Subfamilies of *cpmA*, a gene involved in circadian output, have different evolutionary histories in cyanobacteria

Volodymyr Dvornyk¹²

¹Department of Biological Sciences, Kent State University, Kent, OH 44242-0001, USA
²Laboratory of Molecular Population Genetics and Evolution, M. G. Khloody Institute of Botany, National Academy of Sciences of Ukraine, vul. Tereshchenkivska 2, Kiev, Ukraine

The *cpmA* gene mediates an output signal in the cyanobacterial circadian system. This gene and its homologues are evolutionarily old, and occur in some non-photosynthetic bacteria and archaea as well as in cyanobacteria. The gene has two functional domains that differ drastically in their level of polymorphism: the N-terminal domain is much more variable than the PurE homologous C-terminal domain. The phylogenetic tree of the *cpmA* homologues features four main clades (C1–C4), two of which (C1 and C3) belong to cyanobacteria. These cyanobacterial clades match respective ones in the previously reported phylogenetic trees of the other genes involved in the circadian system. The phylogenetic analysis suggested that the C3 subfamily, which comprises the genes from the cyanobacteria with the *kaiBC*-based circadian system, experienced a lateral transfer, probably from evolutionarily old proteobacteria about 1000 million years ago. The genes of this subfamily have a significantly higher nonsynonymous substitution rate than those of C1 (2·13 × 10⁻¹⁰ and 1·53 × 10⁻¹⁰ substitutions per nonsynonymous site per year, respectively). It appears that the functional and selective constraints of the *kaiABC*-based system have slowed down the rate of sequence evolution compared to the *cpmA* homologues of the *kaiBC*-based system. On the other hand, the differences in the mutation rates between the two cyanobacterial clades point to the different functional constraints of the systems with or without *kaiA*.

INTRODUCTION

The endogenous circadian clock with a period of about 24 h is a key mechanism, which regulates a variety of physiological processes in accordance with daily changes in environmental conditions and thus helps organisms to adapt to the changing environment (Johnson & Golden, 1999).

Cyanobacteria are the only prokaryotes known so far to exhibit circadian rhythmicity (Ishiura *et al*., 1998; Kondo & Ishiura, 2000). Their circadian system has been comprehensively studied in the unicellular *Synechococcus elongatus* PCC 7942 (Ditty *et al*., 2003; Johnson & Golden, 1999). A core element of the system in this species is a cluster of three genes: *kaiA*, *kaiB* and *kaiC* (Ishiura *et al*., 1998). In addition to the *kai* genes, several other genes have been shown to participate in the regulation of circadian rhythmicity, mainly by mediating input/output signals (Iwasaki *et al*., 2000; Kutsuna *et al*., 1998; Schmitz *et al*., 2000; Tsinoremas *et al*., 1996).

Unlike *S. elongatus* PCC 7942, which possesses a single *kaiABC* cluster, other cyanobacterial species may have multiple copies of the *kaiB* and *kaiC* genes (Dvornyk *et al*., 2002, 2003; Kaneko *et al*., 2001). The *kaiA* gene may either occur in a single copy or be absent in some cyanobacteria (Dvornyk *et al*., 2003; Nakamura *et al*., 2003). Along with the data on the phylogenetic analysis of the *kaiB* and *kaiC* genes, this suggests that cyanobacteria probably have two types of the circadian system, *kaiABC*- and *kaiBC*-based, respectively (Dvornyk *et al*., 2003). The *kaiBC*-based system perhaps also has components involved in input/output pathways, similar to those of the *kaiABC*-based system of *S. elongatus* PCC 7942. Based on the results of evolutionary analyses of the key components (*kaiB*, *kaiC* and *sasA* genes), it has been hypothesized that each type of cyanobacterial circadian system has specific functional and selective constraints, which shape its evolution and preclude lateral transfers of the components between the systems (Dvornyk *et al*., 2003, 2004). A large proportion of these constraints are thought to be due to the emergence of the *kaiA* gene (Dvornyk *et al*., 2004, 2005).

The *cpmA* gene (circadian phase modifier) was reported to be involved in an output pathway of the circadian clock.
(Katayama et al., 1999). Inactivation of cpmA dramatically affects activity of the kaiA promoter, but has no effect on the kaiBC promoter. These data suggest that, like sasA, cpmA may also have specific evolutionary constraints within each of the two types of the cyanobacterial circadian system, and that at least some of the constraints resulted from the appearance of kaiA in the course of the system’s evolution. To test this hypothesis, I performed a comprehensive evolutionary and structural analysis of the cpmA genes from cyanobacteria.

