Genome Update: base skews in 200+ bacterial chromosomes

Nine new microbial genomes have been published since the last Genome Update was written, seven of which are from bacterial organisms and the other two are Plasmodium genomes. These are summarized in Table 1 and include two α-Proteobacteria, Anaplasma marginale and Zymomonas mobilis, the latter of which is an ethanologenic bacterium; the deep-sea γ-proteobacterium Idiomarina loihiensis; the thermophilic Bacillus-related species Geobacillus kaustophilus; a PCE-dechlorinating bacterium, Dehalococcoides ethenogenes, which is the first sequenced genome from the phylum Chloroflexi; Salmonella enterica, which causes typhoid in humans; and Campylobacter jejuni, which is the major cause of human bacterial gastroenteritis. The two Plasmodium genomes, Plasmodium chabaudi and Plasmodium berghei, have also been sequenced for use as model malaria species. A brief discussion of these is given below.

Genomes of the month

Anaplasma marginale is an intracellular bacterium of the order Rickettsiales, and is the most prevalent tick-borne livestock pathogen throughout the world. The St Marys strain of A. marginale has a genome length of 1-2 Mb with 949 protein-encoding genes and a high coding density of 86% (Brayton et al., 2005). The G+C content of 49-8 mol% is unusually high for an obligate, intracellular organism (other sequenced rickettsiae species average 31 mol%). Due to reductive evolution, many Rickettsiales bacteria contain a large number of pseudogenes – A. marginale, however, contains few inactive copies of functional genes and has only 14 genes defined as functional pseudogenes. The surface coat of A. marginale contains two immunodominant surface protein complexes, mainly Msp2 and Msp3, from the msp2 and msp3 superfamily. Simultaneous switching of the msp2 and msp3 variants during infection allows the bacteria to generate antigenic variants, maintaining a persistent infection in the host organism. No vaccine currently exists for A. marginale, and a primary focus for ongoing studies must be the immunodominant members of the two previously mentioned superfamilies.

Four strains of Campylobacter, including Campylobacter coli RM2228, Campylobacter jejuni RM1221, Campylobacter lari RM2100, and Campylobacter upsaliensis RM3105 have been sequenced and compared, although only C. jejuni has been fully sequenced as one contiguous piece (the others have been sequenced to at least eightfold coverage and assembled such that most of the chromosome is covered by a few large pieces). C. jejuni consists of a single, circular chromosome of 1-8 Mb, has a G+C content of 30-31 mol% (see Table 1) and 94 % of the genome represents coding sequences (Fouts et al., 2005). A comparison of the newly sequenced Campylobacter species to C. jejuni strain NCTC 11168, sequenced by Parkhill et al. (2000), revealed that the main difference between the two C. jejuni strains is the presence of four large integrated elements (IE) within strain RM1221. Also, as expected, the two C. jejuni strains appear to be closer to each other than to the other Campylobacter species.

Dehalococcoides ethenogenes strain 195 was obtained from an anaerobic sewage digester. It is the only known bacterium with the ability to completely dechlorinate groundwater pollutants such as tetrachloroethane (PCE) and trichloroethane (TCE) to the non-toxic substance ethane, unlike other anaerobic dehalorespiers such as Dehalobacter restrictus that perform incomplete dechlorination to the toxic cis-dichloroethane (DCE). The genome of D. ethenogenes is composed of a 1-4 Mb circular chromosome containing 1591 CDS (see Table 1) as well as large duplicated regions and several integrated elements, which represent 13-6% of the genome. D. ethenogenes contains genes for 17 reductive dehalogenases (RD), 16 of which are found in close proximity to genes for transcription regulators, suggesting stringent regulation of RD activity (Seshadri et al., 2005). Unlike other gene groups in the D. ethenogenes genome, RD genes display a strong orientation bias in that all RD operons are oriented in the direction of replication. The discovery of genes encoding nitrogenase and other nitrogenase-essential components indicates that D. ethenogenes is able to fix nitrogen, suggesting a nitrogen-fixing autotroph as an ancestor.

