Temperature adaptation in Dictyostelium: role of Δ5 fatty acid desaturase

Tamao Saito,1 Atsushi Kato,1 Hiroshi Ochiai1 and Naoki Morita2

1Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
2Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo 062-8517 Japan

Membrane fluidity is critical for proper membrane function and is regulated in part by the proportion of unsaturated fatty acids present in membrane lipids. The proportion of these lipids in turn varies with temperature and may contribute to temperature adaptation in poikilothermic organisms. The fundamental question posed in this study was whether the unsaturation of fatty acids contributes to the ability to adapt to temperature stress in Dictyostelium. First, fatty acid composition was analysed and it was observed that the relative proportions of dienoic acids changed with temperature. To investigate the role of dienoic fatty acids in temperature adaptation, null mutants were created in the two known Δ5 fatty acid desaturases (FadA and FadB) that are responsible for the production of dienoic fatty acids. The fadB null mutant showed no significant alteration in fatty acid composition or in phenotype. However, the disruption of fadA resulted in a large drop in dienoic fatty acid content from 51·2 to 4·1 % and a possibly compensatory increase in monoenoic fatty acids (40·9–92·4 %). No difference was detected in temperature adaptation with that of wild-type cells during the growth phase. However, surprisingly, mutant cells developed more efficiently than the wild-type at elevated temperatures. These results show that the fatty acid composition of Dictyostelium changes with temperature and suggest that the regulation of dienoic fatty acid synthesis is involved in the development of Dictyostelium at elevated temperatures, but not during the growth phase.

INTRODUCTION

The physical properties of phospholipids mainly depend on the degree of unsaturation of the fatty acids esterified to the glycerol backbone. An increased degree of unsaturation increases the mobility of the acyl chains and consequently increases the fluidity of the membrane formed from them (Murata & Wada, 1995). Membrane fluidity may, in turn, affect the function of various membrane proteins and their appropriate targeting within the cell, as well as membrane trafficking (Gurr et al., 2002).

When food is supplied, Dictyostelium amoebae live as a unicellular organism. Upon starvation, a developmental program is initiated that leads to the formation of the multicellular structure. Dictyostelium cells grow and develop in leaf litter of temperate forests and so must be able to thrive over a range of temperatures. The growth temperature of Dictyostelium discoideum influences its subsequent development. The effect of growth temperature on Dictyostelium development has been analysed by Das et al. (1980). They reported that an increase in the growth temperature enhanced development at higher temperatures. However, they also reported that the fatty acid composition of Dictyostelium lipids did not change significantly with the growth temperature (Das et al., 1980). This would be unusual, given the adaptation of fatty acid composition to temperature known from other organisms (Los & Murata, 1998), and we therefore re-examined this observation. To determine whether the degree of unsaturation of fatty acids contributes to temperature adaptation, we altered the degree of unsaturation of fatty acids by manipulation of the genes that encode the enzymes responsible for the desaturation of fatty acids.

The major fatty acids present in Dictyostelium lipids are C16 and C18, and these are mainly unsaturated at positions Δ9 and Δ9 (Weeks & Herring, 1980). These modifications are introduced into the alkyl chains by specific desaturase enzymes. By the use of sequence information from the Dictyostelium cDNA project (Morio et al., 1998), we have previously identified two potential Δ5 fatty acid desaturases, FadA and FadB, encoded by fadA and fadB, respectively, and...
confirmed that both enzymes are responsible for the production of dienoic fatty acids in the slime mould (Saito & Ochiai, 1999; Saito et al., 2000).

In the present report, we describe the changes in the relative proportions of fatty acids in Dictyostelium according to the temperature and the disruption of fadA and fadB. Using these mutants, we address the question of whether dienoic fatty acids are involved in temperature adaptation.

METHODS

Cell culture and development. Dictyostelium discoideum axenic strain Ax2 was used as the parental strain and was grown in HL-5 medium at 22 °C (Watts & Ashworth, 1970). To examine the effects of growth temperature on fatty acid composition, cells grown at 22 °C were inoculated at a density of 5×10^6 cells ml$^{-1}$ and incubated in a shaking suspension (160 r.p.m.) at 15, 22 and 25 °C, respectively, until they reached a density of $1 \times 10^6–2 \times 10^6$ cells ml$^{-1}$. The effect of successive and accurate changes of growth temperature was examined with wild-type cells incubated in a temperature gradient incubator (Advantec Toyo, TVS126MA).