METHODS

DNA and protein sequences. The annotated and homologous sequences of the cpmA genes were retrieved from the GenBank non-redundant database by using gapped BLASTp and PSI-BLAST (Altschul et al., 1997) with the respective amino acid sequences of S. elongatus PCC 7942 (GenBank accession AAD29318.1) as a query. All sequences with bit score cutoff above 120 were considered homologues. The retrieved protein and nucleotide sequences were aligned using CLUSTALW (Thompson et al., 1994) and manually adjusted based on structural considerations (Katayama et al., 1999). Alignments of the nucleotide sequences were modified manually according to the respective amino acid alignments.

For the comparative phylogenetic analysis, I used sequences of the 16S rRNA gene and the RecA protein from the respective or closely related strains. The 16S rRNA gene is a common marker for evolutionary studies of cyanobacteria (Garcia-Pichel et al., 2001; Honda et al., 1999). RecA is encoded by a housekeeping gene, which was previously shown to be useful for phylogenetic reconstructions of bacteria (Lloyd & Sharp, 1993). The respective sequences were obtained from the public databases, aligned with CLUSTALW (Thompson et al., 1994) and adjusted by visual inspection. A list of the sequences used is given in Table 1.

Phylogenetic analysis. Due to saturation, the rate of synonymous nucleotide substitutions was not estimated. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (dN) was calculated using the modified Nei–Gojobori method (Nei & Gojobori, 1986) with the Jukes–Cantor correction for multiple substitutions at the same site and a transitions/transversions ratio of 1-2. The MEGA 3.1 software (Kumar et al., 2004) was used for the computations of dN.

To determine the DNA substitution model best fitting the data, the ModelTest 3.0 software was used (Posada & Crandall, 1998). Based on the results of this test, the Tamura–Nei model of substitutions (Tamura & Nei, 1993) with gamma distribution was employed for further phylogenetic analysis of the 16S rRNA genes.

The alternative topologies of the phylogenetic trees of the CpmA protein sequences and 16S rRNA nucleotide sequences were initially applied to date their evolution. The analyses were performed using the PAML software (Yang, 1997).

To detect lateral transfers, the congruency of the obtained phylogenetic trees of species (16S rRNA tree) and the CpmA proteins was estimated using the likelihood-ratio test (LRT, Kishino & Hasegawa, 1989).

Analysis of selective constraints. The nonsynonymous/synonymous rate ratio, $\omega = d_d/d_s$, is commonly used as a measure of selective pressure at the protein level. Depending on its value ($\omega = 1, <1$ and >1) it may indicate neutral evolution, purifying selection and positive selection, respectively. The d_d/d_s ratio may either vary among amino acid sites but be averaged over all sequences (site-specific model) or differ between branches of a phylogenetic tree (branch-specific model). Comprehensive description of these models has been provided elsewhere (Nielsen & Yang, 1998; Yang et al., 2000; Yang & Nielsen, 2002). All computations were performed with the PAML software (Yang, 1997). The nested models were compared pairwise by the LRT. According to the LRT, twice the log-likelihood difference, $2\Delta \ell = 2(\ell_2 - \ell_1)$, follows a χ^2 distribution with $df = p_1 - p_2$, where p is the number of free parameters in the model. To compare non-nested models, the Akaike information criterion was used: $AIC = 2\delta + 2p$, where p is the number of independent parameters in the model (Akaike, 1974). The model with the lowest AIC is considered the most appropriate.

RESULTS

Phylogeny of the cpmA genes

As revealed by the BLAST search, cpmA homologues, besides occurring in cyanobacteria, are also found in some other bacteria and archaea. This confirms the previously reported data about homologues of the cyanobacterial CpmA in some archaea (Katayama et al., 1999). However, no CpmA homologues have been found either in the photosynthetic α-proteobacteria (i.e. Rhodobacter, Rhodospirillum and Rhodopseudomonas) or in Chloroflexus, which all are reported to have kai genes and/or a kaiB operon laterally transferred from cyanobacteria (Dvornyk et al., 2003). In the screened genomes, the cpmA gene usually occurred in a single copy. The only exception was Trichodesmium erythraeum, which contained two copies. Those were identical by their nucleotide sequence, but different in length: one gene is shorter by 90 nucleotides from the 3’-end (Table 1).

The 16S rRNA tree obtained featured three major clades, which corresponded to Cyanobacteria, Proteobacteria and Archaea (Fig. 1). Importantly, the cyanobacterial clade had 100% statistical support. The topology of this clade was essentially in accordance with the conventional taxonomy of cyanobacteria (Castenholz, 1989), as well as with previously reported molecular data (Lyra et al., 2001; Turner, 1997). It indicated that apparently no horizontal transfers of 16S rRNA genes have occurred between the cyanobacterial species studied.