Geobacillus kaustophilus strain HTA426 is a thermophilic Bacillus-related species.
isolated from sediment taken from the Mariana trench. It can grow in temperatures up to 72°C with an optimal growth temperature of 60°C. This is the highest G+C content of 52.1 mol%, the smallest genome of this grouping, but the highest G+C content. It has a single chromosome with 4789 ORFs, four rRNA operons and 56 tRNA genes are predicted.

Table 1. Summary of the published genomes discussed in this update

<table>
<thead>
<tr>
<th>Name</th>
<th>Genome length (bp)</th>
<th>A + T (mol%)</th>
<th>No. of genes</th>
<th>tRNAs</th>
<th>rRNAs</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaplasma marginale St Maries</td>
<td>1197687</td>
<td>50.2</td>
<td>949</td>
<td>37</td>
<td>1</td>
<td>CP0000030</td>
</tr>
<tr>
<td>Dehalococcoides ethenogenes 195</td>
<td>1469720</td>
<td>51.1</td>
<td>1591</td>
<td>46</td>
<td>1</td>
<td>CP0000027</td>
</tr>
<tr>
<td>Campylobacter jejuni RM1221</td>
<td>1777831</td>
<td>69.7</td>
<td>1838</td>
<td>44</td>
<td>3</td>
<td>CP0000025</td>
</tr>
<tr>
<td>Campylobacter lari RM2100</td>
<td>1500000</td>
<td>73.1</td>
<td>1554</td>
<td>42</td>
<td>1</td>
<td>AAFL00000000</td>
</tr>
<tr>
<td>Campylobacter upsaliensis RM3195</td>
<td>1660000</td>
<td>69.8</td>
<td>1782</td>
<td>43</td>
<td>3</td>
<td>AAFL00000000</td>
</tr>
<tr>
<td>Campylobacter coli RM2228</td>
<td>1680000</td>
<td>71.4</td>
<td>1764</td>
<td>43</td>
<td>3</td>
<td>AAFL00000000</td>
</tr>
<tr>
<td>Geobacillus kaustophilus HTA426</td>
<td>3544776</td>
<td>47.9</td>
<td>3498</td>
<td>87</td>
<td>9</td>
<td>BA000043</td>
</tr>
<tr>
<td>Geobacillus kaustophilus pHTA426</td>
<td>47890</td>
<td>55.8</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>AP006520</td>
</tr>
<tr>
<td>Idiomarina loihiensis L2TR</td>
<td>2839318</td>
<td>53.0</td>
<td>2628</td>
<td>56</td>
<td>4</td>
<td>AE017340</td>
</tr>
<tr>
<td>Salmonella enterica ATCC 9150</td>
<td>4585229</td>
<td>47.8</td>
<td>4093</td>
<td>82</td>
<td>7</td>
<td>CP0000026</td>
</tr>
<tr>
<td>Zymomonas mobilis ZM4</td>
<td>2056416</td>
<td>53.7</td>
<td>1998</td>
<td>51</td>
<td>3</td>
<td>AE008692</td>
</tr>
<tr>
<td>Plasmadium berghei</td>
<td>1799687</td>
<td>–</td>
<td>5864</td>
<td>–</td>
<td>–</td>
<td>CAAJ01000000</td>
</tr>
<tr>
<td>Plasmadium chabaudi</td>
<td>1686661</td>
<td>–</td>
<td>5698</td>
<td>–</td>
<td>–</td>
<td>CAAJ01000000</td>
</tr>
</tbody>
</table>

G. kaustophilus has a different negatively charged polymer in its cell wall.

A very interesting finding is the absence of both glyQ and glyS orthologues that encode the α- and β-subunits, respectively, of glycol tRNA synthetase. Since the bacterium cannot survive without the ability to charge tRNAGly, either this activity resides in a non-orthologous protein or tRNAGly is mischarged by another aminoaucyl tRNA synthetase with subsequent modification of the aminoaucyl group to glycine, as happens, for example, for glutamine in B. subtilis.