Morphogenesis was observed on nitrocellulose filters (Millipore) on top of filter pads soaked in 17 mM phosphate buffer (pH 6.2), or under submerged conditions. Wild-type and fadA null mutants were incubated at 22 °C, harvested and washed with phosphate buffer. Then the cells were placed in a 12-well titre plate at a density of 5×10^5 cells cm$^{-2}$ or on a nitrocellulose filter at a density of 2×10^6 cells cm$^{-2}$ and incubated at 22 and 27 °C. Photographs were taken with a digital camera (Olympus HC-300z/OL) attached to a stereo-microscope (Olympus SZX12). To examine the change in fatty acid composition with respect to development, cells were incubated with axenic medium and washed with phosphate buffer (pH 6.2), and then spread on phosphate buffer containing 1.5% agar at a density of $1 \times 10^6–2 \times 10^6$ cm$^{-2}$.

To examine the effect of thermal stress on growth, the number of surviving cells was counted after 24 h incubation at 30 °C with shaking.

Spore formation was examined by counting the number of Triton X-100-resistant cells after 40 h incubation on a nitrocellulose filter at 22 and 27 °C (Kay, 1989).

Fatty acid analysis. Total lipids were extracted (Bligh & Dyer, 1959) from wet cells of Dictyostelium and subjected to methanolysis with 10% acetyl chloride in methanol for 3 h at 100 °C. Cells grown in a temperature gradient incubator were subjected to methanolysis directly with 10% acetyl chloride in methanol. Analysis of the methyl esters by GC was performed as described by Matsuoka et al. (2003).

Plasmid construction and transformation. fadA and fadB disruption cassettes were constructed by PCR. The genomic fragment of each gene was amplified and ligated into pT7Blue T-vector (Novagen) as described previously (Saito & Ochiai, 1999; Saito et al., 2000). The fadA and fadB genomic fragments were digested with HindIII and BglII, respectively. Then the blasticidin S resistance gene cassette was inserted into the HindIII site of fadA and the BglII site of fadB, respectively. These plasmids were purified with the Plasmid Maxi Kit (Qiagen). Fifteen micrograms of each plasmid was introduced into Ax2 cells via electroporation, using the same conditions described by Adachi et al. (1994).

Selection at 5 μg blasticidin S ml$^{-1}$ (Funakoshi) was started on the day after transformation, and after 7–10 days, resistant cells were plated in association with Klebsiella aerogenes on SM agar plates. Clones were screened by genomic PCR and RT-PCR to confirm disruption of each gene. All the transformants were grown under selective conditions.

To confirm the disruption of each gene, RT-PCR was performed using the following primers: fadA, 5’-AGATGGGTACCATCAGTCCAG-GTGG-3’ and 5’-GGTTCACTGTCATTCCAGGTTAGC-3’; fadB, 5’-CGATGCACTGACATTGCGCCCAACAGC-3’ and 5’-CCCAAATCT-TAGTTAAGGTTTG-3’. The reactions were performed according to the manufacturer’s instructions (One Step RNA PCR kit; Takara).

RESULTS

The fatty acid composition of Dictyostelium lipids adapts to their growth temperature

Previous work had suggested that the fatty acid composition of Dictyostelium lipids does not change significantly with growth temperature (Das et al., 1980). This would be unusual, since the adaptation of fatty acid composition to temperature is well known from other organisms (Los & Murata, 1998), and we therefore re-examined the fatty acid composition of Dictyostelium lipids at different temperatures. Our results show that the proportions of the different unsaturated fatty acids change significantly as the growth temperature is increased from 15 to 25 °C, but with subtle differences between different fatty acids. Table 1 shows the fatty acid composition at various temperatures. The amounts of C16:2(5,9) and C18:2(5,11) decreased according to the increase in temperature (5-2-2·3% and 39-8-28·7%, respectively). On the other hand, the amount of C18:2(5,9) increased (5·6-14·6%). The total amount of Δ5 desaturated products also decreased with the increase in