The phylogenetic tree of the cpmA genes showed their separation into four well-defined clades (Fig. 1). Clade C1 contained the genes only from cyanobacteria. Clade C2 comprised the genes from proteobacteria, while clade C4

Table 1. The MEGA 3.1 software (Kumar et al., 1997) with the respective amino acid sequences of...
Table 1. Sequences used in the study

<table>
<thead>
<tr>
<th>Species and strain</th>
<th>cpmA</th>
<th>16S RNA</th>
<th>ReA</th>
<th>Designation of sequence in the figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeoglobus fulgidus DSM 4304</td>
<td>690 NT</td>
<td>NC_000917</td>
<td>NP_070103.1</td>
<td>1492 NT</td>
</tr>
<tr>
<td>Methanothermobacter thermautotrophicus ΔH</td>
<td>753 NT</td>
<td>NC_000916</td>
<td>NP_276407.1</td>
<td>1479 NT</td>
</tr>
<tr>
<td>Methanococcales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanococcus jannaschii DSM 2661</td>
<td>771 NT</td>
<td>NC_000909</td>
<td>NP_247133.1</td>
<td>1476 NT</td>
</tr>
<tr>
<td>Methanopyrus kandleri AV19</td>
<td>708 NT</td>
<td>NC_003551</td>
<td>NP_631960.1</td>
<td>1512 NC_003551</td>
</tr>
<tr>
<td>Methanosarcina acetivorans C2A</td>
<td>834 NT</td>
<td>NC_003551</td>
<td>NP_613959.1</td>
<td>1430 NC_003552</td>
</tr>
<tr>
<td>Methanosarcina mazei Goe1</td>
<td>813 NT</td>
<td>NC_003901</td>
<td>NP_633640.1</td>
<td>1474 NC_003901</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermotoga maritima MSB8</td>
<td>756 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1559 NT</td>
</tr>
<tr>
<td>Clostridium acetobutylicum ATCC 824</td>
<td>747 NT</td>
<td>NC_003030</td>
<td>NP_347412.1</td>
<td>1510 NC_003030</td>
</tr>
<tr>
<td>Clostridium thermocellum ATCC 27405</td>
<td>762 NT</td>
<td>NC_003030</td>
<td>NP_347412.1</td>
<td>1239 NZ_AABG02000056</td>
</tr>
<tr>
<td>Lactobacillus plantarum WCFS1</td>
<td>741 NT</td>
<td>NC_004567</td>
<td>NP_789350.1</td>
<td>1571 NC_004567</td>
</tr>
<tr>
<td>Moorella thermoacetica ATCC 39073</td>
<td>771 NT</td>
<td>NC_004567</td>
<td>NP_789350.1</td>
<td>1268 NZ_AADT02000009</td>
</tr>
<tr>
<td>Staphylococcus epidermidis ATCC 12228</td>
<td>777 NT</td>
<td>NC_004461</td>
<td>NP_763927.1</td>
<td>1554 NC_004461</td>
</tr>
<tr>
<td>Thermoanaerobacter tengcongensis MB4T</td>
<td>762 NT</td>
<td>NC_003869</td>
<td>NP_622425.1</td>
<td>1527 NC_003869</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desulfotalea psychrophila LSv54</td>
<td>765 NT</td>
<td>CR522870</td>
<td>CAG35536.1</td>
<td>1492 AF099062</td>
</tr>
<tr>
<td>Desulfovibrio desulfuricans G20</td>
<td>1029 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1476 AF098671</td>
</tr>
<tr>
<td>Magnetococcus sp. MC-1</td>
<td>771 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1353 NZ_AABN02000022</td>
</tr>
<tr>
<td>Mesorhizobium loti</td>
<td>753 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1515 MXA239329</td>
</tr>
<tr>
<td>Wolinella succinogenes DSM 1740</td>
<td>774 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1481 WOLRR16SA</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anabaena sp. PCC 7120</td>
<td>769 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1492 AF099062</td>
</tr>
<tr>
<td>Anabaena variabilis ATCC 29413</td>
<td>789 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1489 17131110</td>
</tr>
<tr>
<td>Crocosphaera watsonii WH 8501</td>
<td>789 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1439 AB016520</td>
</tr>
<tr>
<td>Gloeobacter violaceus PCC 7421</td>
<td>795 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1465 AF132939</td>
</tr>
<tr>
<td>Nostoc punctiforme* PCC 73102</td>
<td>819 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1400 NP_906400.1</td>
</tr>
<tr>
<td>Prochlorococcus marinus CCMP 1375</td>
<td>789 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1400 NP_926362.1</td>
</tr>
<tr>
<td>Prochlorococcus marinus MED4</td>
<td>795 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1400 NP_926362.1</td>
</tr>
<tr>
<td>Prochlorococcus marinus MIT 913P</td>
<td>795 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1400 NP_926362.1</td>
</tr>
<tr>
<td>Synechococcus elongatus PCC 7942</td>
<td>783 NT</td>
<td>AF17208</td>
<td>AAD29318.1</td>
<td>1411 AF132939</td>
</tr>
<tr>
<td>Synechococcus sp. WH 8102</td>
<td>651 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1411 AF132939</td>
</tr>
<tr>
<td>Synechocystis sp. PCC 6803</td>
<td>641 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1411 AF132939</td>
</tr>
<tr>
<td>Thermosynechococcus elongatus BP-1</td>
<td>795 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1411 AF132939</td>
</tr>
<tr>
<td>Trichodesmium erythraeum IMS101</td>
<td>786 NT</td>
<td>NC_000853.1</td>
<td>NP_228773.1</td>
<td>1411 AF132939</td>
</tr>
</tbody>
</table>