Dissection of those genomic features that correlate with thermophily suggest that an increased G+C content of RNA, amino acid composition and asymmetric substitution of some amino acids contribute to thermophilic adaptation. However, there is no correlation between thermophilic adaptation activities encoded among the G. kaustophilus-specific genes.

Idiomarina loihiensis is a deep-sea γ-proteobacterium that has recently been isolated from a hydrothermal vent on a submarine volcano in Hawaii. Here it lives in the partially oxygenated cold waters at the periphery of the vent. Its genome consists of a single circular chromosome of 2.8 Mb and has a mean G+C content of 47 mol%. As shown in Table 1, 2628 ORFs, four rRNA operons and 56 tRNA genes are predicted.

I. loihiensis may survive a wide range of growth temperatures and salinities. As seen in many other deep-sea bacteria (Ivanova et al., 2000), it exhibits a limited ability to utilize carbohydrates as its sole source of carbon and energy. Many typical carbohydrate degradation enzymes present in other proteobacteria appear to be missing. Instead, in comparison to other γ-proteobacteria, it shows an abundance of amino acid transport and degradation enzymes, suggesting that the primary source of carbon and energy may be amino acids rather than sugars. Similar to other deep-sea vent microorganisms, I. loihiensis produces a highly viscous exopolysaccharide that has been suggested to be used by vent micro-organisms to develop biofilms (Hou et al., 2004).
Salmonella enterica and Salmonella bongori. More than 2,000 serovars comprise S. enterica, and S. enterica serovars often have a broad host range and cause gastrointestinal and systemic diseases. Two serovars, Paratyphi A and Typhi, are restricted to humans and cause only systemic disease. The S. enterica serovar Paratyphi A (strain ATCC 9150) genome is 4·6 Mb long, with an A + T content of 47 mol% and has 4263 annotated CDS (McClelland et al., 2004). There are also 82 tRNA genes, 7 rRNA clusters and 36 structural RNAs identified. Comparing the Paratyphi A genome with the Typhi genome by using sequence and microarray analysis has shown that both genomes have independently accumulated many pseudogenes among their 4400 CDS (173 for Paratyphi A and 210 for Typhi) and only 30 genes are degraded in both serovars. These 30 genes include many of the known virulence genes for gastrointestinal infections.

Zymomonas mobilis ZM4 is another γ-proteobacterium, and although its genome is almost twice as large as A. marginale (it consists of a single, circular chromosome of 2·06 Mb), they are both at the smaller end of the γ-Proteobacteria, with species such as Bradyrhizobium japonicum being almost 10 times as large as A. marginale with a genome size of 9·1 Mb (Seo et al., 2005). Z. mobilis has a G + C content of 46·3 mol% (see Table 1) and is an ethanologenic bacterium with great potential for use in the industrial production of ethanol as an alternative fuel. Analysis of its genome revealed that Z. mobilis has the ability to produce several hexose-metabolizing enzymes, which enables it to utilize sucrose, fructose and glucose as well as mannose, raffinose and sorbitol. The gene encoding an essential enzyme in the Embden–Meyerhof–Parnas pathway was not found, suggesting that Z. mobilis, like other Zymomonas species, utilize the Entner–Doudoroff pathway for glucose catabolism. Furthermore, two genes encoding enzymes in the TCA pathway were lacking, indicating the presence of an alternative to this pathway. Z. mobilis ZM4 was compared to the Z. mobilis ZM1 strain, revealing the presence of 54 ORFs in ZM4 not found in ZM1. These genes peculiar to ZM4 presumably account for the higher rates of growth, glucose uptake and ethanol production seen in ZM4 compared to ZM1. Such genes may prove invaluable when creating recombinant bacterial strains that ferment higher levels of ethanol.

Comparison of two rodent malaria parasite species Plasmodium chabaudi and Plasmodium berghei with the human-infectious malaria species Plasmodium falciparum revealed that the rodent parasites have 4391 orthologous genes in P. falciparum, which represent a universal plasmodium gene set (Hall et al., 2005). Proteins could be categorized into four strategies for gene expression during the parasite life cycle: (1) housekeeping, (2) host-related expression, (3) strategy-specific expression and (4) stage-specific expression.

