


DOI 10.1099/mic.0.28423-0

Clinical significance of seeding dispersal in biofilms

We read with interest the recent paper by Purevdorj-Gage et al. (2005) on seeding dispersal in Pseudomonas aeruginosa biofilms. The authors compared a mucoid cystic fibrosis (CF) P. aeruginosa strain (strain FRD1) with strain PAO1 and found it to be seeding-dispersal-negative. They concluded that seeding dispersal might not be utilized by mucoid variants of CF strains, but rather be a transmission mechanism utilized by environmental strains of P. aeruginosa. We have been investigating mucoid CF isolates in a flow-through biofilm model (Webb et al., 2003) and have some observations that are relevant to this conclusion. Our studies have shown that CF isolates can exhibit biofilm developmental processes and seeding dispersal similar to strain PAO1 in this experimental model. We found that CF P. aeruginosa isolates (n=6) each exhibited a characteristic pattern of biofilm development and microcolony formation that was reproducible and ‘true to strain’ in replicated biofilm experiments. Some CF strains exhibited a developmental pattern similar to that reported for strain FRD1, without obvious seeding dispersal within the time-frame of our experiments (7 days). However, other strains did form hollow structures with highly motile cells in the centre and seeding dispersal events, as described for strain PAO1, after 4–5 days of culture (Fig. 1a, b). Clearly, much still remains to be understood about the mechanisms underlying seeding-dispersal and ‘hollow-colony’ formation. Previous studies using P. aeruginosa strain PAO1 linked this behaviour with bacteriophage-mediated lysis of a subpopulation of cells inside microcolony structures. We also observed dispersal-associated death in our CF isolates. BacLight LIVE/DEAD staining (Molecular Probes) of CF biofilms after day 6 of culture showed that all six strains tested exhibited regions of cell death within microcolonies. For at least one strain the pattern of cell death was identical to that seen with strain PAO1 (e.g. Fig. 1c).

Coincident with this microcolony death, bacteriophage titles reached levels of >107 p.f.u. ml−1 in flow-cell effluents. Our evidence to date thus suggests that death-associated dispersal mechanisms, as have been described for strain PAO1 (Webb et al., 2003, 2004), are also central to CF strain transmission.

S. M. Kirov1, J. S. Webb2 and S. Kjelleberg2

1School of Medicine, University of Tasmania, Private Bag 29, Hobart, Tasmania 7001, Australia

Fig. 1. Microcolonies of mucoid CF strains seen in a flow-cell model. (a) Sites of evacuation ‘blebs’ (arrows) from a hollow microcolony (strain U3A) after 4 days of culture. Bar, 46 μm. (b) A hollow microcolony (strain U3A) after 4 days of culture showing highly motile cells which appear blurred in the centre. Bar, 19 μm. (c) Cell death in the central region of a microcolony (strain 75) at ~7 days of culture (x–y plane view; BacLight LIVE/DEAD viability stain). Live cells fluoresce green; dead cells appear red in this confocal micrograph. Bar, 15 μm.
Clinical significance of seeding dispersal in biofilms: a response

We welcome the dialogue concerning the potential clinical significance of seeding dispersal (Purevdorj-Gage et al., 2005) in the life cycle of mucoid Pseudomonas aeruginosa biofilms. We had based our hypothesis that the seeding dispersal phenomenon may be more relevant for non-mucoid, environmental strains on (1) the propensity of diseases associated with reduced mucociliary clearance in the lung, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD), to select for mucoid P. aeruginosa phenotypes, and (2) that conversion to mucoidy is usually associated with a concomitant down-regulation of flagella production and loss of swimming motility (see Garrett et al., 1999). However, as Kirov et al. discuss above, there may be greater diversity in mucoid CF isolates than generally acknowledged, and the perceived dichotomy between mucoidy and swimming phenotypes should be a topic for debate. More recently it has been shown that expression of flagellum genes in response to oxygen limitation precedes loss of mucoidy and is reversible during this state of transition (Wyckoff et al., 2002). Further, in an ongoing screen of mucoid CF isolates it was found that 6 out of 20 were motile (D. J. Wozniak, personal communication). However, it was suspected that growth medium may also play a role in the outcome of the motility assay and exact proportions may vary depending on culture conditions. The growth-condition-dependent transient switching between mucoid and swimming phenotypes is problematic when relating a particular biofilm behaviour with phenotype and stresses the importance of attempting to characterize the phenotypic state at various time points during biofilm development. Broadly though, the finding of Dr Wozniak is in agreement with that of Kirov et al. We agree that to fully assess the role of seeding dispersal (and other yet unidentified behavioural developmental phenotypes) in the context of lung infections, biofilm studies should include greater diversity in strains, growth conditions and be conducted over longer time scales. The interesting observation that seeding motility occurred in a mucoid CF isolate clearly demonstrates that the phenomenon may have clinical relevance.

Another point we would like to briefly address is the difference in terminology used by our two groups in reference to the hollowing out of clusters. Kirov et al. refer to hollowing resulting from ‘bacteriophage-mediated lysis’ as ‘death-associated dispersal’. We use the term ‘seeding dispersal’ in a more general sense to describe sequential steps from the formation of microcolonies culminating in the release of live cells from the centres of the colonies. Our working hypothesis for seeding dispersal which integrates observations from our two groups is thus: (1) the formation of cell clusters; (2) the differentiation of the cell cluster into two or possibly three distinct phenotypes consisting of the cells in the stationary cluster ‘wall’, the highly motile seeding subpopulation in the interior and the lysing interior subpopulation (Webb et al., 2003) which allows the interior to liquefy; (3) highly agitated ‘seeding motility’ in the interior; and finally (4) the swimming, or swarming, of cells out of the microcolony. In the case of PAO1 the release appears to occur through directed motility, but we recognize that hollowing in non-motile species such as Staphylococcus epidermidis (P. Stewart & B. Pitts, personal communication) and Actinobacillus actinomycetemcomitans (Kaplan et al., 2003) may be driven by water currents. It is interesting to speculate that the recent increase in reports of hollow clusters occurring in a diversity of bacterial biofilms is evidence of convergent evolution in biofilm development.

P. Stoodley, B. Purevdorj-Gage and J. W. Costerton

1Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, USA
2Center for Biofilm Engineering and Dept of Microbiology, Montana State University-Bozeman, MT 59717, USA
3University of Southern California, Center For Biofilms, Los Angeles, CA, USA

Correspondence: B. Purevdorj-Gage (laura_p@erc.montana.edu)


