All the probes, except the EUBmix, which was labelled with Fluos, were labelled with either Cy3 or Cy5 (only for specificity check). The specificities, hybridization requirements, use of competitors and reference information for most of the probes are all described in probeBase (Loy et al., 2003).

Clone library construction, clone screening, and sequencing. The community DNA was extracted by using the FastDNA kit used according to the protocol recommended by the supplier (Qbiogene). Bacterial primers 8F (Brosius et al., 1981) and 1492R (Lane, 1991) were used for PCR. The PCR running conditions, PCR product ligation, cloning, clone screening by using denaturing gradient gel electrophoresis (DGGE), and sequencing were carried out following procedures described previously (Kong et al., 2005).

Phylogenetic analysis. The 16S rRNA gene sequences obtained were uploaded and aligned with ARB software (Ludwig et al., 2004). The aligned sequences were checked in the Ribosomal Database Project (RDP) (Cole et al., 2005) for chimeric artefacts using the CHECK_CHIMERA tool and Bellerophon (Huber et al., 2004), before
being compared in GenBank using the BLAST program (Altschul et al., 1990). Then, the sequences and their closely related sequences were aligned in ARB and Mega3 (Kumar et al., 2004), and phylogenetic trees were calculated and built on the basis of the neighbour-joining, minimum-evolution, maximum-parsimony and PHYLIp-distance methods provided in the software using the default setups. The topology of the trees built for the Bacteroidetes (including Chlororobi) and proteobacterial clones did not significantly change, compared with those shown in Figs 1 and 2. Sequence similarity was calculated based on the neighbour-joining trees using the function provided in the ARB software.

Biodiversity analysis. The homogeneous coverage was calculated using the equation $C = [1-(n_1 \times N^{-1})] \times 100\%$, as described by Singleton et al. (2001), in which C is the homogeneous coverage, n_1 is the number of OTUs (operational taxonomic units) with only one sequence, and N is the total number of 16S rRNA genes analysed. The threshold value used for OTU definition was 97 %. The species richness was estimated by dividing the number of OTUs by C.

Oligonucleotide probe design and specification. A number of oligonucleotide probes were designed using the function provided in the ARB software. The specificity of these probes was further confirmed by the use of the Check Probe program in the RDP. Only the probes that received enough FISH signal to allow optimization of stringency are listed in Table 1.

All the probes designed in this study targeted uncultured bacteria that did not have close cultured relatives. Fixed activated-sludge samples from the Skagen WWTP, therefore, were used to optimize the formamide concentration that was used in FISH probing. The specific formamide concentration used for a probe was determined by FISH probing in a series of formamide concentrations from 0 to 60 % at 5 % increments. Six probes were found to hybridize with more than 1 % of all eubacteria (Table 1) and were evaluated in more detail. Probes covering the novel groups found in the Skagen hot spring (80 °C), had more than two mismatches with available pure cultures. A negative control was used for probe Bet135, which had at least three mismatches with all available sequences. No negative controls were used for probes Bet65, as it had more than two (at least three) mismatches with available pure cultures. A negative control was also not used for probe Gam445, which, except for having two mismatches with one clone (DQ490001) of bacterial isolates from a hot spring (80 °C), had more than two mismatches with all available sequences in the GenBank database. No negative control was used for probe Gam829 because no publicly available pure cultures within two mismatches were available, and no appropriate probe-defined groups could be used. For probe Bet135, which had at least three mismatches with any available pure culture, uncultured RPAO hybridizing with PAOMix and one mismatch with probe Bet135 were used as negative controls (tested on samples from the Skagen, AAV and AAE WWTPs). The specificity (number of mismatches) check for all these probes was carried out through GenBank by November 2006. In FISH probing of all samples, probe NONEUB was used as a negative control.

