Global regulation of quorum sensing and virulence by VqsR in *Pseudomonas aeruginosa*

Mario Juhas, Lutz Wiehlmann, Birgit Huber, Doris Jordan, Joerg Lauber, Prabhakar Salunkhe, Anna Silke Limpert, Franz von Götz, Ivo Steinmetz, Leo Eberl and Burkhard Tümmel

1,2Clinical Research Group and Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
3German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
4Department of Microbiology, Technical University Munich, Am Hochanger 4, D-85350 Freising, Germany
5Department of Microbiology, Institute of Plant Biology, University Zürich, CH-8008 Zürich, Switzerland

Correspondence Mario Juhas juhas.mario@mh-hannover.de

Received 12 November 2003 Revised 13 January 2004 Accepted 20 January 2004

Pathogenesis of *Pseudomonas aeruginosa* is controlled to a major extent by the two quorum-sensing systems *las* and *rhl*. The previously uncharacterized gene PA2591 was identified as a major virulence regulator, vqsR, in the quorum-sensing hierarchy. vqsR is a member of the LuxR family and possesses a *las* box in its upstream region. Transposon inactivation of vqsR abrogated the production of *N*-acylhomoserine lactones and the secretion of exoproducts and diminished bacterial virulence for *Caenorhabditis elegans*. Cytotoxicity towards macrophages was not affected. vqsR mRNA was expressed more strongly in the presence of human serum and oxidative stress than under standard growth conditions. High-density oligonucleotide microarrays were used to compare the global expression profile of a wild-type strain and a vqsR mutant. One-hundred-and-fifty-one and 113 genes were significantly differentially expressed in the presence of H₂O₂ and human serum, respectively. The disruption of vqsR repressed the expression of genes that are known to be promoted by quorum sensing and activated the expression of genes that are known to be repressed by quorum sensing. Moreover, the vqsR mutant harboured less mRNA transcript for the production of siderophores and membrane-bound elements of antibiotic resistance. The protein encoded by PA2591 regulates several traits of pathogenicity; hence, the name vqsR (‘virulence and quorum-sensing regulator’) was assigned to PA2591.

INTRODUCTION

The opportunistic human pathogen *Pseudomonas aeruginosa* is the leading source of Gram-negative nosocomial infections (Van Delden & Iglewski, 1998) and causes chronic lung infections in individuals suffering from cystic fibrosis (Tümmel & Kiewitz, 1999). The analysis of the fully sequenced *P. aeruginosa* genome revealed that more than 9 % of the assigned open reading frames (ORFs) encode known or putative transcriptional regulators and two-component systems (Stover et al., 2000). It is thought that the large amount of regulatory factors allow the organism to adapt to various environments and thus represents the key for the understanding of its enormous metabolic versatility.

Evidence has accumulated over the past few years that for the expression of pathogenic traits a quorum-sensing circuitry that is operating in *P. aeruginosa* is of central importance (for recent reviews, see de Kievit & Iglewski, 2000; Williams et al., 2000; Camara et al., 2002). This form of gene regulation ensures that virulence factors are expressed in a population-density-dependent manner. Two quorum-sensing systems that rely on diffusible *N*-acylhomoserine lactone (AHL) signal molecules have been identified in *P. aeruginosa* and were shown to orchestrate expression of virulence factors and participate in the development of biofilms: the *las* system consisting of the transcriptional activator LasR and the AHL synthase LasI which directs the synthesis of *N*-3-oxo-dodecanoyl-homoserine lactone.