Joint Genome Institute draft genome sequence (version as of 6 June 2005).
included those mainly from methanogenic archaea. The phylogenetic position of clade C3 deserves particular consideration for two important reasons. First, it definitely does not match the taxonomic position of the respective cyanobacterial species (Turner, 1997) and their positions in the 16S rRNA tree (Fig. 1). Nor does it correspond to the position of these species in the RecA phylogeny (Fig. 2). The most obvious explanation of the incongruence is lateral transfer from some early branching non-photosynthetic bacteria, as the tree topology suggests. This assumption is supported by the results of the Kishino–Hasegawa test (Kishino & Hasegawa, 1989), which strongly rejected the null hypothesis of 16S rRNA and CpmA tree compatibility ($P < 0.001$) using either the 16S rRNA or the CpmA sequence data and with all alternative trees.

Second, clades C1 and C3 have essentially the same topology as do the subtrees of the kaiBC operons and the sasA genes from the respective species (Dvornyk et al., 2004). Clade C1 includes the cpmA genes from the species with all three kai genes. The only exception is Gloeobacter violaceus, which has no kai genes (Nakamura et al., 2003). This incongruence, when analysed against the topologies of the CpmA tree and the 16S rRNA and RecA subtrees of cyanobacteria (Figs 1 and 2), suggests that the cpmA gene of G. violaceus was laterally transferred from one of the evolutionarily younger species. Clade C3 contains cpmA from cyanobacteria, which possess either all three clock genes (Synchococcus sp. WH 8102) or only two of them, kaiB and kaiC (three Prochlorococcus strains). The topology of this clade is also characteristic of the other components of the circadian system (i.e. kaiBC, sasA and ldpa; Dvornyk et al., 2004). Along with data from the phylogenetic analyses of 16S rRNA (Fig. 1) and RecA (Fig. 2), this suggests that the kaiA gene was laterally transferred to Synchococcus sp. WH 8102 from some other cyanobacteria. However, the taxa from which the transfer occurred can not be determined due to the limited data available.

Structure, polymorphism and mutation rates of the cpmA genes

The length of the CpmA protein homologues varied from 216 (Synchococcus sp. WH 8102) to 333 (Geobacter metallireducens) amino acid residues. According to the NCBI Conserved Domain Database (Marchler-Bauer et al., 2003), CpmA belongs to COG1691, the superfamily of NCAIR mutase (PurE)-related proteins, which catalyse the carboxylation of 5′-phosphoribosyl-5-amino-4-imidazole (AIR) to 5′-phosphoribosyl-5-aminoimidazole-4-carboxylic acid in purine biosynthesis (Meyer et al., 1992; Tiedeman et al., 1989; Watanabe et al., 1989). However, this classification is based on the general function prediction only. An analysis of the cpmA nucleotide polymorphism suggested that the gene probably consists of two functional domains. Each of them occupies about half of the gene. The N-terminal domain of the encoded protein is 85–203 amino acid residues long (corresponding to residues 1–120 of the S. elongatus PCC 7942 CpmA sequence). The C-terminal domain is less variable in length and spans 131–158 residues.

![Fig. 1. Congruent ML tree of the CpmA homologues and 16S rRNA genes. Interior-branch test values <50% are not shown. Branches a and b, for which positive selection was tested, are in bold. For the designations of the genes, see Table 1.](image-url)
It contains two hydrophobic cores (Katayama et al., 1999). This domain is homologous to the N-terminal segments of the other related proteins, AIR carboxylase (pfam00731) and NCAIR mutase (COG0041), though this homology is weak.