Quantitative FISH. FISH for quantitative biovolume analysis was carried out on six-well gelatin-coated slides. FISH images were taken with the Zeiss LSM510 Meta microscope, as previously described (Kong et al., 2004). The biovolumes of the probe-defined microbial phylum, class, group or clones were estimated by measuring the percentage of the area fluorescing with a probe (Cy3-labelled) in relation to the area fluorescing with the EUBmix probe (FLUOS-labelled) on the same images. In all image captures the optical slice taken by the confocal laser microscope was adjusted to 1.3 μm to ensure that only FISH signals from a thin layer of biomass were sampled each time. For each enumeration, at least 24 images were taken from three different wells (eight from each well). The three mean values from each of the eight measurements were used to calculate the biovolume (mean value) and its sd.

RESULTS

Phylogenetic analysis of Skagen sludge

A clone library from the Skagen WWTP was constructed and 87 almost full-length 16S rRNA gene sequences were retrieved. No chimerical sequences were found. After comparison with 16S rRNA gene sequences available in the GenBank database, 78 OTUs in nine different bacterial phyla were identified by using 97.0 % similarity as the threshold. Three sequences could not be convincingly aligned into any known bacterial phyllum. Interestingly, almost half of the sequences retrieved (41 out of 87) formed 33 OTUs in the phylum Bacteroidetes (Fig. 1). All except OTU 33, which had a cultured bacterium Runella zeae as its closest relative (91.6 % similarity), were related to uncultured environmental clones. Only OTUs 2, 4 and 18 shared more than 97.0 % similarity with available sequences in GenBank, whereas the others had 80.3–96.6 % similarity, indicating a high and undescribed diversity of Bacteroidetes in the Skagen WWTP. OTUs 1–17 were distantly related to H. hydrossis of the family Saprospiraceae (<89.0 % similarity). Other OTUs clustered to sequences in the families Flavobacteriaceae, Flexibacteriaceae, Bacteroidaceae and Sphingobacteriaceae.

The phylum Proteobacteria encompassed 31 clones forming 30 OTUs (Fig. 2). Among the 14 OTUs in the Betaproteobacteria, OTUs 41 and 43 had cultured species Thauera sp. and Nitrosomonas sp., respectively, and clones 47 and 49 had Comamonadaceae sp. as closest relatives, whereas all others were related to sequences of uncultured bacteria. The betaproteobacterial RPAO were represented by OTUs 36 and 37 (>97.0 % similarity). Eight OTUs were found in the Gamma proteobacteria and all were related to uncultured bacterial clones. Two of them clustered to known GAOs, the GB group in Gammaproteobacteria (Kong et al., 2002) (OTUs 54 and 55, 94.1–97.6 % similarity). Among the Alphaproteobacteria, four OTUs were identified. Two had Rhodobacter sp. and Methylocystis...
Fig. 1. A distance tree (neighbour-joining) built using the Bacteroidetes and Chlorobi 16S rRNA gene sequences retrieved in this study. Sequences with names in bold type were obtained from this study. *Clones with >1 mismatch with the probe; all the other clones have 0 mismatches with the probe. The probes designed for the clones are also shown. The bootstrap values (only those >50% are shown) were calculated based on 1000 resamplings. Scale bar, 1 substitution per 10 nucleotides.
Fig. 2. A distance tree (neighbour-joining) built using the proteobacterial 16S rRNA gene sequences retrieved in this study. Sequences in bold type were obtained from this study. *Clones with >1 mismatch with the probe; all the other clones have 0 mismatches with the probe. The probes designed in this study are shown in bold type. The bootstrap values (only those >50%) were calculated based on 1000 resamplings. Scale bar, 1 substitution per 10 nucleotides.
Table 1. Names, specificities and formamide concentrations of probes (including a competitor) designed and used in this study