(3-oxo-C12-HSL), and the rhl system consisting of RhlR and RhlI which directs the synthesis of N-butanoyl-homoserine lactone (C4-HSL). The two systems do not operate independently as the las system positively regulates expression of both rhlR and rhlI. Thus, the two quorum-sensing systems of P. aeruginosa are hierarchically arranged with the las system being on top of the signalling cascade (Latifi et al., 1996; Pesci et al., 1997). This quorum-sensing cascade controls the expression of a battery of extracellular virulence factors such as exoenzymes (elastase, alkaline protease), secondary metabolites (pyocyanine, hydrogen cyanide, pyoverdin) and toxins (exotoxin A) (Passador et al., 1993; Winson et al., 1995), as well as the development of biofilms (Davies et al., 1998; Yoon et al., 2002; Hentzer et al., 2003a). The importance of quorum sensing for the pathogenicity of P. aeruginosa has been demonstrated in a number of animal models including the neonatal mouse model of pneumonia (Tang et al., 1996), the burned mouse model (Rumbaugh et al., 1999), the mouse aga bead model (Wu et al., 2000) and a Caenorhabditis elegans model (Tan et al., 1999). In all these infection models mutants defective in quorum sensing were substantially less pathogenic than their parental strains.

An additional signal molecule, the P. aeruginosa quinolone signal (PQS), adds a further level of complexity to the quorum-sensing circuitry, as it provides a link between the las and rhl systems (Pesci et al., 1999) by modulating expression of rhlRI and lasRI (McKnight et al., 2000; Diggle et al., 2003). Furthermore, the quorum-sensing circuitry is subject to regulation by a number of global regulators, including Vfr (Albus et al., 1997), GacA (Reimmann et al., 1997), RsaL (de Kievit et al., 1999), MvaT (Diggle et al., 2002), RsmA (Pessi et al., 2001) and DksA (Jude et al., 2003).

In addition to the two AHL signal receptors LasR and RhlR, the P. aeruginosa genome encodes a third LuxR homologue, QscR, which has been shown to modulate the timing of quorum-sensing-controlled gene expression by repressing transcription of lasI (Chugani et al., 2001).

Here we report on the characterization of a fourth LuxR homologue, which we designated VqsR (‘virulence and quorum-sensing regulator’). It is shown that inactivation of the vqsR gene abrogates the production of AHL signal molecules, decreases the production of virulence factors and reduces the pathogenicity of P. aeruginosa in a nematode infection model system. A transcriptome analysis employing the Affymetrix GeneChip technology provided clear evidence that VqsR is involved in the regulation of the expression of certain sets of virulence and quorum-sensing-controlled genes in P. aeruginosa.

METHODS

Bacterial strains, plasmids and growth conditions. All bacterial strains and plasmids used in this study are listed in Table 1. P. aeruginosa and Escherichia coli were in most cases cultivated at 37 °C in Luria broth (LB) medium. Strains carrying pME6010 or pME6010vqsR were grown in LB medium containing 50 μg tetracycline ml−1. To examine the effect of oxidative stress on gene regulation, 4 ml of stationary-phase culture (LB, OD600 5.0) with 1 ml of 5× LB were placed in a dialysis bag (14 kDa) and incubated at 200 r.p.m. on a rotary shaker for 2 h in 600 ml of LB containing 10 mM H2O2 at 37 °C. To examine the effect of blood serum on gene regulation, the pellet from 2 ml of stationary-phase culture was resuspended in 2 ml of RPMI 1640 medium (GibcoBRL), placed into a dialysis bag (300 kDa) and incubated in RPMI 1640 medium containing 10% (v/v) human AB blood serum, at 200 r.p.m. on a rotary shaker for 2 h at 37 °C.