Method of the month – base skews and DNA replication origins

This month we are looking at base skews in the recently sequenced genomes. Based on origin and terminus predictions using ORIGINSX software (P. Worning, L. J. Jensen, P. F. Hallin, H.-H. Stærfeldt & D. W. Ussery, unpublished data), available from www.cbs.dtu.dk/services/GenomeAtlas/suppl/origin/, we have included A/T and G/C skews for the leading and lagging strands as well as signal-to-noise ratios (S/N ratio). The S/N value measures the ratio between signal strength ($I_{p,max} - I_{p,min}$) and $I_{p,min}$ where I_p is the summed information content of all oligonucleotides of leading

Fig. 1. G/C and A/T skews and S/N ratios in the context of the 16S rRNA tree. Only the Firmicutes have the PolC polymerase subunit causing the positive A/T skew. Also, it can be seen that the new phylum of Chloroflexi (Dehalococcoides ethenogenes) aligns distantly from the other recently sequenced genomes.
Fig. 2. G/C (a) and A/T skews (b) and S/N ratios (c) for different subdivisions of the Proteobacteria.

versus lagging strands, assuming \(p \) is the origin. Based on programming done by Worning and colleagues (P. Worning, L. J. Jensen, P. F. Hallin, H.-H. Stærfeldt & D. W. Ussery, unpublished data), we have measured this signal and produced origin plots for all circular prokaryotic sequences in our database.

Although this month’s genomes are few in number in comparison with the contents of our entire database, a trend among these skew can be derived. We have collected the presence/absence of the polymerase C subunit (PolC), A/T and G/C skews and S/N ratios and listed the newly sequenced genomes according to their location in a neighbour joining tree, drawn from an alignment of 16s rRNA. This comparison is shown in Fig. 1. As described above, the Firmicutes show high S/N ratios as well as high G/C and A/T skews. The positive A/T skews, as suggested by Worning and colleagues (P. Worning, L. J. Jensen, P. F. Hallin, H.-H. Stærfeldt & D. W. Ussery, unpublished data), are explained by the presence of PolC. We also noticed a trend in that the \(\gamma \)- and \(\epsilon \)-Proteobacteria show high G/C skews and small negative A/T skews, whereas the \(\alpha \)-Proteobacteria show large negative A/T skews and smaller positive G/C skews.

Are the differences in base skews related to phyla? We extracted G/C and A/T skews and S/N ratios from the Genome Atlas Database. From the Box and Whiskers plot in Fig. 2(a) it can be observed that the G/C skews are higher for \(\gamma \)- and \(\epsilon \)-Proteobacteria compared to those of \(\alpha \)- and \(\beta \)-Proteobacteria. A significant difference in G/C skew exists between \(\alpha \)- and \(\epsilon \)-Proteobacteria. In Fig. 2(b) the A/T skew is observed to be significantly higher for \(\epsilon \)-Proteobacteria than for other Proteobacteria. As was the case among the recently sequenced genomes shown in Fig. 1, \(\gamma \)-Proteobacteria display higher S/N ratios compared to those of the \(\alpha \)-Proteobacteria as shown in Fig. 2(c).

Additionally, bar charts were constructed to visualize base skews and composition in various chromosomal regions, namely (1) 150 bp upstream regions, (2) ORFs, leading/lagging strands and (3) the entire chromosome. These bar charts can be explored for every organism having annotated ORFs at www.cbs.dtu.dk/services/GenomeAtlas/suppl/GenUp014/

Supplemental web pages
Additional web pages containing supplementary material related to this article can be accessed from www.cbs.dtu.dk/services/GenomeAtlas/suppl/GenUp014/

Acknowledgements
This work was supported by a grant from the Danish Center for Scientific Computing.

Peter F. Hallin, Natasja Nielsen, Kevin M. Devine, Tim T. Binnewies, Hanni Willenbrock and David W. Ussery

Center for Biological Sequence Analysis, Department of BiotecnoLOGY, Building 208, The Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

†Present address: Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland

Correspondence: David W. Ussery (dave@cbs.dtu.dk)

DOI 10.1099/mic.0.27889-0