<table>
<thead>
<tr>
<th>Probe name (systematic name*)</th>
<th>Sequence (5’–3’)</th>
<th>Specificity†</th>
<th>FA‡ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bet65 (S-S-βPro-0065-a-18)</td>
<td>CAGTTGCCCCCGCTACC</td>
<td>Skagen clone f97 (closely related to Comamonadaceae)</td>
<td>30</td>
</tr>
<tr>
<td>Bet135 (S-S-βPro-0135-a-21)</td>
<td>AGCTATCCCCACTCAATGG</td>
<td>Skagen clones 42 and 76, and eight closely related</td>
<td>45</td>
</tr>
<tr>
<td>Gam829 (S-S-γPro-0832-a-21)</td>
<td>GACTCAAGGTCCCCCAAGGGG</td>
<td>Skagen clone f46 (distantly related to Alkanindiges)</td>
<td>35</td>
</tr>
<tr>
<td>Gam455 (S-S-γPro-0455-a-20)</td>
<td>CTGAGCTATCCCCACGGTG</td>
<td>Skagen clone f57 (distantly related to Thioalkalivibrio)</td>
<td>35</td>
</tr>
<tr>
<td>Bac111 (S-S-Sap-0111-a-18)</td>
<td>TGTACCGGTTACTCCACC</td>
<td>Skagen clones f12, f13, f15, f22, f36, f40, f44, f45, f53, f54, f61, f75, f95, 114 and 118, and 44 closely related Sapropiraceae clones</td>
<td>25</td>
</tr>
<tr>
<td>cBac111</td>
<td>CGTACCGGTTACTCCACC</td>
<td>Some fresh-water lake and sea clones in Sapropiraceae</td>
<td></td>
</tr>
<tr>
<td>Bac993 (S-S-Bac-0994-a-20)</td>
<td>GGCAACCATAAGCCGATTCC</td>
<td>Skagen clone 105 (distantly related to Cytophaga)</td>
<td>35</td>
</tr>
</tbody>
</table>

*According to Alm et al. (1996).
†Only clones longer than 1200 bp were examined.
‡Formamide concentration.

The homogeneous coverage of the clone library was calculated to be 19%, using 97% similarity as the threshold for an OTU, and the species richness was 411.

Design of new oligonucleotide probes and FISH probing

In order to screen the microbial community in the Skagen WWTP for potentially abundant and undescribed microbial groups, 30 oligonucleotide probes were designed on the basis of the 16S rRNA gene sequences retrieved. The probes were designed for almost all the hitherto undescribed sequences; the names and coverage of most of these probes are also shown in Figs 1 and 2. When they were tested for specificity and optimum formamide concentration (see Methods), six of the new probes hybridized with at least 1% (naked eye estimation) of the biomass in the Skagen sludge, providing a clear FISH signal, which indicates that the groups represented by the clones were potentially abundant in the sludge. The name, sequence, specificity and formamide concentration of the six probes showing a clear FISH signal and optimized for their formamide concentration are listed in Table 1.

Probe Bac111 hybridized mainly with rods attached to filamentous bacteria (epiflora) and a few filaments (Fig. 3b). All the bacterial cells hybridized with Bac111 also hybridized with Sap309, which targets most members in the family Sasropiraceae of the phylum Bacteroidetes. Bac993 hybridized with very thin filaments inside the flocs (Fig. 3d). None of the bacterial cells hybridizing with probes Bac111 and Bac993 hybridized with a probe mixture of CF319a and CF319b designed for the Cytophaga–Flavobacterium group of Bacteroidetes. Bet135 hybridized with cocci of different sizes (Fig. 3c), and some of them (30%, naked eye estimation) also hybridized with the PAOmix probe, which targets RPAO. Bet65 hybridized with short rods in clusters (Fig. 3e), and Gam829 with cocci dispersed in sludge flocs (Fig. 3a). Gam445 hybridized with short rods in clusters (not shown). All bacterial cells hybridizing with Bet135 and Bet65 also hybridized with BET42a designed for class Betaproteobacteria in the phylum Proteobacteria, and all cells hybridizing with Gam445 and Gam829 also hybridized with GAM42a designed for class Gammaproteobacteria.

Composition of the microbial community in the Skagen WWTP

The dominant microbial groups in the Skagen WWTP were determined by applying quantitative FISH to fresh...
sludge with the probes designed in this study as well as other available probes. Bacteria hybridizing with the EUBmix probe constituted $85 \pm 5\%$ (SD) of the biovolume of micro-organisms stained by DAPI. Assuming that the total biovolume measured with the various probes was 100% of the bacterial biovolume that hybridized with the EUBmix probe (the value actually determined was $103 \pm 22\%$), all probe-defined groups or phyla that accounted for more than 1% of the biovolume are depicted in Fig. 4. Most bacteria detected belonged to the Proteobacteria (56%), Bacteroidetes (17%), Actinobacteria (13%) and Chloroflexi (8%). Bacteria belonging to the Gemmatimonadetes, Planctomycetes, Acidobacteria and Firmicutes accounted for a minor fraction (<1%) and are not shown in Fig. 4.

