INTRODUCTION

During infection, Salmonella spp. must sense and respond to harsh environments within the host, such as the small intestine and gallbladder. Bile, found in these two environments and consisting primarily of bile salts, degrades and disperses lipids during digestion and, as such, is a potent antimicrobial (Gunn, 2000). Both Salmonella typhimurium and Salmonella typhi demonstrate particularly high resistance to bile (minimal bactericidal concentrations: >60 and 18 %, respectively), which exceeds bile concentrations encountered during infection (van Velkinburgh & Gunn, 1999). High-level resistance to bile has been shown to be dependent upon PhoP–PhoQ, a two-component regulatory system necessary for virulence in mice and humans (Fields et al., 1986; Miller et al., 1989). However, the mechanism for PhoP–PhoQ-mediated resistance to bile is currently unknown (Prouty et al., 2002; van Velkinburgh & Gunn, 1999). Bile, like other environmental signals, can regulate genes and modulate proteins in salmonellae and other enteric bacteria, as demonstrated by regulation of genes involved in Shigella flexneri and Salmonella typhimurium invasion, and modulation of Vibrio cholerae ToxT and Escherichia coli Rob (Pope et al., 1995; Prouty & Gunn, 2000; Rosenberg et al., 2003; Schuhmacher & Klose, 1999).

The marRAB operon is involved in multiple antibiotic resistance to structurally unrelated antimicrobials including chloramphenicol (Cm), tetracycline and quinolones (for a review, see Alekshun & Levy, 1997, 1999). The mar operon was first identified in E. coli and is prevalent in many bacterial species, including S. typhimurium (Alekshun & Levy, 1999; Kunonga et al., 2000; Sulavik et al., 1997). marR encodes a DNA-binding protein that functions as a repressor of the marRAB operon by binding the promoter region (marO) to prevent transcription (Martin & Rosner, 1995). marA encodes a DNA-binding protein of the XylS/Arac family that is a positive global regulator (Ariza et al., 1995; Martin et al., 1996). marB encodes a small protein with unknown function that does not appear to play a significant role in antibiotic resistance (Martin et al., 1995). Activation of marRAB is thought to induce a variety of phenotypes, such as a decreased level of the OmpF porin to reduce influx and an increased level of AcrAB–TolC to boost efflux (Alekshun & Levy, 1997).
The system for multiple antibiotic resistance has been well investigated in *E. coli* (Alekshun & Levy, 1997; Ariza et al., 1995; Martin et al., 1996; Rosner, 1985; Seoane & Levy, 1995a). The presence of antibiotics and phenolic compounds such as salicylate induces transcription of the *mar* operon, which leads to low-level antibiotic resistance (Cohen et al., 1993; Hachler et al., 1991). The mechanism of induction by phenolic compounds, specifically salicylate, is by the binding of salicylate to MarR, which inhibits binding of MarR to the *marRAB* promoter (Martin & Rosner, 1995). Hypersusceptibility to antibiotics can be observed in *E. coli* strains with a *marRAB* deletion (Cohen et al., 1993). Strains exhibiting a *mar* phenotype (mutants with high-level resistance to antibiotics) demonstrate an increase in *acrAB* activity, and if *acrAB* is deleted, these mutants become highly sensitive to antibiotics (Okusu et al., 1993). However, the genetic basis for high-level resistance can only be partially attributed to *marRAB* as suggested by Alekshun & Levy (1997). Furthermore, in *E. coli*, Rob, a global regulator with homology to MarA, independently regulates genes also regulated by MarA. These data suggest the possibility of *mar*-dependent and *mar*-independent pathways of antibiotic resistance (Ariza et al., 1995).

Here we demonstrate that *S. typhimurium* *marRAB* is activated in the presence of bile and that deoxycholate interacts with MarR to prevent DNA binding. In addition, bile activates transcription of the AcrAB efflux pump, but independently of MarA. While Rob appears to be an important positive regulator of *acrAB* in *E. coli* (Rosenberg et al., 2003), we present data suggesting that Rob does not play a role in bile-mediated activation of *acrAB* in *S. typhimurium*. This work further supports evidence that bile is an important environmental signal for enteric organisms and that even closely related enteric organisms have developed unique pathways to utilize bile as a host-derived signal.