The two domains of the *cpmA* gene showed striking differences in the level of nucleotide polymorphism (Table 2). The C-terminal domain was much more highly conserved than the N-terminal one in all four major clades. The genes of C3 had a lower mean d_β than those of C2. To test whether this difference is due to the more stringent evolutionary constraints in C3, the age of the respective nodes and the nonsynonymous substitution rate were estimated. The time of *S. elongatus* PCC 7942 speciation, about 1000 MYA (Dvornyk et al., 2003), was used as a calibration point (node 1, Fig. 1). Based on this, the time of nodes 2, 3 and 4 was estimated to be 1207·75 ± 1·16, 1040·35 ± 2·54 and 2018·04 ± 7·74 MYA, respectively. Importantly, the time estimates for the nodes 1 and 3 were similar; this was in general agreement with the 16S rRNA tree, which suggested a close time of origin for the genera *Synechococcus* and *Prochlorococcus*. The respective mutation rates for nonsynonymous sites are given in Table 2. As the data suggest, the *cpmA* homologues from subfamilies C2 and C3 have the highest mutation rate, while the genes from two other subfamilies have a much lower one. The mutation rates in C2 and C3 are similar, so the differences in their d_β estimates are likely to be due to the different evolutionary ages of the subfamilies.

On the other hand, the mutation rate in C1 is 35–46 % lower than that in either C2 or C3. Given that the *cpmA* genes of this subfamily have at least one more important function,

Table 2. Patterns of nonsynonymous nucleotide substitutions (d_β) in the different regions of the *cpmA* genes

<table>
<thead>
<tr>
<th>Clade</th>
<th>N-terminal</th>
<th>Domain</th>
<th>C-terminal</th>
<th>Mean over gene</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0·422 ± 0·037</td>
<td>2·11</td>
<td>0·151 ± 0·026</td>
<td>0·76</td>
<td>0·305 ± 0·024</td>
</tr>
<tr>
<td>C2</td>
<td>0·686 ± 0·054</td>
<td>2·84</td>
<td>0·274 ± 0·038</td>
<td>1·13</td>
<td>0·494 ± 0·032</td>
</tr>
<tr>
<td>C3</td>
<td>0·640 ± 0·037</td>
<td>3·08</td>
<td>0·256 ± 0·040</td>
<td>1·23</td>
<td>0·442 ± 0·037</td>
</tr>
<tr>
<td>C4</td>
<td>0·852 ± 0·066</td>
<td>2·11</td>
<td>0·391 ± 0·040</td>
<td>0·97</td>
<td>0·623 ± 0·037</td>
</tr>
<tr>
<td>Total</td>
<td>0·869 ± 0·061</td>
<td>4·56</td>
<td>0·396 ± 0·045</td>
<td>0·97</td>
<td>0·622 ± 0·038</td>
</tr>
</tbody>
</table>

* × 10$^{-10}$ substitutions per nonsynonymous site per year.
regulation of the kaiA promoter (Katayama et al., 1999), as compared to C2 and C3, the lower mutation rate may be due to the evolutionary constraints related to this function.

Selective constraints in evolution of *cpmA* genes

The site-specific likelihood models assume variable selective pressures among sites but no variation among branches of a phylogenetic tree (Nielsen & Yang, 1998; Yang et al., 2000). The parameter estimates and log-likelihood values for these models are given in Table 3. Among the discrete models, M3 fits the data significantly better than M0, M1 or M2, according to the LRT (for nested models) or AIC criteria (for nonnested comparisons: M1/M3, M2/M3). This suggests heterogeneous selective pressures along whole *cpmA* sequences. However, ω values smaller than 1 indicate no positive selection on the whole set of the *cpmA* genes (Table 3). Among the continuous distribution models, model M8 was significantly better than M7 (P<0.0001). However, the mean ω value estimated under the best model (M8) is 0.066, and the proportion of sites under positive selection p_1 = 0, again implying strong purifying selection. These data favour the notion that, for the whole dataset, the main force acting is negative selection, with evidence for heterogeneous selection rates on different codons.