Two different probe-defined groups were detected in the phylum Bacteroidetes. They were Bac111- and Bac993-defined groups constituting 16% and ~1% of the bacterial biovolume, respectively. Betaproteobacteria constituted ~40% of the bacterial biovolume. These were uncultured Aquaspirillum-related bacteria (16%), Rhodocyclus-related...
PAOs (9%), Azoarcus-related bacteria (4%), the Bet65-defined group (3%), Nitrosomonas ammonia-oxidizing bacteria (3%), the Bet135-defined group (2%) and Thauera-related bacteria (1%). Betaproteobacteria hybridizing with probe BET42a constituted 30 ± 5% of the bacterial biovolume. The Gammaproteobacteria detected were mainly GAOs (5%) belonging to the GB group (subgroups 3 and 5–7) and bacteria belonging to the Gam829-defined group (3%) and the Gam445-defined group (1%). The broad GAM42a probe for Gammaproteobacteria hybridized with 8 ± 3% of all eubacterial cells. Actinobacteria detected were mainly from two probe-defined groups: actinobacterial PAOs hybridizing with Actino-221 (8%) and Actino-658 (5%). The Chloroflexi formed 8% of the biovolume and it was noticed that some of them did not hybridize with the EUBmix. The Nitrospira and TM7 phyla constituted 4 and 2% of the biovolume, respectively. A further analysis of the nitrite oxidizers showed that they belonged to sublineage 1 of genus Nitrospira, hybridizing with probe Ntspa1431.

Ecophysiology of the novel probe-defined microbial groups

Some physiological traits were investigated for the newly identified probe-defined microbial groups by using MAR-FISH and FISH combined with histochemical staining. These included uptake of various organic substrates under aerobic and anaerobic conditions, uptake of selected compounds with nitrate present as the potential electron acceptor, and possible storage of polyphosphate and PHA. Of the six probe-defined microbial groups, four were investigated in detail in this study. Gam829-defined cocci were present in too low numbers in the sludge tested with MAR for reliable observations. Bac111-defined epiflora is a group of protein hydrolysers in activated sludge (Xia et al., 2007), and their detailed phylogeny and ecophysiology will be presented in another study (Y. Xia and others, unpublished results).

More than 50% of the members of the Bet135-, Bet65- and Gam445-defined groups were able to take up acetate, pyruvate, and some amino acids including aspartic acid, glutamic acid and leucine, under both aerobic and anaerobic conditions. They could not take up formic acid, ethanol, oleic acid and glycine. Most bacteria in each probe-defined group took up glucose under anaerobic but not under aerobic conditions, indicating that their glucose uptake under anaerobic conditions was due to uptake of radioactive fermentation products (e.g. acetate or pyruvate) produced from fermentation of labelled glucose by other micro-organisms (Kong et al., 2004). All three groups were able to grow on acetate under anaerobic but not under aerobic conditions, indicating that their glucose uptake under anaerobic conditions was due to uptake of radioactive fermentation products (e.g. acetate or pyruvate) produced from fermentation of labelled glucose by other micro-organisms (Kong et al., 2004).

Fig. 4. The composition of the microbial community of the Skagen WWTP determined by using quantitative FISH with individual phylum-, subdivision- and group-level probes against the EUBmix probe. The probes used in quantitative FISH are also listed in parentheses after the percentages. The probes with names in bold type were designed for this study. *Group- or clone-level probes. UC, uncultured.