METHODS

Strains, plasmids and reagents. The *S. typhimurium* and *E. coli* strains and plasmids used in this study are listed in Table 1. All strains were maintained in Luria–Bertani (LB) broth or on agar with appropriate antibiotics: 50 μg ampicillin ml⁻¹, 25 μg Cm ml⁻¹, 45 μg kanamycin ml⁻¹. X-Gal was used at a concentration of 40 μg ml⁻¹. Bile was used at various concentrations throughout the study ranging from 0.5 to 30%. The specific concentrations used were experiment-dependent.

Sodium salicylate, bile (sodium cholate) and conjugated and unconjugated bile salts were purchased from Sigma Chemical. Triton X-100 was purchased from Fisher Chemical/Fisher Scientific.

Strain construction. DNAs specific to *marAB*, *marRA* and the *acrAB* promoters or internal regions were amplified by PCR using primer pairs JG134 (5′-ggA ATT CAT gAC gAT gT Cag Aec C3′)/JG135 (5′-ggg gTA Ccg gTT AAA ggT gT T gG T Cg-3′), JG423 (5′-ggg gTA ccc gTT cT T cTT cT T gG T cG-3′) and JG424 (5′-ggg gTA ccc cAT cTT cAT gG T gT cT T cG-3′). JG581 (5′-cgg gAT TcT AAA gTg A AA TTT cGg c-3′) and JG582 (5′-cgg gAT ccc gTc AcT cAA TTT AcA ggc g-3′) respectively. The primers were designed with EcoRI or KpnI sites at their 5′ ends. The *marA*

Table 1. Strains and plasmid used in this study

<table>
<thead>
<tr>
<th>Strains or plasmid</th>
<th>Properties*</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JSG210</td>
<td>14028s (wild-type, parent of all Salmonella strains)</td>
<td>ATCC</td>
</tr>
<tr>
<td>JSG782</td>
<td>marRAB::lac</td>
<td>van Velkinburgh & Gunn (1999)</td>
</tr>
<tr>
<td>JSG1939</td>
<td>marRA::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG1945</td>
<td>ΔmarRA::FRT</td>
<td>This study</td>
</tr>
<tr>
<td>JSG1996</td>
<td>acrB::lac</td>
<td>van Velkinburgh & Gunn (1999)</td>
</tr>
<tr>
<td>JSG2047</td>
<td>acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2048</td>
<td>Δrob::Kan acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2049</td>
<td>Δrob::Kan marB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2050</td>
<td>ΔmarRAB::Kan</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2060</td>
<td>ΔmarRAB::Kan acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2061</td>
<td>ΔmarRAB::FRT</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2067</td>
<td>ΔmarRAB::lacZ</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2079</td>
<td>ΔpoS::FRT acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2080</td>
<td>phoP::Tn10Δ-cam acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>JSG2081</td>
<td>PhoP* (pho24) acrAB::lac</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>Stock strain</td>
<td></td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAMP53</td>
<td>pET15b with marR cloned</td>
<td>This study</td>
</tr>
</tbody>
</table>

*FRT, FLP recognition target.
(GI34/GI35) fragment was cloned into the firefly luciferase-reporter suicide vector pGPL01 (Gunn & Miller, 1996). Recombination on the chromosome accomplished a gene fusion and a disruption in the operon (marRAB::luc, JSG782). The acrB promoter fragment was cloned into the firefly luciferase-reporter suicide vector pLB02 creating JSG2047 (Gunn et al., 1996). Recombination on the chromosome created a gene fusion in which the strain became merodiploid for the acrB promoter region. Gene deletions were accomplished by means of the λ red-mediated site-specific recombinase as described by Datsenko & Wanner (2000). Deletions were constructed with the following primer pairs: marKA, JG546 (5′-ccc cAg gTg-3′), gCA AAT CCA Tg-3′); marRB, JG546/549 (5′-ggc ATA ATT cgc gAc cTg TTA ATc Tgg TgT-3′); acrB, JG548 (5′-gAc gAA aTT AAT TgT Tac TcT gcg-3′); marRA, JG546/549 (5′-ggc ATA ATT cgc gAc cTg TTA ATc Tgc-3′); roB, JG577 (5′-gCg gCg cAc cAg TgT Tac TgT gAg cgA cAg TgT Tac TgT cTg-3′); marLA, JG578 (5′-cAg gAc cAg ggA ggA gGg cTA TgA AGT gTg AGT gTg AGT gTg gAg gAc cAC gAg cTA cgg cAg-3′); JG547 (5′-gAc gAA cAg gTT Tac TgT gTg ATA CAT gTg AAT ATc cTc cTT cTg-3′); JG546 (5′-ggc gAT ccc TAc ggc AgA ATT TTc TTg Agc-3′). Colonies were characterized for the presence of the deletion by PCR with primers outside of the deleted region. An insertion in the promoter region was constructed as described by Ellermeier et al. (2002). Briefly, JSG2061 with FLP (flip) plasmid pCP20 was transformed by electroporation with pCE36 and plated on LB/kanamycin/ X-Gal at 37°C.