Table 1. Bacterial strains and plasmids used in this work

<table>
<thead>
<tr>
<th>Strains and plasmids</th>
<th>Characteristics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>Wild-type, cystic fibrosis airways isolate</td>
<td>Tümmler et al. (1991)</td>
</tr>
<tr>
<td>TBvqsR</td>
<td>Tn5::PA2591 (vqsR) mutant of TB</td>
<td>Wiehmann et al. (2002)</td>
</tr>
<tr>
<td>TBvqsR(pME6010vqsR)</td>
<td>Tn5::PA2591 (vqsR) mutant of TB complemented with pME6010vqsR</td>
<td>This study</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F117</td>
<td>AHL-negative derivate of P. putida Iso1, pput−</td>
<td>Steidle et al. (2001)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT102</td>
<td>araD139 (ara−leu)7697 lac thi hslR</td>
<td>Leo Eberl, lab. collection</td>
</tr>
<tr>
<td>JM105</td>
<td>F1’ traD36 lacU (lacZ)15 proA+ B+/thi rpsL(Str+) endA sbcB15 sbcC hsdR4K(rk mK) (lac−proAB)</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>Chromobacterium violaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV026</td>
<td>AHL-detector strain</td>
<td>McClean et al. (1997)</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pJB89</td>
<td>pUC18Not–lasR–P_lasR–RBSII–gfp(ASV) – Tc−T1; Ap+</td>
<td>Andersen et al. (2001)</td>
</tr>
<tr>
<td>pKR-C12</td>
<td>pBBR1MCS-5 carrying P_las−gfp(ASV) P_las–lasR; Km+</td>
<td>Steidle et al. (2001)</td>
</tr>
<tr>
<td>pME6010</td>
<td>Shuttle vector replicable in Gram-negative bacteria; Tc+</td>
<td>Heeb et al. (2000)</td>
</tr>
<tr>
<td>pME6010vqsR</td>
<td>pME6010 carrying the PA2591 gene</td>
<td>This study</td>
</tr>
<tr>
<td>pSB403</td>
<td>Broad-host-range AHL monitor plasmid; Tc+</td>
<td>Winson et al. (1998)</td>
</tr>
</tbody>
</table>
Generation and complementation of the *P. aeruginosa* vqsR mutant. The *P. aeruginosa* vqsR mutant was generated by Tn5 transposon mutagenesis as described previously (Wiehlmann et al., 2002). Plasmid pME6010vqsR, used for complementation in trans, was constructed by cloning the 1254 bp of the PA2591 (vqsR) gene generated by PCR with primers 5'-CTGAAAAGTTCCTGCTTGCAGGCTA-3' and 5'-GATTATAGCTTGATTATCGATTGCCGAC-3' into the BglII/Ecoil-restricted shuttle vector pME6010. The plasmid was introduced into *E. coli* OneShotTOP10 chemically competent cells (Invitrogen) by transformation and subsequently into the *P. aeruginosa* TB vqsR mutant by electroporation. The amount of exopolysaccharides which may inhibit electroporation was minimized by multiple washings of the bacteria with distilled water.

RNA isolation. Cells were harvested from dialysis bags by centrifugation at 3800 g for 2 min at 4 °C. Total RNA was extracted using a modified hot phenol method (Tao et al., 1999). The bacteria were resuspended in water and lysed at 65 °C in a mixture of 5 ml phenol (pH 5.5)/2:5 ml 2 % SDS (w/v)/30 ml sodium acetate/3 ml EDTA by vigorous shaking for 10 min. The supernatant was purified by subsequent phenol/chloroform and chloroform extractions. Nucleic acids were precipitated overnight at −20 °C with ethanol and washed with 70 % ethanol. DNA was digested by the addition of 40 U DNase I (Roche) and 20 U SUPERaseIn (Ambion) in DNase I buffer (50 mM sodium acetate, 10 mM MgCl₂, 2 mM CaCl₂, pH 6.5) in a total volume of 200 μl for 30 min at 37 °C. RNA purification with RNeasy columns (Qiagen) was followed by quantification of its total yield by UV absorption spectrometry. RNA integrity was monitored by 1-2 % agarose gel electrophoresis with addition of 2 % (v/v) formaldehyde as denaturing agent.