UC Beta-7993* (2 ± 1%, TM7905)
UC Beta-7993* (2 ± 1%, TM7905)
UC Betaproteobacteria (3 ± 1%, Bet65*)
UC Betaproteobacteria (3 ± 1%, Bet65*)
UC Rhodocycl-us-related PAOs (9 ± 2%, PAOMix)
UC Rhodocycl-us-related PAOs (9 ± 2%, PAOMix)
Azoarcus-related bacteria (4 ± 2%, Azo644*)
Azoarcus-related bacteria (4 ± 2%, Azo644*)
Thauera-related bacteria (1%, T. Thau-646*)
Thauera-related bacteria (1%, T. Thau-646*)
Aquaspirillum-related bacteria (16 ± 3%, Aq997*)
Aquaspirillum-related bacteria (16 ± 3%, Aq997*)
UC Nitrosonomas-related ammonia-oxidizing bacteria (3 ± 1%, Clusteria-192*)
UC Nitrosonomas-related ammonia-oxidizing bacteria (3 ± 1%, Clusteria-192*)
UC Gammaproteobacteria (3 ± 1%, Gam829*)
UC Gammaproteobacteria (3 ± 1%, Gam829*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
Gammaproteobacteria
Gammaproteobacteria
Actinobacteria
Actinobacteria
Bacteroidetes (1%, Bac993*)
Bacteroidetes (1%, Bac993*)
UC Bacteroidetes (1%, Bac993*)
UC Bacteroidetes (1%, Bac993*)
UC actinobacterial PAOs (5 ± 1%, Actino-658*)
UC nitrite-oxidizing bacteria in Nitrospira (subdivision 1). (4 ± 1%, Ntspa1431*)
UC nitrite-oxidizing bacteria in Nitrospira (subdivision 1). (4 ± 1%, Ntspa1431*)
Chloroflexi (8 ± 2%, GNSB-941 and CFX1223)
Chloroflexi (8 ± 2%, GNSB-941 and CFX1223)
Deltaproteobacteria (2 ± 1%, SRB385)
Deltaproteobacteria (2 ± 1%, SRB385)
UC GAOs in GB group (5 ± 1%, GBmix*)
UC GAOs in GB group (5 ± 1%, GBmix*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
UC Gammaproteobacteria (3 ± 1%, Gam455*)
addition of labelled acetate (Kong et al., 2004). Most bacteria in each group could take up labelled acetate after 9 h aerobic preincubation, but none could do it after 6 h anaerobic preincubation, indicating that they were aerobes capable of taking up acetate only during a short period (< 6 h) under anaerobic conditions, as is well described for many PAOs and GAos. They might also be involved in denitrification, as in the presence of NO3−, most bacteria in each group could take up labelled acetate after 6 h anaerobic incubation. Bac993-defined filaments did not take up organic substrates under any of the conditions tested.

Most bacterial cells hybridizing with Bet135 were able to store polyphosphates, as indicated by Neisser staining. All members of the other probe-defined groups were negative for Neisser staining. PHA (Nile blue staining) was present in most bacterial cells hybridizing with probes Bet135, Bet65 and Gam445 (~50–90 %, naked eye estimation by counting 50 cells hybridizing with each probe). Filaments hybridizing with Bac993 were negative for Neisser and Nile blue staining.

Distribution and abundance of the novel probe-defined microbial groups in different full-scale EBPR WWTPs

The abundance of the new probe-defined microbial groups identified in this study was also investigated in 10 full-scale EBPR WWTPs using quantitative FISH (Table 2). Some WWTPs (AAE, AAV, Egaa and Helsingborg) were sampled three times on different dates to get an impression of the temporal variation in individual WWTPs. The results showed that the six new probe-defined groups were present in all EBPR WWTPs investigated, but varied in abundance. The morphotypes of the probe-defined populations observed in all the WWTPs were identical to those in the Skagen WWTP.