RNA isolation, labelling and hybridization. JSG210 was grown in LB broth at 37°C with aeration to OD 600 0.25. Cultures were then incubated in LB broth with or without 3% bile. Samples were collected at 30 and 60 min after the addition of bile. Cells from each sample were pelleted and resuspended in 100 µl of 400 µg ml−1 lysozyme in Tris/EDTA buffer. RNA was isolated according to manufacturer’s instructions using the Qiagen RNeasy Mini Kit (Qiagen). An optional on-column DNase treatment for 1 h was also performed according to the manufacturer’s instructions. cDNA was made from the RNA with pd(N)6 Random Hexamer (Amersham Biosciences) and labelled as described previously (Eisen & Brown, 1999). Labelled cDNA was hybridized to samples grown with or without bile collected at the same time-point. Labelling and hybridization was repeated multiple times for each time-point. Hybridized slides were scanned and analysed with a Gene Pix Scanner 4000A and the GENEPLEX program (Axon Instruments).

Data analyses. Data were analysed with the Stanford University Microarray Database, Microsoft EXCEL and the SIGNIFICANCE ANALYSIS OF MICROARRAYS (SAM) program (http://www-stat.stanford.edu/~tibs/SAM/index.html) (Tusher et al., 2001). Three hybridizations from each time-point were grouped in an experimental set and were filtered by the Stanford University Microarray Database according to their mean log2 (Cy5/Cy3) ratios. Initial filtering included keeping data for mRNAs in which at least 80% of the spots had a regression correlation of 0.6. Missing data points were estimated with a K-Nearest-Neighbor Imputer, where K equals 10 (Tusher et al., 2001). Data were additionally filtered using CLUSTER software to remove any genes with missing values in greater than 20% of the columns and those that had standard deviations of observed values greater than 2. SAM calculates a list of significant genes and a false discovery rate, which is an estimate of the percentage of false-positives.

Transcriptional assays. Strains carrying marA::luc or marB::luc were grown to exponential phase in LB broth and incubated for 1 h with or without bile (concentrations indicated in Results). Strains with acrA::luc were grown overnight in LB broth and incubated in LB broth with or without 3% bile. Cultures were washed twice in PBS (Fisher Scientific), and firefly luciferase assays were performed as described previously (Gunn & Miller, 1996). Strains for β-galactosidase assays were grown to exponential phase and incubated in LB broth with or without bile for 1 h. Cultures were washed twice in PBS and assayed for β-galactosidase activity as described previously (Gunn & Miller, 1996).