Northern blot analysis. The denatured RNA was separated by formaldehyde/agarose gel electrophoresis and transferred to a membrane. The membrane was hybridized overnight at 65 °C with hybridization buffer containing denatured DIG-labelled probe (1-2×10⁶ cpm/ml). The membrane was washed with 0.1×SSC, 0.1 % SDS and hybridization signals were detected by enhanced chemiluminescence (ECL) (Amersham). The radiographic images were scanned using an HP GeneArray scanner. Two GeneChips for each mutant and wild-type were compared by the four-comparison survival method (Chen et al., 2000). The data were imported into the Microsoft ACCESS database and selected with Wilcoxon rank test for genes with significant changes in their expression and at least twofold differential regulation. The arithmetic mean and standard deviation were calculated. Finally, a Bonferroni correction for multiple testing was applied as a rigorous criterion for significantly changed signal intensities. Significantly (*P*<0.05) differentially expressed ORFs were classified using latest internet annotation from the web site of the *Pseudomonas* Genome Project (http://www.pseudomonas.com).

Detection and characterization of AHLs. As a simple assay for the production of AHLs, cross-streak experiments using GFP-based AHL biosensors were performed. Two biosensors, which, depending on the components used for construction, respond to different types of AHL molecules, were employed in this study: *Pseudomonas putida* F117(pKR-C12), which is most sensitive for 3-oxo-C₁₂-HSL (Steidle et al., 2001), and *E. coli* JM105(pPB89), which is most sensitive for 3-oxo-C₆-HSL but detects a broad range of different AHLs (Andersen et al., 2001). The monitor strain and the respective test strains were streaked onto the plates to form a ‘T’. Following incubation at 30 °C for 24 h, the plates were illuminated with blue light using an HQ 480/40 filter (AHL-Analysebank) in combination with a halogen lamp (Volpi) as a light source. Visualization of GFP fluorescence was accomplished in a dark box equipped with a light-sensitive camera (Hamamatsu Photonics) and an HQ 535/20 filter (AHL-Analysebank). For more detailed analysis, the AHL molecules were extracted from spent culture supernatants of the strains, separated by TLC and visualized by overlaying the TLC plates with soft agar seeded with the luxAB-based AHL biosensor *E. coli* MT102(pSB403) (Winson et al., 1998) or biosensor *Chromobacterium violaceum* CV026 (McCleary et al., 1997) as described previously (Geisenberger et al., 2000; Shaw et al., 1997). Bioluminescent spots indicating AHL were detected by exposure to an X-ray film. On the basis of their mobilities (R₀ values) and by including appropriate reference compounds, a tentative identification of AHLs present in the culture extracts was possible.

Protease and pyocyanine secretion. In order to investigate their pyocyanine secretion ability, tested bacterial strains were grown in King’s A medium supplemented by centrifugation and the amount of pyocyanine in the supernatant was quantified by measuring the *A₅₉₅* value (King et al., 1954). Protease production was examined by growing the analysed *P. aeruginosa* strains on M9 agar plates supplemented with 0-7 % casein (Cowell et al., 2003). Elastase production was tested using the Elastin Congo red assay (Rust et al., 1994).

Macrophage cytotoxicity assay. TPH-1 monocytes were grown and maintained in RPMI 1640 medium with 10 % FCS (PAA Laboratories) and 0-1 % antimicrobial/antimycotic solution (Gibco-BRL) and differentiated into macrophages using phorbol 12-myristate 13-acetate (PMA; Calbiochem). Wells of a 96-well plate were seeded with 3.5×10⁵ cells per well and incubated with 16 nM PMA for 72 h. Prior to use, cells were washed twice with RPMI.
Nematode killing assays. All Caenorhabditis elegans strains were maintained under standard culturing conditions on nematode growth medium agar with E. coli OP50 as a food source (Stiernagle, 1999). Synchronized cultures and staged animals were also obtained as described by Stiernagle (1999). Bristol N2 (wild-type) was used throughout this study and provided by the Caenorhabditis Genetics Center (University of Minnesota, St Pauls, MN, USA). C. elegans killing experiments were performed in a liquid-medium-based system using 24-well plates (D. Jordan, L. Wiehlmann, I. Ziegler, B. Tümler, I. Attree & I. Steinmetz, unpublished results). Nematodes were exposed to a suspension (OD650 0.5) of bacterial cells for each strain tested.