Bacteroidetes consisting of the two newly identified groups were abundant (10–22 %) in all EBPR WWTPs examined. The Bac111-defined Bacteroidetes group of primarily epiphytic rods was the largest group in all sludge samples examined, in accordance with the clone library analysis and FISH analysis of the Skagen sludge. The group constituted 9–19 % of the total biovolume in the 10 WWTPs (Table 2). The Bac993-defined group was less abundant in all WWTPs, accounting for 1–6 %. The two probe-defined Bacteroidetes groups only showed small temporal variations in a specific WWTP, indicating that these Bacteroidetes were indeed important bacterial groups in full-scale EBPR WWTPs. Of the novel probe-defined groups in the Betaproteobacteria and the Gammaproteobacteria, only the Bet65-defined betaproteobacterial group was relatively abundant, making up 3–6 % in several EBPR WWTPs. All other novel probe-defined groups constituted less than 3 % in all WWTPs investigated.

<table>
<thead>
<tr>
<th>Plant*</th>
<th>Biovolume (%) of individual probe-defined groups†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bac111</td>
</tr>
<tr>
<td>Skagen (08-02-06)</td>
<td>14–18</td>
</tr>
<tr>
<td>AAE (15-02-05)</td>
<td>10–12</td>
</tr>
<tr>
<td>AAE (08-12-04)</td>
<td>9–12</td>
</tr>
<tr>
<td>AAE (26-06-03)</td>
<td>16–19</td>
</tr>
<tr>
<td>AAV (06-02-06)</td>
<td>13–15</td>
</tr>
<tr>
<td>AAV (15-02-05)</td>
<td>13–16</td>
</tr>
<tr>
<td>AAVt (08-12-04)</td>
<td>12–15</td>
</tr>
<tr>
<td>Egaa (10-01-06)</td>
<td>13–14</td>
</tr>
<tr>
<td>Egaa (14-12-04)</td>
<td>9–12</td>
</tr>
<tr>
<td>Egaa (26-06-03)</td>
<td>10–12</td>
</tr>
<tr>
<td>Helsingborg (16-03-05)</td>
<td>10–13</td>
</tr>
<tr>
<td>Helsingborg (12-10-04)</td>
<td>11–14</td>
</tr>
<tr>
<td>Helsingborg (01-07-04)</td>
<td>13–15</td>
</tr>
<tr>
<td>Bjergmarken (01-05-06)</td>
<td>12–15</td>
</tr>
<tr>
<td>Ejby Mølle (08-02-06)</td>
<td>11–12</td>
</tr>
<tr>
<td>Odense Nordost (07-02-06)</td>
<td>12–15</td>
</tr>
<tr>
<td>Varde (05-02-06)</td>
<td>17–19</td>
</tr>
<tr>
<td>Lynetten (04-02-06)</td>
<td>10–13</td>
</tr>
<tr>
<td>Damhusåsen (01-02-06)</td>
<td>9–12</td>
</tr>
</tbody>
</table>

*The dates (day-month-year) in parentheses are the dates the samples were taken.
†In all the WWTPs except the Skagen plant the Gam829-defined group constituted < 1 % bacterial biovolume in each sample and is therefore not listed in the table.
DISCUSSION

This paper presents the first detailed study, to our knowledge, of the structure and function of the microbial community in a full-scale EBPR WWTP, in contrast to many similar studies carried out on EBPR microbial communities enriched in laboratory-scale reactors. The study showed that *Bacteroidetes*, mainly consisting of the *Haliscomenobacter*-related group defined by probe Bac111, were abundant in EBPR WWTPs; several novel abundant microbial groups belonging to the *Betaproteobacteria* and *Gammaproteobacteria* (putative PAOs and GAOs) were identified, and, for the first time, it was possible to detect most micro-organisms in a full-scale EBPR WWTP by using clone- or group-specific gene probes.

Community structure in the Skagen WWTP as revealed by using the full-cycle RNA approach

Clone library analysis and FISH generally agreed on the presence of many important microbial groups in the Skagen WWTP. These include betaproteobacterial RPAO and ammonia-oxidizing nitrosomonads, gammaproteobacterial GAOs (GB group), filamentous *Chloroflexi* and *Nitrospira* nitrite-oxidizing bacteria. As mentioned above, the important ecophysiological aspects of some of these bacteria are generally known. Several other probe-defined microbial groups belonging to the phyla *Bacteroidetes*, *Proteobacteria* and *Chlorobi*, and the *Candidatus* phylum TM7, were also present, but no or little ecophysiological data exist for these. There is a significant lack of consistency between the FISH and the clone library analyses on the presence of Gram-positive bacteria, especially *Actinobacteria*. FISH showed that *Actinobacteria*, mainly consisting of two probe-defined actinobacterial PAO groups, constituted 13% of the bacterial biovolume, while no actinobacterial clone was retrieved in the clone library analysis. This could be due to the difficulty of extracting DNA from Gram-positive bacteria (Beer et al., 2004), PCR bias and/or low cloning number (Head et al., 1998).