Gel electrophoretic mobility shift assays. To overexpress and purify MarR, the coding sequence of marR was amplified with primers JG550 (5′-ggc gAT TTA cTg gAA cAg cAg gTg Tac TcT gTT cTg-3′)/JG551 (5′-cAg gAT ccc TAc ggc AgA gTT Tac TTC TgG Agc-3′) and cloned into pET15b (an IPTG-inducible vector with an N-terminal histidine tag) and introduced into E. coli BL21(DE3) (Novagen). Near-native MarR was purified as described previously (Martin & Rosner, 1995). A 110 bp region of marO containing both MarR-binding sites was amplified with primers JG552 (5′-cgc cAg ATT cTT TgA gAc cAg TgT Tac TgT-3′) and JG553 (5′-cAg cAg TgT Tac gAc cAg TgT Tac TgT-3′); and labelled with Cy5- and Cy3-dCTPs (Amersham Biosciences) incorporated by PCR. Tris/glycine 6% polyacrylamide gels were used for gel shift experiments. Cy5-labelled MarO and various concentrations of MarR (indicated in Results) were incubated at 37°C for 15 min in 10 mM sodium phosphate pH 7-2/30 mM sodium chloride/1 mM sodium azide/10 mM DTT/5% glycerol/0.3 mg poly(dl-dC) ml−1. Where indicated, gels and buffers contained 1 mM deoxycholate or 1 mM glycolcholate (Martin & Rosner, 1995). Gels were run at 120 V. Gels were scanned and fluorescence detected at 670 nm using the Typhoon 9400 (Amersham Biosciences). Data were analysed using IMAGEQUANT 5.2 software (Molecular Dynamics).

Resistance assays. Adaptation assays were performed using cultures grown to exponential phase (OD600 0-6). Exponential-phase cultures were then incubated in the presence or absence of 10% bile for 2 h at 37°C. Cultures were next pelleted and resuspended in 30% bile in LB broth. OD600 readings were taken every 15 min for 1 h beginning at the time of resuspension. Cultures were washed twice in PBS prior to reading. Plating on solid agar was also performed to confirm cell viability.

For MIC assays, bacterial cells were challenged with Cm either in the presence or in the absence of inducers, bile and salicylate. Inducers (5% bile or 5 mM salicylate) or LB broth alone was added to stationary-phase cultures, which were then incubated for 1 h. Cultures were diluted into the same growth media such that 2×108 to 5×109 c.f.u. ml−1 were subjected to concentrations of Cm ranging from 0-25 to 3 µg ml−1. MIC assays were performed in polypropylene microtitre plates and incubated overnight at 37°C. The pellet in each well was resuspended and an OD600 reading was taken. Data points represent the ratio of each well to that of the well with no antibiotic. Plating on solid agar was also performed to confirm cell viability.

RESULTS

Microarray data demonstrate activation of marR, marA and marB in the presence of bile

To better understand the effect of bile on salmonellae, potential bile-regulated genes were identified using DNA microarrays. Three per cent bile was added to exponential-phase cultures of *S. typhimurium*, and samples were collected at 30 and 60 min following the addition of bile. RNA, isolated from the samples, was used to create cDNA, which was hybridized to oligonucleotide microarrays of *S. typhimurium* SL324 (Chan et al., 2003). Upon analysing...
the results from microarray chips comparing samples from cells grown in LB broth alone or LB broth plus 3 % bile, *marR, marA* and *marB*, co-transcribed genes of the *mar* operon, were among the most regulated genes in the presence of bile (data not shown). Bile activation of the *mar* operon provides a potential link between bile regulation and resistance.

Bile activates transcription of *marRAB*

Results from the microarray suggest that the *marRAB* operon is activated in the presence of bile. To confirm the effect of bile on the transcription of the *marRAB* operon, a chromosomal fusion of the *mar* gene to the firefly luciferase gene (*luc*) was constructed (creating JSG782, *marRAB::luc*). Transcriptional activity was measured at concentrations of bile ranging from 1 to 9 % and compared to activity of a culture with no bile added. A 2-9-fold increase in activity was observed in 1 % bile increasing to a maximum 5-3-fold induction in 5 % bile. These assays were also performed at 30 °C, a temperature at which *mar* transcription has been shown to be increased (Seoane & Levy, 1995b). While *mar* transcription was slightly elevated at 30 versus 37 °C, the relative fold induction observed in bile at both temperatures was nearly identical (e.g. 5-5-fold induction in 5 % bile at 30 °C). These data demonstrate that activity of *marRAB* is regulated by bile in a concentration-dependent manner and that bile-mediated induction is not temperature-dependent.