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Percentage (± SD) at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 °C</td>
<td>22 °C</td>
</tr>
<tr>
<td>16:0</td>
<td>7·1 (0·7)</td>
</tr>
<tr>
<td>16:1(9)</td>
<td>4·9 (0·1)</td>
</tr>
<tr>
<td>16:2(5,9)</td>
<td>5·2 (0·5)</td>
</tr>
<tr>
<td>17:0</td>
<td>0·4 (0)</td>
</tr>
<tr>
<td>17:1(9)</td>
<td>1·5 (0·3)</td>
</tr>
<tr>
<td>17:2(5,9)</td>
<td>1·4 (0·1)</td>
</tr>
<tr>
<td>18:0</td>
<td>0·5 (0·2)</td>
</tr>
<tr>
<td>18:1(9)</td>
<td>1·6 (0·2)</td>
</tr>
<tr>
<td>18:1(11)</td>
<td>29·4 (2·5)</td>
</tr>
<tr>
<td>18:2(5,9)</td>
<td>5·6 (0·6)</td>
</tr>
<tr>
<td>18:2(5,11)</td>
<td>39·8 (1·3)</td>
</tr>
<tr>
<td>Others</td>
<td>2·6 (0·1)</td>
</tr>
<tr>
<td>Δ5 desaturation</td>
<td>52·0</td>
</tr>
</tbody>
</table>

Table 1. Effect of growth temperature on major fatty acid compositions of total lipid from wild-type cells

Others, minor unidentified acids; Δ5 desaturation, total ratio of Δ5 desaturated fatty acids.
temperature. For further investigation of the effect of successive changes in growth temperature, wild-type cells were incubated in a temperature gradient incubator. Fig. 1 shows the changes in the proportions of C18:2 fatty acids and Δ5 desaturated acids according to temperature. Since the major change in fatty acid composition was found in the dienoic acids, we suggest that the production of dienoic acids is important for temperature adaptation.

Δ5 desaturase gene null mutants

We have previously cloned two putative Δ5 desaturase genes and expressed them in yeast, and have thereby been able to confirm their biochemical activity. Since the proportion of Δ5 unsaturated fatty acids is strongly regulated by temperature during the growth phase, we considered it likely that FadA and FadB are involved in temperature adaptation. As an initial test of this idea, we asked whether expression of these genes is regulated by growth temperature. However, we could find no effect: levels of both mRNAs, as determined by RT-PCR, were essentially unchanged in cells grown at a range of temperatures (data not shown). It remains possible that enzyme activity is regulated at a post-transcriptional level, or that fatty acid turnover is differentially regulated by growth temperature. We therefore used a genetic test for the role of Δ5 desaturation in temperature adaptation by making null mutants of the Δ5 desaturase genes fadA and fadB. Elimination of fadB by homologous recombination resulted in mutant cells which lack any obvious phenotype and whose fatty acid composition is essentially identical to the wild-type (Table 2). In contrast, the fadA null mutant showed a significant decrease in the amount of dienoic acids with a concomitant increase in their monoenoic acid precursors. This was most marked for C16 and C17 dienoic acids, which were undetectable in the mutant. The presence of a residual amount of C18 dienoic acid in the fadA null mutant is presumably due to FadB, which acts mainly on C18 fatty acids, whereas FadA acts on both C16 and C18 fatty acids (Saito & Ochiai, 1999; Saito et al., 2000). These results indicate that FadA is mainly responsible for the production of dienoic fatty acids, whereas FadB seems to have a supplementary function. We isolated several independent clones which shared the same phenotype and fatty acid composition and used two clones for further experiments. Table 3 shows the effect of temperature on the fatty acid composition of the fadA mutant. This shows that the higher temperature does not affect the fatty acid composition of the fadA mutant, but the lower temperature does. From this result, we speculate that the fatty acid composition of the fadA mutant is suitable for higher temperatures.

Δ5 fatty acid desaturation and temperature adaptation of growth

To see the relationship between Δ5 fatty acid desaturation and temperature adaptation of growth, the growth rate of the fadA null mutant cells was compared to their parent at different temperatures. We measured the growth rates of mutant cells in suspension and found that they grow at essentially the same rate as the wild-type at 22 °C. Unexpectedly, the growth rates of the mutant were also the same with wild-type cells, even at elevated temperatures. Fig. 2 shows typical examples of the growth curves at 22 and 27 °C. At 30 °C, both wild-type cells and the fadA null mutant could not grow and the number of cells was reduced.