A high-resolution insight into the *in situ* composition of the microbial community in the Skagen WWTP was achieved. Quantitative FISH revealed that approximately 81% of all bacteria hybridizing with EUBmix could be hybridized with group- or clone-level probes (Fig. 3), indicating that most of the dominant micro-organisms had been identified. In agreement with other studies, *Betaproteobacteria* constituted a significant part (38%), whereas *Bacteroidetes*, *Gammaproteobacteria*, *Alphaproteobacteria* and *Actinobacteria* were other important components. Assuming that all probe-defined groups, accounting for more than 1% of the total bacterial biovolume, consisted of closely related species or strains, it can be estimated that 15 probe-defined populations made up most of the important microbial groups. Although each probe-defined population may have a certain degree of microdiversity, this is an interesting result, showing that only relatively few species made up a significant part of the biovolume in the Skagen WWTP. It was noted that the sum of biovolumes measured with individual clone- or group-specific probes was 103%, slightly above 100% of the bacteria hybridizing with the EUBmix. This may have been caused by the presence of many *Chloroflexi* filaments (hybridizing with CFX1223 and GNSB-941) that were observed not to hybridize with the EUBmix probe, and by a certain cross-hybridization of some probes, e.g. Bet135 and RPAOmix. Furthermore, the use of different fluorescent labels for the FISH probes may have caused an over-estimation of the various groups due to differences in the properties of the two labels applied (Bouvier & del Giorgio, 2003).

By using FISH analyses, members of *Bacteroidetes* have only recently been reported to be present in a significant amount in activated-sludge WWTPs (Xia et al., 2007). In this study, both clone library analysis and quantitative FISH probing revealed that *Bacteroidetes*, mainly consisting of two probe-defined groups, constituted 10–22% of the total eubacterial biovolume in all 11 full-scale EBPR WWTPs investigated. They were also always present in the WWTPs sampled several times, showing that *Bacteroidetes* are one of the main components of the EBPR microbial communities and most probably have an important function. In agreement with this, we recently found that the epiflora hybridizing with probe Bac111 is involved in protein hydrolysis in activated sludge (Xia et al., 2007). Their detailed ecophysiology is presently being investigated.

The consistent presence and abundance of *Bacteroidetes* in EBPR WWTPs have been significantly underestimated in previous studies because the probes CF319a and CF319b, which are normally used to detect the *Bacteroidetes* (*Cytobacterius–Flavobacterium* group), do not cover the members defined by probes Bac111 and Bac993, having at least one mismatch. Therefore, probes Bac111 and Bac993 should be used together with CF319a+b in future studies that employ FISH probing of *Bacteroidetes* in activated-sludge WWTPs.

Biodiversity of the microbial community in the Skagen WWTP

In total, 87 16S rRNA genes were retrieved from the Skagen WWTP and they only represent a small part of the total biodiversity. Using 97.0% as the threshold, the homogeneous coverage calculated was 19%, indicating that only a small fraction of the biodiversity in the Skagen WWTP is represented by the 16S rRNA gene sequences retrieved. The species richness calculated is 411. It should, however, be regarded as a minimum richness value because, as analysed elsewhere (Juretschko et al., 2002), not all OTUs with more than 97.0% similarity (recently a more stringent standard of 99% similarity has been proposed; Stackebrandt & Ebers, 2006) belong to one species and the primers used in PCR amplification of the 16S rRNA gene did not cover all...
bacteria. To cover most of the biodiversity in the Skagen WWTP at least 400–500 clones would be required.