Deoxycholate specifically induces transcription of *marRAB*

To test whether bile induction of the *marRAB* operon is due to a specific component of bile or to general detergent effects on the bacterium, transcription of *marA::luc* was measured in the presence of individual bile salts or Triton X-100, a non-ionic detergent. Of the four bile salts tested – deoxycholate, taurocholate, glycocholate and glycochenodeoxycholate – deoxycholate was the only bile salt that activated transcription to a level similar to that observed in the presence of ox bile (Fig. 1). In addition, Triton X-100 did not activate transcription of *marRAB*, demonstrating that the *mar* operon does not simply respond to the presence of detergent.

Bile-mediated activation of the *mar* operon occurs independently of Rob

Rob, a known activator of *marRAB* in *E. coli* (Martin & Rosner, 1997), was examined for its role in bile activation of the *mar* operon in *S. typhimurium*. The transcription of *marB::luc* was measured with or without 3 % bile in a rob deletion strain. While transcriptional activity of *marRAB* in the absence of Rob was somewhat reduced (r.l.u., relative light units; 31 389 ± 4305 vs 18 072 ± 1502 with bile and 3958 ± 732 vs 2057 ± 294 without bile), the loss of Rob had no major effect on the relative bile-mediated activation of *marRAB* (7-93-fold in a wild-type background; 8-78-fold in the absence of Rob). This experiment demonstrates that Rob is not required for activation of the *mar* operon by bile.

Deoxycholate specifically interacts with MarR

Salicylate, an inducer of *marRAB* activity, has been shown to bind the repressor MarR, leading to an increase in transcriptional activity of the operon (Cohen et al., 1993; Martin & Rosner, 1995). Because transcriptional activation of *marRAB* is specific for deoxycholate and because MarR has been observed to bind a variety of structurally different compounds (Schumacher & Brennan, 2002), studies concerning interactions of deoxycholate with the repressor MarR were initiated. To test whether deoxycholate disrupts the binding of MarR to its binding sites at *marO*, gel electrophoretic mobility shift assays (GEMSA) were performed. Initially, MarR and *marO* of *S. typhimurium* were tested to determine if they interacted in a manner similar to that shown for *E. coli*. Incubation of MarR with *marO*, analysed by GEMSA, resulted in four retarded complexes similar to what is observed in the *E. coli* MarR–*marO* interaction (Fig. 2a). The binding was sequence-specific as demonstrated by the ability of unlabelled *marO*, but not non-specific DNA, to compete for binding to MarR (data not shown). Incubation of samples in the presence of 1 mM deoxycholate abolished MarR–*marO* complexes. To account for the detergent effects that could occur with deoxycholate, glycocholate, a bile salt and detergent that did not activate *marRAB* transcription, was used as a control (Fig. 2b). One millimolar glycocholate was unable to
disrupt the complexes, suggesting a specific interaction of deoxycholate with MarR (Fig. 2c).

Bile promotes increased resistance to bile and antibiotics

Previous studies analysing the phenotype associated with induced marRAB activity in *E. coli* have demonstrated a low-level increase in antibiotic resistance (Cohen *et al.*, 1993; Rosner, 1985). Salmonellae can adapt to growth in high concentrations of bile salts by pre-incubation with sublethal amounts of bile. To determine if the ability of *Salmonella* to adapt to lethal concentrations of bile is dependent on marRAB, a wild-type *S. typhimurium* strain and a marRA deletion strain were incubated either in LB broth alone or in a sublethal concentration of bile, followed by exposure to a lethal concentration of bile. Viability was determined through measurement of optical density and colony counting on solid agar. Bacteria pre-incubated in bile were able to both survive and sustain growth at a lethal concentration of bile, while those pre-incubated in LB broth alone demonstrated a sharp decline in viability (Fig. 3). Interestingly, the marRA deletion strain grown with or without bile exhibited the same viability patterns as the wild-type strain that is shown in Fig. 3 (data not shown). Therefore, adaptation to high levels of bile is not dependent upon marRAB.