Sequence analysis. Codon usage and the codon adaptation index were calculated as described previously (Kiewitz et al., 2002). The bendability/curvature propensity plot was calculated with the BEND.IT server (http://hydro.icgeb.trieste.it/~kristian/dna/bend_it.html), using DNase I-based bendability parameters and consensus bendability scale as described previously (Brukner et al., 1995).

RESULTS AND DISCUSSION

Features of the vqsR gene

The sequence of vqsR corresponds to the ORF PA2591 of the P. aeruginosa PA01 genome (http://www.pseudomonas.com). The G+C content of this gene (58.33 mol%) is lower than the average G+C content (66.6 mol%) of the P. aeruginosa genome (Stover et al., 2000), but its codon adaptation index (0.688) calculated from codon usage is similar to that typically found for P. aeruginosa transcriptional regulators (Kiewitz et al., 2002). This suggests that despite its lower G+C content, vqsR was not acquired by phylogenetically recent horizontal transfer, but is rather a part of the core P. aeruginosa genome.

vqsR possesses a las box (5'-AATACAGGTTCTGGTAGGT-3') in its −157 to −138 upstream region (Wagner et al., 2003) which exhibits homology with the palindromic lux box DNA elements identified in Vibrio fisheri. las boxes are usually located upstream of LuxR-regulated genes and serve as binding sites for regulatory protein–autoinducer complexes. A bendability/curvature propensity plot revealed a low curvature DNA sequence in the upstream region of vqsR (data not shown). Hence, binding of a protein–autoinducer complex could promote more extensive bending of the upstream sequence leading to the transcriptional activation of this gene. Moreover, vqsR harbours a DNA-binding domain in its carboxy terminus that is typical for the LuxR group of transcriptional regulators (Fuqua et al., 1996). These in silico findings suggest that the vqsR gene plays an important role in the quorum-sensing cascade of P. aeruginosa.

VqsR is essential for the production of autoinducer molecules

Quorum sensing in P. aeruginosa employs AHLs as autoinducer signalling molecules (Pearson et al., 1994). In order to verify the effect of vqsR on AHL synthesis, we streaked the P. aeruginosa TB wild-type strain and its Tn5::vqsR transposon mutant close to the GFP-based AHL sensor E. coli JM105(pJBA89). No AHL production was observed with the P. aeruginosa Tn5::vqsR transposon mutant (data not shown). P. aeruginosa possesses two different quorum-sensing acylhomoserine lactones: 3-oxo-C12-HSL and C4-HSL, which are the major components of the las and rhl systems, respectively (Wagner et al., 2003). Cross-streak experiments were also performed with the biosensor P. putida F117(pKR-C12), which only detects a narrow range of long-chain AHLs, being most sensitive for 3-oxo-C12-HSL. As with E. coli JM105(pJBA89), the vqsR mutant did not provoke a positive signal (Fig. 1a, b), supporting the view that VqsR plays a crucial role in the P. aeruginosa quorum-sensing cascade. Complementation of Tn5::vqsR in trans was performed in order to verify that the observed phenotype of the mutant was caused by the transposon mutation and not by any other secondary genetic event. For this purpose, the gene was cloned in the shuttle plasmid pME6010. This plasmid, based on the minimal pVS1 replicon, has been demonstrated to express proteins in both E. coli and P. aeruginosa (Heeb et al., 2000). pME6010 was transformed into E. coli and subsequently introduced into the P. aeruginosa vqsR mutant via electroporation. Complementation in trans restored the AHL molecules secretion ability of the vqsR mutant to levels comparable to the wild-type (Fig. 1a, b). For more detailed analysis, TLC was performed. Using this sensitive technique, the vqsR mutant was confirmed to be impaired in the production of AHLs, including C4-HSL (Fig. 1c) and 3-oxo-C12-HSL (Fig. 1d). Hence, our experiments revealed the important role of VqsR in the initial steps of the quorum-sensing cascade: in the production and secretion of quorum-sensing autoinducers.