To our knowledge, no similar comprehensive study of EBPR WWTPs has been published. Therefore, it is not possible to make direct comparisons of the biodiversity found in this study with that of others. Only a single study on a full-scale industrial WWTP with nitrification-denitrification has been conducted (Juretschko et al., 2002). The species richness is much larger for Skagen (411) than was estimated by Juretschko et al. (2002) for an industrial N-removal WWTP (89). The higher biodiversity is most probably due to the differences in process configuration and influent characteristics.

Function of the dominant probe-defined microbial groups in the Skagen WWTP

Many probe-defined groups present in the Skagen WWTP have been characterized physiologically. The ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genera *Nitrosomonas* and *Nitrospira*, respectively, are the important nitrifiers, whereas bacteria related to *Aquaspirillum*, *Thauera* sp., *Rhodocyclus* and *Comamonadaceae* sp. are likely to be involved in denitrification (Ginige et al., 2004; Juretschko et al., 2002; Kong et al., 2004; Thomsen et al., 2004, 2007). Bacteria known to take part directly in biological P removal (PAOs) are the RPAO and the actinobacterial PAOs, making up a total of 22%, and the GAOs of the GB group (Kong et al., 2004, 2006) and the actinobacterial PAOs, making up a total of 22%, and the GAOs of the GB group (Kong et al., 2004, 2006) and the actinobacterial PAOs, making up a total of 22%, and the GAOs of the GB group (Kong et al., 2004, 2006)

The ecophysiological investigations carried out in this study showed that the Bet135-, Bet65- and Gam445-defined groups are potentially important microbial groups behaving as either PAOs or GAOs in full-scale EBPR WWTPs. The Bac993-defined group did not take up any of the organic substrates tested under any of the conditions examined, so their physiology is still unknown. The microbial groups defined by Bet135, Bet65 and Gam445 were consumers of short-chain fatty acids and a few other compounds under both anaerobic and aerobic conditions. Moreover, they could all store PHA. Of these, only Bet135-defined coccobacilli were able to store polyphosphate. Consequently, the Bet135-defined group is closely related to the genus *Dechloromonas*, which agrees with the observation that *Betaproteobacteria* other than RPAOs could also be PAOs (Beer et al., 2006). RPAOs defined by the PAOmix are not targeted (at least one mismatch) by Bet135, but the hybridization of some cells with both Bet135 and PAOmix shows that the specificity of these probes is still not completely clear, because none of these has been specified with proper references. Interestingly, the Bet135-defined group could most likely respire with NO$_3^−$ and/or NO$_2^−$ (produced from reduction of NO$_3^−$), suggesting that they may be involved in denitrification in full-scale EBPR WWTPs like some RPAO, and thus be involved in denitrification in addition to other abundant denitrifiers.

The Bet65- and Gam445-defined groups most probably functioned as GAOs because they, like the *Competibacter* and the *Defluviicoccus*-related GAOs (Burow et al., 2007), could take up acetate and pyruvate under anaerobic conditions and form PHA but not polyphosphate as a storage product. They were also potentially involved in the denitrification. This is the first time that *Betaproteobacteria* have been described to behave as GAOs (Seviour et al., 2003).

The results from this study confirm that linking the full-cycle rRNA approach for identification of key microorganisms with various *in situ* techniques for the study of their function is a powerful tool to reveal structure and function in EBPR WWTPs. Furthermore, the study has shown that although some micro-organisms involved in removal of N and P in full-scale EBPR WWTPs are still undescribed, most of the important species or groups have now been identified and important aspects of their physiology revealed. The need for future studies may therefore mainly be related to the understanding of key factors that regulate the community structure and how the systems can be managed for optimal performance.

Acknowledgements

This study was supported by the Danish Technical Research Council (grant no. 26-04-0115). We thank Jane Ildal for technical support.

References

Bacteria active in wastewater treatment plants. Some putative glycogen accumulating organisms (GAO) in anaerobic/aerobic activated sludge systems members of the Alphaproteobacteria? Microbiology 150, 2267–2275.

Edited by: H. Daims