Table 2. Major fatty acid composition of total lipid from wild-type cells and Δ5 fatty acid desaturase null mutants

Cells were incubated in HL-5 medium at 22 °C. ND, Not detected; TR, trace (less than 0-2%); others, minor unidentified acids.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Percentage (± SD) in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild-type</td>
</tr>
<tr>
<td>16:0</td>
<td>6.3 (0.3)</td>
</tr>
<tr>
<td>16:1(9)</td>
<td>6.2 (0.7)</td>
</tr>
<tr>
<td>16:2(5,9)</td>
<td>3.0 (0.5)</td>
</tr>
<tr>
<td>17:0</td>
<td>0.6 (0.2)</td>
</tr>
<tr>
<td>17:1(9)</td>
<td>1.5 (0.2)</td>
</tr>
<tr>
<td>17:2(5,9)</td>
<td>1.5 (0.2)</td>
</tr>
<tr>
<td>18:1</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>18:2(5,9)</td>
<td>3.0 (1.5)</td>
</tr>
<tr>
<td>18:3(5,9)</td>
<td>13.1 (0.7)</td>
</tr>
<tr>
<td>18:2(5,11)</td>
<td>31.4 (0.7)</td>
</tr>
<tr>
<td>Others</td>
<td>2.2 (0.4)</td>
</tr>
<tr>
<td>Saturated fatty acids</td>
<td>8.1</td>
</tr>
<tr>
<td>Monoenoic fatty acids</td>
<td>40.9</td>
</tr>
<tr>
<td>Dienoic fatty acids</td>
<td>51.2</td>
</tr>
</tbody>
</table>

Fig. 1. Temperature-dependent changes in dienoic fatty acids. The effects of successive and accurate changes in growth temperature were examined in wild-type cells. Circles, ratio of total dienoic acids; diamonds, ratio of C18 : 2(5,11); squares, ratio of C18 : 2(5,9). The data plotted are the means of three independent experiments ± SEM.
Cells were transferred to fresh HL-5 medium at a density of 10^6 cells ml^-1. Growth was monitored by haemocytometer counts. The figure shows typical examples of four independent experiments. Squares, wild-type at 22°C; circles, fadA mutant at 22°C; diamonds, wild-type at 27°C; triangles, fadA mutant at 27°C.

Fig. 2. Growth curves of fadA mutant and wild-type cells. Cells were transferred to fresh HL-5 medium at a density of 0.7 × 10^6–1 × 10^6 cells ml^-1. Growth was monitored by haemocytometer counts. The figure shows typical examples of four independent experiments. Squares, wild-type at 22°C; circles, fadA mutant at 22°C; diamonds, wild-type at 27°C; triangles, fadA mutant at 27°C.

To examine the effect of this high-temperature stress, the number of the cells was counted after incubation at 30°C for 24 h. Of the wild-type cells, 65.1% could be counted after 24 h heat shock compared to 66.0% for the fadA mutant.

Thus we conclude that fatty acid composition is not involved in the growth rate at elevated temperatures.

Table 3. Effect of growth temperature on major fatty acid composition in the fadA mutant

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Percentage (±SD) at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15°C</td>
</tr>
<tr>
<td>16:0</td>
<td>1.5 (0.1)</td>
</tr>
<tr>
<td>16:1(9)</td>
<td>26.3 (3.2)</td>
</tr>
<tr>
<td>16:2(5,9)</td>
<td>ND</td>
</tr>
<tr>
<td>17:0</td>
<td>TR</td>
</tr>
<tr>
<td>17:1(9)</td>
<td>4.6 (0.1)</td>
</tr>
<tr>
<td>17:2(5,9)</td>
<td>ND</td>
</tr>
<tr>
<td>18:0</td>
<td>0.6 (0.1)</td>
</tr>
<tr>
<td>18:1(9)</td>
<td>8.0 (0.3)</td>
</tr>
<tr>
<td>18:1(11)</td>
<td>46.6 (0.8)</td>
</tr>
<tr>
<td>18:2(5,9)</td>
<td>TR</td>
</tr>
<tr>
<td>18:2(5,11)</td>
<td>12.5 (2.1)</td>
</tr>
<tr>
<td>Others</td>
<td>TR</td>
</tr>
</tbody>
</table>