VqsR affects protease and pyocyanine synthesis

Quorum sensing modulates the expression of a broad spectrum of virulence genes in P. aeruginosa (Passador et al., 1993). To analyse the effect of the vqsR mutation on the production of bacterial virulence factors, we investigated its impact on protease and pyocyanine synthesis. Measuring the amount of pyocyanine in the supernatants of the tested bacterial strains revealed a dramatic decrease of pyocyanine secretion in the vqsR mutant when compared to the wild-type and the complemented mutant (Fig. 2).

The halo on casein agar plates, indicating proteolytic activity mainly due to LasB, alkaline protease and proteinas IV (Cowell et al., 2003), was observed for the TB wild-type,
but not for its vqsR mutant (Fig. 3a). Proteolytic activity of the vqsR mutant was not inducible even after exogenous addition of 0.3 μM 3-oxo-C₁₂-HSL and 0.4 μM C₄-HSL. Using the same concentrations, the extracellular proteolytic activity of a lasI rhlI PAO1 double mutant was restored to the level of the wild-type (data not shown). These data indicate that, in contrast to the inactivation of lasI and rhlI, the lack of AHL synthesis does not completely explain the phenotype of protease deficiency in the vqsR mutant.

Fig. 2. Kinetics of the secretion of pyocyanine by the P. aeruginosa TB wild-type (wt, ○) strain, its Tn₅::vqsR transposon mutant (vqsR−, △) and the complemented mutant (vqsR+, ▲). Strains were cultivated in King’s A medium and the amount of pyocyanine in the supernatant was quantified by measuring absorbance at 695 nm (A₆₉₅).
Using the Elastin Congo red assay, the vqsR mutant was found to be impaired in the ability to produce elastase which is known to be LasR-3-oxo-C12-HSL-dependent (Fig. 3b). In the complemented mutant, protease as well as pyocyanine secretion ability were restored according to our expectations. Thus, VqsR was proven to be crucial for protease and pyocyanine secretion in *P. aeruginosa*.

However, when we examined the cytotoxicity of *P. aeruginosa* towards human macrophages, no difference was seen among the wild-type, the vqsR mutant and the complemented strain, indicating that under the tested conditions VqsR does not play a role in the modulation of cytotoxicity.

VqsR has an impact on virulence in a *C. elegans* model

The nematode *C. elegans* has been used as a bacterial pathogenesis model for the identification of virulence-attenuated mutants in *P. aeruginosa* (Mahajan-Miklos *et al.*, 1999; Tan *et al.*, 1999). In fact, it has been shown that the analysis of the interaction with this invertebrate host has the potential to predict disease outcome in the mammalian host. Testing of the wild-type and its Tn5::vqsR transposon mutant in our *C. elegans* killing model revealed a significant attenuation of the vqsR mutant compared to the wild-type (Fig. 4). The killing activity of the complemented mutant was restored to wild-type levels (Fig. 4), indicating an important role of the vqsR gene in virulence towards *C. elegans*.

mRNA expression profiling of vqsR

The expression of vqsR mRNA was analysed by Northern blots under various growth conditions (early- and late-exponential growth phase in LB medium, minimal mineral medium, presence of oxidative stress generated by H2O2, presence of serum and polymorphonuclear leukocytes). Hybridization with a genomic *vqsR* probe gave a clear signal when *P. aeruginosa* TB had been cultured in the presence of H2O2 or human serum, but only barely detectable signals under the other tested conditions. The Tn5::vqsR mutant did not produce any detectable VqsR transcript under all chosen conditions.

Fig. 3. Secretion of proteases by the *P. aeruginosa* TB wild-type (wt) strain, its Tn5::vqsR transposon mutant (vqsR−) and the complemented mutant (vqsR+). (a) No proteolytic activity of the mutant strain was detected on casein agar. (b) The amount of elastase secreted by the mutant was reduced when compared to the wild-type strain. ○, wt; △, vqsR−; ▲, vqsR+.