It has been shown that activation of the mar operon in *E. coli* by salicylate leads to increased resistance to other antimicrobial agents (Cohen *et al.*, 1993). MICs of Cm for *S. typhimurium* were measured to examine if the presence of bile could induce increased resistance to antibiotics and if such resistance would be dependent on the presence of marRAB. Wild-type or a marRAB deletion strain of *S. typhimurium* were pre-incubated in LB broth alone or with LB broth plus 5% bile and diluted into microtitre plate wells with various concentrations of Cm. Strains pre-incubated in bile exhibited increased resistance to Cm as compared to incubation in LB broth alone (Fig. 4). The observed increase in resistance appears to be partially

Fig. 2. Electrophoretic mobilities of mar promoter complexes with MarR. (a) A 110 bp Cy5-labelled wild-type mar promoter fragment was incubated alone (lane 1) or with 63.75, 31.9, 15.5, 8, 4, 2, 1 and 0.5 ng of MarR (lanes 2–9, respectively). (b, c) The labelled marO fragment either alone (lane 1) or with 8 ng MarR (lane 2) was incubated with (b) 1 mM deoxycholate or (c) 1 mM glycodecholate.

Fig. 3. Pre-incubation in sublethal concentrations of bile allows *S. typhimurium* to adapt and survive in lethal concentrations of bile. ●, OD₆₀₀ readings of wild-type (WT, JSG210) bacteria that were exposed to LB broth before being resuspended in 30% bile. ■, OD₆₀₀ readings of WT bacteria pre-incubated in 10% bile in LB broth, then resuspended in 30% bile. Time-points represent time of spectrophotometer reading after resuspension in 30% bile; error bars represent standard deviations.

Fig. 4. Relative survival in the presence of Cm. Comparison of *S. typhimurium* 14028s (JSG210; solid symbols) and ΔmarRAB::FRT (JSG2061; open symbols) grown either in LB broth (circles) or in 5% bile (triangles) and exposed to Cm. Error bars represent standard deviations.
dependent on marRAB, as the marRAB mutant incubated in the presence of bile is more sensitive than the wild-type strain grown in bile, but sensitivity does not drop to levels observed for incubation in LB broth alone. It is also interesting to note that deletion of marRAB does not make the bacterium more susceptible to Cm in the absence of an inducer. These results suggest there is another pathway, independent of marRAB, involved in bile-mediated resistance to antibiotics.

acrAB activation by bile is independent of MarA, Rob, PhoP–PhoQ and RpoS

MarA is believed to mediate enhanced resistance to antimicrobials through activation of the genes encoding the AcrAB efflux pump (White et al., 1997). AcrAB is known to efflux bile salts and play a role in bile resistance in E. coli and S. typhimurium (Lacroix et al., 1996; Ma et al., 1995; Thanassi et al., 1997). A strain with a disruption in acrB confirmed the necessity for AcrAB in bile resistance, as a concentration of 0.5% effectively killed exponential- or stationary-phase cultures of this strain (data not shown). Transcription of acrAB was also examined by creating a single copy chromosomal acrB promoter fusion to the luc gene (without disrupting the acrAB genes). Transcriptional activity in the presence and absence of bile demonstrated an approximate eightfold induction by bile (data not shown). These results indicate that AcrAB is absolutely required for bile resistance and that the transcription of acrAB increases in the presence of bile.

The marRAB products are proposed to be involved in acrAB transcriptional activation in E. coli (Ma et al., 1995; Okusu et al., 1996). Therefore, marRAB was investigated for its role in bile activation of acrAB in S. typhimurium. acrAB promoter activity was measured in a marRAB deletion strain (JSG2060) in the presence of bile. There was no observed alteration of bile-induction of acrAB in strains with or without marRAB, demonstrating that the mar operon is not required for activation of acrAB by bile (data not shown).

Additional regulators were examined for potential roles in bile activation of acrAB. Rob has been demonstrated to directly regulate transcription of acrAB in E. coli (Rosenberg et al., 2003). Transcriptional activity of acrAB was measured in the presence and absence of Rob. The results demonstrate that bile-mediated activation of acrAB in S. typhimurium occurs independently of Rob (data not shown). PhoP–PhoQ, an important virulence regulator implicated in bile resistance, and RpoS, a global stationary-phase regulator, were also examined for their potential role in bile-mediated activation of acrAB. Analysis of transcriptional data demonstrated that there is no observed role for PhoP–PhoQ or RpoS in bile activation of acrAB (data not shown). These results suggest the presence of a novel pathway for bile-mediated regulation of the AcrAB efflux pump in S. typhimurium.