To test variation of the ω ratio among lineages, I proceeded from the hypothesis that selective constraints of the *cpmA* gene in the kaiABC-based circadian system might be influenced by the appearance of the kaiA gene and subsequent acquisition by *cpmA* of a new function, namely regulation of the kaiA promoter activity (Katayama et al., 1999). This might result in positive selection along branch a (Fig. 1). On the other hand, the lateral transfer of the *cpmA* gene from non-photosynthetic proteobacteria to photosynthetic cyanobacteria, if resulting in an acquisition of a new function by the gene, might also be followed by the period of positive selection (along branch b). I compared the log likelihood values under two models: the one-ratio model (M0 in the notation of Goldman & Yang, 1994), which assumes the same ω parameter for the entire tree, and the branch-specific-ratio model, which assumes the same \(d_{bs}/d_b\) ratio (ω_0) for the background lineages, while specifying either the same (ω_1 = ω_0 = ω_b, model 1) or different (ω_1 ≠ ω_b, model 2) ratios for lineages a and b (Fig. 1). The likelihoods of both models (\(L_1 = -22132.94\) and \(L_2 = -22132.56\)) were significantly better (P<0.0001) than that of M0 (\(L_0 = -22167.19\)), suggesting rejection of the one-ratio model and, consequently, different \(d_{bs}/d_b\) ratios along the lineages a and b as compared to the background ratio. The LRT statistic for the comparison of models 1 and 2 is \(2\Delta\ell = 2\times 0.38 = 0.76\), with \(P = 0.38\) and df = 1. It indicates that model 2 is not significantly better than model 1 and thus the ω ratios for lineages a and b are similar.

To test whether ω_1 is significantly higher than 1, the log likelihood value was calculated under the two-ratios model but with ω_1 = 1 fixed, giving the log likelihood value \(-22133.73\). The two-ratios model that does not place the constraint on ω_1 is not significantly better (\(L_1 = -22132.94\)); the test statistic is \(2\Delta\ell = 2\times 0.79 = 1.58\), with \(P = 0.21\) and df = 1. So ω_1 is not significantly greater than 1 at the 5% significance level (see Yang, 1998). However, this model averages the ω value along the sequence. Therefore, I further applied Yang and Nielsen’s branch-site model B (Yang & Nielsen, 2002), which is an extension of the M3 model and potentially allows for positive selection at some sites in both background and foreground lineages. This model suggested no sites under positive selection in the background branches (\(\omega = 0.085\)) and about 8% positively selected sites in the

Table 3. Parameter estimates and log-likelihood values under different models of variable ω ratios among sites

\(p\) is the number of free parameters for the ω ratios, \(d_{bs}/d_b\) = mean over sites. Parameters indicating positive selection are given in bold. For the detailed description of the models, see Nielsen & Yang (1998) and Yang et al. (2000).

<table>
<thead>
<tr>
<th>Model</th>
<th>(p)</th>
<th>(\ell)</th>
<th>AIC</th>
<th>(\omega)</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0: one ratio</td>
<td>1</td>
<td>-22167-19</td>
<td>-44336-38</td>
<td>0.046</td>
<td>(\omega = 0.046)</td>
</tr>
<tr>
<td>Site-specific models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1: neutral</td>
<td>1</td>
<td>-23390-03</td>
<td>-46782-06</td>
<td>0.821</td>
<td>(p_0 = 0.179, \omega_0 = 0, p_1 = 0.821, \omega_1 = 1)</td>
</tr>
</tbody>
</table>
| M2: selection | 3 | -23205-91 | -46405-82 | 0.948 | \(p_0 = 0.174, \omega_0 = 0, p_1 = 0.696, \omega_1 = 1,\)\)
| | | | | | \(p_2 = 0.130, \omega_2 = 1.948\) |
| M3: discrete (K=3) | 5 | -21251-96 | -42493-92 | 0.107 | \(p_0 = 0.274, \omega_0 = 0.005, p_1 = 0.340,\) |
| | | | | | \(\omega_1 = 0.044, p_2 = 0.386, \omega_2 = 0.121\) |
| M7: \(\beta\) | 2 | -28151-18 | -56298-36 | 0.093 | \(p = 0.109, q = 1.021\) |
| M8: \(\beta\) and \(\omega\) | 4 | -21221-93 | -42435-86 | 0.066 | \(p_0 = 1.000, p = 0.703, q = 9.566,\) |
| | | | | | \(p_1 = 0.000, \omega = 7.725\) |
| Branch-site model | 5 | -21333-31 | -42656-62 | | \(p_0 = 0.323, \omega_0 = 0.009, p_1 = 0.596,\) |
| Model B | | | | | \(\omega = 0.085, (p_2 + p_3) = 0.081, \omega_2 = 35.182\) |
foreground branches ($\omega = 35.182$). However, model B yielded the log likelihood value -21333.31, which does not fit the data better than the site-specific model M3 (Table 3). This suggests that, although $d_{\omega}/d_{\omega s}$ ratios vary along the different branches as well as among codons, they are probably not above 1 and thus do not indicate any positive selection.