Fig. 4. Kinetics of the killing of *Caenorhabditis elegans* by the *P. aeruginosa* TB wild-type (wt) strain, its Tn5::vqsR transposon mutant (vqsR−) and the complemented mutant (vqsR+). Forty-five to 60 L4 larvae were placed in each well and scored for dead worms by microscopic examination. *E. coli* DH5α served as a negative control. Values are the mean ± SD of a representative experiment with triplicate values. ○, wt; △, vqsR−; ▲, vqsR+; ■, *E. coli*.
P. aeruginosa GeneChips were used to investigate the effect of VqsR on global changes in the gene expression profile. Total RNA, extracted from bacterial cultures cultivated in the presence of 10% human blood serum or 10 mM H2O2, was hybridized on the DNA microarrays in duplicate. Numerous genes were differentially regulated in the vqsR mutant compared to the wild-type strain. By applying the stringent criteria outlined in Methods, the mutation of vqsR significantly influenced the expression of 151 genes in the presence of H2O2 and of 113 genes in the presence of human blood serum (Fig. 5). Only 26 genes were significantly regulated under both conditions. The products of these genes are involved in the transport of small molecules, pyochelin biosynthesis, pyoverdin synthesis, rhamnolipid biosynthesis, hydrogen cyanide biosynthesis and protease secretion (Fig. 6).

The majority of the affected mRNA species are under the control of quorum sensing (Hentzer et al., 2003b; Pessi et al., 1997; Pessi et al., 2001; Schuster et al., 2003b; Wagner et al., 2003; Winzer et al., 2000; Fig. 5). As shown previously (Wagner et al., 2003), variable responses in the expression of quorum-sensing-regulated genes to different environmental stimuli may be caused by alterations in the expression of the regulators themselves. When comparing mRNA chip expression data of vqsR with those of the known major regulators of AHL-mediated quorum sensing (lasR, lasI, rhlR, rhlI and qscR), vqsR was the only gene with a comparatively higher expression (2,5-fold) in the presence of serum than in LB medium. The GeneChip data confirm the results of the Northern blot experiments showing that the expression of vqsR is more strongly activated by an environment that contains human serum, as happens in Pseudomonas septicemia or burn wounds.

Expression of a wide variety of quorum-sensing-regulated genes and virulence factors is modulated by VqsR

VqsR modulates the expression of a broad spectrum of quorum-sensing and virulence genes. Fig. 5 lists the genes whose expression was found to be significantly up- and down-regulated in the Tn5:: vqsR mutant according to the results of our GeneChip analysis. The mutant produced significantly less mRNA species of genes that are necessary for the synthesis of quorum-sensing quinolones and AHLs and of virulence factors under control thereof (Fig. 6). Nearly half of the remaining genes belong to the class of conserved hypotheticals of unknown function. The genes with ascribed function predominantly encode enzymes required for siderophore biosynthesis (Lamont & Martin, 2003; Ravel & Cornelis, 2003) or membrane proteins, the latter of which are almost all known to be involved in antimicrobial resistance (Hancock & Speert, 2000; Lambert, 2002; Poole, 2001).

In the presence of serum, the vqsR mutant overexpressed genes that belong either to the category of amino acid metabolism or to the category of conserved hypotheticals, presumably just reflecting the serum as a protein-rich carbon source. Exposure to H2O2 activated genes by more than 10-fold in the mutant that are either conserved hypotheticals or encode components of anaerobic energy metabolism. Nitrite and nitrate respiration have been reported to be repressed by quorum sensing (Wagner et al., 2003).