DISCUSSION

This work employed the use of a DNA microarray to identify genes regulated by bile. From this screen, the mar operon was found to be upregulated in the presence of bile. We hypothesized that salmonellae might use this compound as a means to detect the presence of a host environment and to activate marRAB to increase resistance to antimicrobials in the host. It has been proposed that mar operon activation could be a mechanism for bile resistance (Sulavik et al., 1997) and that bile could be the in vivo signal to activate mar genes (Rosenberg et al., 2003). The work presented here supports these assertions by providing the first evidence of the mar operon specifically responding to bile or bile salts.

marRAB has been shown to be regulated both directly by salicylate and indirectly by antibiotics (Cohen et al., 1993; Hachler et al., 1991; Randall & Woodward, 2001). Salicylate is able to interact with MarR, which prevents MarR from binding DNA, which in turn derepresses marRAB transcription (Martin & Rosner, 1995). MarR has also been shown to bind other anionic compounds, including 2,4-dinitrophenol, plumbagin and menadione (Schumacher & Brennan, 2002). The two binding sites for salicylate on MarR are within the DNA-binding motif, suggesting a mechanism as to how salicylate derepresses the mar operon (Schumacher & Brennan, 2002). Based on our microarray and reporter fusion results, we hypothesized that deoxycholate would interact with MarR similarly to salicylate. Our results indicate that deoxycholate does interact with MarR to prevent DNA-binding and that this interaction is specific for deoxycholate. In E. coli, deoxycholate and Chenodeoxycholate are able to bind to the C-terminal domain of Rob, which affects acrAB transcription in E. coli (Rosenberg et al., 2003). In addition, bile has been demonstrated to affect host cell invasion in both Salmonella and Shigella, and in the former, through transcriptional repression of key invasion determinants (Pope et al., 1995; Prouty & Gunn, 2000). Furthermore, in V. cholerae, bile is believed to repress ToxT-dependent transcription of virulence factors through modulation of the ToxT protein by an unknown mechanism (Schumacher & Klose, 1999). These results support the hypothesis that enteric organisms have adapted to use bile salt as a regulatory signal, most likely by direct interactions between key regulatory proteins and bile salts.

The involvement of the mar locus in multidrug resistance was initially identified when spontaneous, highly resistant strains were shown to have mutations in mar (Cohen et al., 1989; George & Levy, 1983; Kunonga et al., 2000). However, in a wild-type strain, transcriptional induction of the mar operon causes non-heritable low-level increases in resistance (Rosner, 1985). Based on our observations that marRAB transcription increases in the presence of bile, and the known role of marRAB in gene regulation, we hypothesized that the mar operon could play a role in increased resistance to bile. Interestingly, though, marRAB
did not have an effect on the ability of salmonellae to adapt to lethal concentrations of bile. We were initially surprised by these results, but it has been observed in E. coli that salicylate does not induce resistance to higher levels of salicylate. This suggests the possibility of gratuitous induction of the mar operon by bile in the salmonellae (Cohen et al., 1993). This induction then leads to the observed phenotypes of increased antibiotic resistance. Because Salmonella spp. possess an inherently high-level resistance to bile, pathways other than the mar regulon, which is predominantly involved in low-level resistance, may have evolved to compensate for major changes in bile concentrations.

Incubation of either S. typhimurium or E. coli in salicylate leads to increased resistance to a variety of antibiotics including tetracycline and Cm (Cohen et al., 1993; Hachler et al., 1991). We hypothesized that bile, like salicylate, would enhance resistance to antibiotics and that marRAB would play a role. Results from MIC assays demonstrated that bile did increase resistance to Cm but mar-independent pathways were mainly involved in antimicrobial resistance. Similar results have been observed in E. coli and S. typhimurium DT104, in which salicylate can still induce antimicrobial resistance in a mar mutant (Randall & Woodward, 2001). It is interesting to note that while an E. coli mar mutant demonstrates greater sensitivity to antibiotics than its parental strain, an S. typhimurium mar mutant is roughly equally as sensitive to antimicrobials as its parent (Cohen et al., 1993; Randall & Woodward, 2001). This may indicate that while E. coli still depends on the mar regulon for low-level resistance, Salmonella spp. may rely on other pathways that better suit their environment. The results of this study support the presence of mar-dependent and mar-independent pathways of antimicrobial resistance and demonstrate that the marRAB of S. typhimurium and E. coli are not necessarily isofunctional.