DISCUSSION

The results of the phylogenetic analyses suggest that the cpmA homologues are evolutionarily old. The observed homology of CpmA to the PurE and AIR carboxylase proteins implies their probable common evolutionary ancestry. However, this homology is weak, and one could assume that, due to the large divergence, CpmA does not necessarily perform functions similar to those of PurE and AIR carboxylase. Moreover, as compared to the purE genes, which are ubiquitous in prokaryotes, the cpmA homologues occur in far fewer species. This may also suggest some alteration of their functions. However, lack of comprehensive molecular data about CpmA makes it impossible to infer these functions with reasonable accuracy.

Evolution of the cpmA genes of cyanobacteria has involved at least one influential horizontal transfer from proteobacteria, most likely from the early branching ones (Fig. 1). The fact that clade C3 is monophyletic suggests that transfer of this subfamily probably occurred before the speciation of Prochlorococcus. Based on the results of the molecular clock analysis, the time of the transfer may be estimated as about 1000 MYA. This is close to the time of origin of two other circadian-related genes, kaiA and ldpA (Dvornyk et al., 2003; Dvornyk, 2005). This correspondence is probably not accidental and may be in favour of the assumption that the most important events resulting in the 'evolutionary upgrade' of the kaiBC-based system to the kaiABC-based one (e.g. appearance of kaiA, ldpA and maybe some other as yet unknown genes) occurred about 1000 MYA (Dvornyk et al., 2003).

Horizontal (lateral) gene transfer is important in the evolution and adaptation of prokaryotes (Gogarten et al., 2002; Koonin et al., 2001). Recent data showed that, in the evolution of the cyanobacterial circadian system, lateral transfers of its various elements have been a common event (Dvornyk et al., 2003, 2004; Dvornyk & Nevo, 2004). However, except for a few documented transfers of the kaiB and kaiC genes from cyanobacteria to proteobacteria (Dvornyk et al., 2003), the other transfers have occurred only between cyanobacteria with the same type of system, either the kaiABC- or the kaiBC-based one (Dvornyk et al., 2004; Dvornyk, 2005).

The phylogenetic trees of all the components of the cyanobacterial circadian system studied so far (e.g. the kaiBC operon, sasA, ldpA and cpmA) have featured two clades (corresponding to C1 and C3 in Fig. 1). While the topology of each clade may vary, a set of the species within the clade is always the same. That is, none of the species of clade C3 ever appears in C1, and vice versa. The observed major congruence between the phylogenies of the various components of the circadian system (e.g. the kaiBC operon, sasA, ldpA and cpmA) has several important implications. First, it indicates that evolution of the genes involved in circadian control is probably system-specific, i.e. the genes within each of the two types of the cyanobacterial circadian system evolve concordantly. Second, each type of circadian system has specific functional and selective constraints, which preclude horizontal transfers of the components between the systems. The only exception to this rule is Synechococcus sp. WH 8102, which has all three kai genes. This might suggest that its circadian system is the kaiABC-based one. However, phylogenetic analyses of all currently known components of the system unambiguously place this species together with Prochlorococcus, which has the kaiBC-based system. Based on the analyses of the 16S rRNA (Fig. 1) and RecA (Fig. 2) sequences, Synechococcus sp. WH 8102 is phylogenetically positioned between *S. elongatus* PCC 7942 and Prochlorococcus. The tree topologies of the different circadian components may correspond merely because the 16S rRNA and RecA trees are similar and the rate of lateral transfer is low. However, this is unlikely in the case being considered. As mentioned above, the phylogenetic trees of the elements of the cyanobacterial circadian system studied so far are not fully congruent within the two main clades (Dvornyk et al., 2003, 2004). The incongruence may be due to a number of analytical and biological factors (Rokas et al., 2003), e.g. the choice of optimality criterion (Huelsenbeck, 1995), limited data availability (Cummings et al., 1995), taxon sampling (Graybeal, 1998), specific assumptions in the modelling of sequence evolution (Yang et al., 1994), natural selection or genetic drift (Maddison, 1997; Martin & Burg, 2002), and others. Among the possible reasons, horizontal transfers of the cpmA homologues seem to be the most feasible explanation of the observed incongruence. Apparently, horizontal transfers have been rather common between the species of the same clade. For example, multiple transfers of the kaiBC operon between closely related filamentous cyanobacteria in the Nostocaceae were recently reported (Dvornyk & Nevo, 2004). As follows from the results of the molecular phylogenetic analyses using small ribosomal subunit RNA (Turner, 1997), 16S rRNA (Fig. 1) and RecA (Fig. 2), the unicellular cyanobacteria *S. elongatus* PCC 7942 and Prochlorococcus are close relatives and thus clustered together. This might suggest that they should either have the same type of circadian system or experience horizontal transfers of some of its components. However, in the phylogenies of all known circadian-related genes, *S. elongatus* PCC 7942 and Prochlorococcus sp. always appear in clearly separated clades (Dvornyk et al., 2004; Dvornyk, 2005; Dvornyk & Knudsen, 2005). This means that the cyanobacterial system of *S. elongatus* PCC 7942 is different from that of Prochlorococcus sp. and is closer to the system of more phylogenetically distant filamentous cyanobacteria (*Nostoc, Anabaena*). So far, no apparent horizontal transfers between the different systems have been detected, except for the kaiA gene. Furthermore, the significant differences in
substitution rates between the components of the two systems (Dvornyk et al., 2004) are in favour of the assumption that the functional constraints are indeed system-specific.