| Δ5 desaturation | 12.5 | 4.1 | 4.8 |

Δ5 fatty acid desaturation and temperature adaptation of development

Development is triggered by starvation, but can also be regarded as a response to adverse conditions, possibly including extremes of temperature (Maeda, 1984). It may therefore be advantageous to *Dictyostelium* in the wild to be able to develop at temperatures considerably removed from their normal growth temperature. We therefore tested the ability of the fadA mutant and wild-type cells to develop at elevated temperatures, following growth at 22°C. As a first step, we analysed how the fatty acid composition of mutant and wild-type cells changes during development. As can be seen in Table 4 and Fig. 3, the dienoic fatty acid composition of the fadA mutant showed a change at the slug stage even at 22°C. The amount of dienoic acids increased from 4.1 to 17.6% at the slug stage; in contrast, the wild-type showed only a slight change at the slug stage (Fig. 3). To our surprise, we found that fadA mutant cells developed more efficiently than wild-type cells at 22°C and this efficient development became clearer at elevated temperatures. At 27°C, fadA mutant cells aggregated faster than wild-type cells. After 10 h incubation at 27°C, mutant cells started to aggregate even under submerged conditions, but the wild-type cells remained as single cells (Fig. 4a, b). On the nitrocellulose filter, the development of the fadA mutant was also faster than the wild-type cells at 27°C (Fig. 4c, d).

Table 4. Major fatty acid composition of fadA mutant in development

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Percentage (±SD) at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vegetative stage</td>
</tr>
<tr>
<td>16:0</td>
<td>1.6 (0.4)</td>
</tr>
<tr>
<td>16:1(9)</td>
<td>19.2 (2.3)</td>
</tr>
<tr>
<td>16:2(5,9)</td>
<td>ND</td>
</tr>
<tr>
<td>17:0</td>
<td>0.2 (0.2)</td>
</tr>
<tr>
<td>17:1(9)</td>
<td>4.2 (0.1)</td>
</tr>
<tr>
<td>17:2(5,9)</td>
<td>ND</td>
</tr>
<tr>
<td>18:0</td>
<td>1.6 (0.8)</td>
</tr>
<tr>
<td>18:1(9)</td>
<td>16.2 (1.7)</td>
</tr>
<tr>
<td>18:1(11)</td>
<td>52.8 (0.5)</td>
</tr>
<tr>
<td>18:2(5,9)</td>
<td>TR</td>
</tr>
<tr>
<td>18:2(5,11)</td>
<td>4.1 (1.3)</td>
</tr>
<tr>
<td>Others</td>
<td>TR</td>
</tr>
</tbody>
</table>

| Δ5 desaturation | 4.1 | 17.6 | 20.1 |
Wild-type cells form fruiting bodies at 27 °C; however, they are less efficient at forming terminal fruiting bodies. We calculated spore formation activity at 27 °C after 40 h incubation. The mutant showed 77% spore formation.

Fig. 3. Change in dienoic fatty acids during development. The ratio of dienoic fatty acids of the fadA mutant showed a change at the slug stage, but not so much in the wild-type cells. The total amount of Δ5 desaturated dienoic fatty acids increased from 4.2 to 17.6% in the fadA mutant (diamonds). On the other hand, it remained almost the same in the wild-type cells: 49.6% in the vegetative stage, 55.5% in the slug stage and 51.0% in the culmination stage (squares). Black bars, fadA mutant 18:2(5,9); hatched bars, fadA mutant 18:2(5,11); stippled bars, Ax2 18:2(5,9); white bars, Ax2 18:2(5,11).

Wild-type cells form fruiting bodies at 27 °C; however, they are less efficient at forming terminal fruiting bodies. We calculated spore formation activity at 27 °C after 40 h incubation. The mutant showed 77% spore formation.

Fig. 4. Visible damage of thermostress. Cells of wild-type and the fadA null mutant were incubated at 22 °C, harvested and washed with phosphate buffer. Then cells were placed in a 12-well titre plate at a density of 5 × 10⁶ cells cm⁻² or on a nitrocellulose filter at a density of 2 × 10⁶ cells cm⁻² and incubated at 27 °C. Cells of the fadA null mutant formed a stream after 10 h under submerged conditions (a) and a tipped aggregate appeared after 10 h on the nitrocellulose filter (c). In contrast, wild-type cells remained as single cells after 10 h under submerged conditions (b) but started to form an aggregate after 10 h on the nitrocellulose filter (d). Bar, 1 mm. When incubated at 30 °C, the fadA mutant cells started to form fruiting bodies after 24 h (e) and completed their development by 30–40 h. Wild-type cells made small aberrant structures after 24 h (f) and then their development stopped.
activity compared to that at 22 °C, but the wild-type showed
only 27% spore formation activity under the same
conditions. To examine this temperature adaptation further
the cells were incubated at 30 °C. The fadA mutant still
managed to form fruiting bodies at this temperature,
although they took longer than 24 h and the appearance was
untidy. On the other hand, wild-type cells failed to form
fruiting bodies in most cases under these conditions
(Fig. 4e, f). These results suggest that the lower dienoic
acid content of the fadA mutant results in a tolerance of
elevated temperatures during development, but not during
the growth phase.