In summary, the disruption of vqsR repressed the expression of genes that are known to be promoted by quorum sensing and activated the expression of genes that are known to be repressed by quorum sensing. Moreover, the vqsR mutant harboured less mRNA transcript for the production of siderophores and membrane-bound elements of antibiotic resistance. Besides the cytotoxicity caused by elements of the type III secretion system (Frank, 1997), antibiotic resistance and extracellular virulence factors are the major determinants for morbidity and prognosis of infections with P. aeruginosa in humans. The protein encoded by PA2591 regulates several traits of pathogenicity; hence, we assigned the name vqsR (‘virulence and quorum-sensing regulator’) to PA2591.

Inactivation of vqsR abrogated the production of AHLS and decreased Lasl mRNA by about 10-fold with LasR mRNA levels being unaffected. In addition, vqsR contains a las box in its upstream region. Considering these data, we should like to conclude that vqsR is an essential element of the quorum-sensing hierarchy whose inactivation disrupts the production of AHLS, including 3-oxo-C12-HSL and C12-HSL. On the other hand, the presence of the las box located upstream of vqsR places this gene under the direct control of the regulatory LasR-3-oxo-C12-HSL complex, thus creating an autoinducer feedback loop. This hypothesis is also supported by the GeneChip experiment performed by Wagner et al. (2003) where transcription of the vqsR gene (PA2591) was found to be reduced 5-7-fold in the P. aeruginosa mutant strain deficient in 3-oxo-C12-HSL and C12-HSL synthesis. As 3-oxo-C12-HSL and C4-HSL are involved in the initiation of quorum sensing, the disruption of 3-oxo-C12-HSL and C4-HSL production and secretion in the vqsR mutant inevitably has a negative effect on the whole quorum-sensing cascade. Indeed, our GeneChip experiments revealed significant down-regulation of the whole battery of quorum-sensing-regulated genes in the vqsR transposon mutant. Correspondingly, the mutant was compromised in phenotypic traits that are under quorum-sensing control such as elastase secretion and virulence in the C. elegans infection model. In summary, VqsR is a new member of the LuxR family that is involved in cell-to-cell communication and virulence of P. aeruginosa.

ACKNOWLEDGEMENTS

The authors would like to cordially thank Dr Steve Lory, Harvard, for provision of reference RNA samples and Mrs Tanja Toepfer for her technical assistance with the microarray hybridization. This work was supported by the US Cystic Fibrosis Foundation, the Mukoviszidose...
Fig. 5. Differential gene expression of the Tn5: vqsR transposon mutant compared to P. aeruginosa wild-type strain TB. Positive values represent genes whose expression is up-regulated in the mutant and negative values represent genes whose expression is down-regulated in the mutant compared to the TB wild-type strain. Only genes whose expression is significantly regulated are shown. Quorum-sensing-regulated genes are highlighted black (Hentzer et al., 2003b; Schuster et al., 2003; Wagner et al., 2003). (a) In the presence of 10% human blood serum. (b) In the presence of 10 mM H₂O₂.
Fig. 6. Major gene categories and metabolic pathways regulated by VqsR in the presence of 10 mM H₂O₂ and 10% serum. VqsR is an essential element of the quorum-sensing hierarchy, hence it activates the expression of genes that are known to be promoted by quorum sensing and negatively regulates the expression of genes that are known to be repressed by quorum sensing. Moreover, VqsR was proven to be involved in the regulation of siderophores and membrane-bound elements of antibiotic resistance.

Fig. 6. Major gene categories and metabolic pathways regulated by VqsR in the presence of 10 mM H₂O₂ and 10% serum. VqsR is an essential element of the quorum-sensing hierarchy, hence it activates the expression of genes that are known to be promoted by quorum sensing and negatively regulates the expression of genes that are known to be repressed by quorum sensing. Moreover, VqsR was proven to be involved in the regulation of siderophores and membrane-bound elements of antibiotic resistance.

c. V. and the Deutsche Forschungsgemeinschaft (DFG). M. J., P. S. and D. J. are members of the DFG-sponsored graduate colleges GRK 745 and GRK 653.

REFERENCES