MarA is believed to be a transcriptional activator of unrelated genes necessary for antimicrobial resistance (Alekshun & Levy, 1999). Studies in E. coli indicate that MarA independently represses ompF, reducing the number of porins in the outer membrane and activates transcription of acrAB to increase the number of efflux pumps in the membrane (Alekshun & Levy, 1997). Groups have observed that transcriptional activity of acrAB is increased in a MarR mutant exhibiting high-level resistance to antibiotics (Ma et al., 1995; Okusu et al., 1996). Furthermore, deletion of acrAB renders the MarR mutant hypersusceptible to the same antibiotics (Ma et al., 1995; Okusu et al., 1996). These observations have led researchers to conclude that acrAB is a part of the mar regulon (White et al., 1997). However, Piddock et al. (2000) also suggest that salmonellae may regulate acrAB through pathways other than mar, but did not test this hypothesis. To further elucidate the mar regulon in the salmonellae, we examined the effect of bile on acrAB transcription and whether the presence of MarA was necessary for acrAB regulation. Our studies show that the effect of bile on acrAB transcription is not dependent upon MarA or MarR. These results indicate that either acrAB is not a gene of the mar regulon in S. typhimurium or elimination of the mar operon alone is not sufficient to observe an effect on acrAB, suggesting the presence of additional regulators. While Rosenberg et al. (2003) presented evidence that mar is not necessary for bile-salt-mediated activation of acrAB in E. coli, they observed that induction of acrAB by bile salts is dependent upon Rob. However, work presented here demonstrates that activation of acrAB by bile was not dependent upon Rob. These conflicting results indicate an interesting divergence between E. coli and S. typhimurium that is likely to be related to the organisms’ differing response and resistance to bile and suggest that bile either directly regulates acrAB or signals through a currently unidentified mechanism.

Previous studies in E. coli demonstrate that acrAB mutants are highly sensitive to bile salts, but that these compounds are only weak inducers of acrAB transcription (Ma et al., 1995). Studies from both Ma et al. (1995) and Lacroix et al. (1996) demonstrate that an S. typhimurium acrAB mutant exhibits hypersusceptibility to bile salts. Our studies further confirm the necessity for AcrAB in bile resistance, as an acrAB mutant was effectively eliminated in 0.5% bile. Transcriptional studies from this report also indicate that bile is a major inducer of acrAB transcription in salmonellae, inducing greater than eightfold, while only 15- to 17-fold induction has been reported in E. coli (Rosenberg et al., 2003). Interestingly, activation of acrAB transcription in the presence of bile was most easily observed in cells in the stationary phase of growth. Transcriptional activity of acrAB was dramatically elevated in exponential phase even in the absence of bile, which made further activation difficult to observe.

In this study, we initially hypothesized that bile activates transcription of marRAB, which would lead to activation of acrAB and, subsequently, higher resistance to bile. However, while bile does regulate both marRAB and acrAB, it appears to do so through independent pathways. Even though the role of marRAB in antimicrobial resistance is not clearly defined for S. typhimurium, the unique interaction of deoxycholate with MarR indicates that this operon may play a role in the host that is not observable in vitro. We propose a model in which bile salts enter the bacterial cell and deoxycholate interacts with MarR to regulate gene expression of the mar operon. This regulation then affects currently unknown genes that play a role in survival within host microenvironments. Concurrently, deoxycholate activates transcription of the AcrAB efflux pump independently of MarA to allow for efficient removal of bile salts from inside the bacterium. Studies of the functional consequences of marRAB activation by bile, as well as the mechanism by which bile activates acrAB, will aid in the further elucidation of the role of bile in Salmonella spp. pathogenesis.
ACKNOWLEDGEMENTS

This work was supported by grants T32-AI07271 (A.M.P.) and AI26195 (S.F.) from the National Institutes of Health, and Digestive Disease Center Grant DK56339.

REFERENCES