DISCUSSION

In this report, we found a correlation between growth tem-
perature and fatty acid composition in Dictyostelium cells, as
shown in other organisms (Los & Murata, 1998). Our results
show that in Dictyostelium the ratio of two C18 dienoic acids
changes according to the temperature. This may explain the
relationship between membrane fluidity and growth tempe-
rate, because the melting point of fatty acids changes
according to the number and position of the double bonds.
The change in the ratio of C18 dienoic acids does not seem
to agree with the former report by Das et al. (1980) who
found that there was no systematic temperature-dependent
variation in fatty acid composition. This inconsistency was
mainly due to the difference in the GC conditions used, since
they could not separate C16 : 2(5,9), C17 : 0 and C18 : 2(5,9),
C18 : 2(5,11). We have also found that FadA is mainly
responsible for the production of the dienoic fatty acids of
Dictyostelium and that mutant cells lacking this enzyme have
a greatly reduced proportion of these fatty acids in their
membranes.

The effect of growth temperature on Dictyostelium develop-
ment was also analysed by Das et al. (1980). They reported
that an increase in growth temperature enhanced develop-
ment at higher temperatures. In this report, we found that
wild-type cells grown initially at 22 °C were barely able to
form fruiting bodies at 27–30 °C. In contrast, the fadA null
mutant, with its lower ratio of dienoic to monoenoic fatty
acids, could form fruiting bodies and spore quite efficiently
at higher temperatures.

These results suggest that the regulation of the ratio of
dienoic fatty acids is important in the development of
Dictyostelium at elevated temperatures.

Many organisms are believed to adapt to environmental
temperatures by altering the lipid and fatty acid composi-
tion of their membranes (Los & Murata, 1998). At high
temperatures the degree of unsaturation is expected to
decrease and at low temperatures it is expected to increase.
Targeted mutagenesis of the gene for Δ12 desaturase results
in drastic changes in cyanobacteria with a considerable
decrease in polyunsaturated fatty acids. These strains show
severe retardation of growth at lower temperatures (Tasaki
et al., 1996; Sakamoto et al., 1997). In higher plants, the
ability to survive at low or high temperatures also correlates
with the presence of polyunsaturated fatty acids. Mutants of
Arabidopsis thaliana that have defects in sn-2-palmitoyl
desaturase and Δ12 desaturase are characterized by leaf
chlorolysis and growth retardation at low temperatures
(Hugly & Somerville, 1992). Transgenic tobacco plants in
which the ω-3 fatty acid desaturase gene has been silenced
contain a lower level of trienoic fatty acids than wild-type
plants and can better acclimatize to higher temperatures
(Murakami et al., 2000). These observations explain well the
correlation between temperature adaptation and fatty acid
composition. In general, the changes are such as to maintain
membrane fluidity at a given temperature. This can be
achieved by altering the proportion of sterols or saturated
fatty acids in the membrane, both of which tend to decrease
membrane fluidity (Gurr et al., 2002).

Since fatty acids are the major components of the cell
membrane, a decrease in dienoic acids in the fadA mutant
might affect membrane fluidity and/or membrane micro-
domain structures, which might be important for mem-
brane physiology and membrane protein functions.

Overall, this study demonstrates that optimization of
material fatty acid composition is involved in tempera-
ture adaptation in Dictyostelium and that FadA plays an
important role in this process.

ACKNOWLEDGEMENTS

This work was supported by the Akiyama foundation (to T.S).
We greatly thank Dr Robert Kay and his lab (MRC Laboratory
of Molecular Biology, Cambridge) for helpful discussions and
encouragement.

REFERENCES

Isolation of Dictyostelium discoideum cytokinesis mutants by restric-
tion enzyme-mediated integration of the blasticidin S resistance

extraction and purification. Can J Biochem Physiol 37, 911–917.

growth temperature on the lipid composition and differentiation of

structures. In Lipid Biochemistry, 5th edn, pp. 215–266. Oxford:
Blackwell Science.

polyunsaturation in chloroplast biogenesis at low temperature. Plant

triggers spore maturation in Dictyostelium. Development 105,
753–759.

the cellular slime mould Dictyostelium discoideum. J Cell Sci 69,
159–165.