In S. elongatus PCC 7942, cpmA was shown to modify the phasing and amplitude of class I rhythms (Katayama et al., 1999), which have their circadian peak near subjective dusk and their trough at subjective dawn (Liu et al., 1995). In particular, the disruption of cpmA significantly affects expression of psbAI and psbAII (Katayama et al., 1999), which encode two forms of the photosystem II reaction centre D1 protein (Golden et al., 1986; Schaefer & Golden, 1989). Given that among the prokaryotes with the cpmA homologues (Table 1) only cyanobacteria are photosynthetic, the genes of subfamilies C1 and C3 (Fig. 1) might be expected to perform similar functions related to photosynthesis. On the other hand, an important role of cpmA in the kaiABC-based circadian system is regulation of the kaiA promoter activity (Katayama et al., 1999). In this system, kaiA is critical for circadian oscillation, because it functions as an activator of the kaiBC promoter (Ishiiura et al., 1998). The exact mechanism of the effect of cpmA on circadian-like expression of the photosynthesis-related genes is still unknown. It may involve kaiA as an essential element. In such a case, in the kaiABC-based system lacking kaiA, the relevant function of cpmA is abolished and thus the genes of C3 seem not to be associated with the circadian system. However, if control of circadian-dependent expression of the photosynthesis-related genes by cpmA employs a different mechanism, without kaiA, and this mechanism is available in all cyanobacteria, another scenario is possible. It may imply that the lower mutation rate in the C1 subfamily is due to the constraints conferred by the interaction with the kaiA promoter, but in the rest, the genes of C1 and C3 perform essentially the same circadian-associated functions. While the former is probable, the latter seems more unlikely than the previous scenario. Indeed, as mentioned above, the lateral transfer of the C3 subfamily to cyanobacteria occurred about 1000 MYA, i.e. after the kaiB and kaiC genes formed an operon and joined into the circadian protosystem that happened between 3500 and 2320 MYA (Dvornyk et al., 2003), and after photosynthesis originated (Xiong et al., 2000). Moreover, the cpmA genes were probably transferred from evolutionarily old non-photosynthetic proteobacteria, i.e. a priori were not involved in regulation of photosynthesis. If the transferred cpmA genes were to acquire a new photosynthesis-related function, this process should hypothetically involve either positive Darwinian selection for functional divergence (Ohno, 1970) or relaxation of selective constraints (Zhang et al., 1998). However, as the results of the present study suggest, the cpmA genes of the C3 subfamily are under strong purifying selection. Although the genes of subfamily C1 are under strong purifying selection too, they, in contrast to C3, have evolved together with photosynthesis-related genes and the other components of the circadian system. Hence their evolution should be concordant to ensure proper interactions between the genes.

The present study of the cpmA genes provides further evidence for the complex nature of evolution of the prokaryotic circadian system and the different time of origin of its components. It also raises new questions to be answered. For example, the system with kaiA remains functional even after disruption of some other elements, e.g. sasA (Iwasaki et al., 2000), ldpA (Katayama et al., 2003) or cpmA (Katayama et al., 1999), despite the lower fitness of the mutants. Does the kaiABC-based system do similarly? How does the N-terminal domain of cpmA contribute to the circadian function of the gene? The evolutionary data obtained provide a basis for further studies of molecular mechanisms underlying the control of circadian rhythmicity in cyanobacteria.

ACKNOWLEDGEMENTS

I wish to thank Professor Outi Savolainen (University of Oulu, Finland) and Dr Claus Vogl (University of Veterinary Medicine, Vienna, Austria) for their critical reading and helpful comments on the early draft of the paper.

REFERENCES

Evolution of cpmA genes in cyanobacteria

