Cross-complementation between the products of the genes P1 and ORF6 of *Mycoplasma pneumoniae* subtypes 1 and 2

Ina Catrein,1 Roger Dumke,2 January Weiner III,1† Enno Jacobs2 and Richard Herrmann1

1Zentrum für Molekulare Biologie, Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
2Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, D-01307 Dresden, Germany

The genes P1 (MPN141) and ORF6 (MPN142) are essential for the successful colonization of the human respiratory tract by *Mycoplasma pneumoniae*. Both genes are located in the P1 operon, which consists of three genes. The P1 gene is the second gene in the operon, followed by the ORF6 gene. The P1 gene contains two (RepMP2/3, RepMP4) and the ORF6 gene one (RepMP5) specific repetitive DNA sequence, of which seven to nine similar but not identical copies are dispersed on the genome. Despite this large potential pool for genetic variation, *M. pneumoniae* isolates from patients contain only one of two distinct combinations of the genes P1 and ORF6. To analyse the functions of the repetitive DNA sequences, two ‘new’ combinations of the genes P1 and ORF6 were constructed, keeping the P1 gene constant but exchanging RepMP5 copies of the ORF6 gene. *M. pneumoniae* was transformed with these constructs and the transformants were tested for their ability to grow and survive under *in vitro* conditions and in guinea pigs. The two transformants colonized the respiratory tract of guinea pigs and showed no obvious differences in their growth behaviour compared to *M. pneumoniae* isolates from patients. The results indicate that the subtype-specific combinations of the repetitive elements in the P1 and ORF6 genes are not essential for the successful adherence of *M. pneumoniae* to host cells and the colonization of the respiratory tract of guinea pigs.

INTRODUCTION

Mycoplasma pneumoniae is a small wall-less bacterium with a genome size of about 816 kbp (Himmelreich *et al*., 1996) and a proposed coding capacity for 688 ORFs (Dandekar *et al*., 2000). This bacterium is host dependent in nature, but it can be grown in the laboratory without a host cell in a rich medium supplemented with serum (Hayflick, 1965). *M. pneumoniae* is the causative agent of a primary atypical pneumonia in humans (Jacobs, 1991; Principi & Esposito, 2001; Rosengarten *et al*., 2000; Taylor-Robinson, 1996). Epidemic outbreaks were registered in time-intervals of 3–7 years followed by endemic phases in the epidemiology of *M. pneumoniae* infections (Jacobs *et al*., 1996; Lind *et al*., 1997). The circulation of different subtypes in the human population and therefore the time-dependent subtype-specific immune response of the hosts were discussed as possible reasons for the unique epidemiological course of respiratory diseases due to *M. pneumoniae* (Jacobs *et al*., 1996). Genetic differences of *M. pneumoniae* patient isolates were first described by Su *et al.* (1990). They used the gene P1 (MPN141), which encodes the main adhesin P1 (Inamine *et al*., 1988; Su *et al*., 1987) as a discriminating probe. Based on sequence differences of the P1 gene and restriction fragment length polymorphism of genomic DNA, the species *M. pneumoniae* was divided into two subtypes. The prototype of subtype 1 became the strain *M. pneumoniae* M129 (ATCC 29342), of which the genome has been completely sequenced (Himmelreich *et al*., 1996), and the strain *M. pneumoniae* FH (ATCC 15531) represents subtype 2. Several subtyping analyses with patient isolates collected in different countries during the past 30 years confirmed the original observations that, based on the gene P1, all isolates can be classified as either subtype 1 or 2, although minor sequence differences in the P1 gene could be found in a few isolates (Dorigo-Zetsma *et al*., 2001; Dumke *et al*., 2003; Kenri *et al*., 1999). Only recently, attempts were made to find additional genetic markers for subtyping purposes (Dumke *et al*., 2003). The results of this study indicated a remarkable genetic stability among

†Present address: Arbeitsgruppe Bioinformatik, Institut für Botanik, Westfälische Wilhelms-Universität, Schlossplatz 4, D-48155 Münster, Germany.

1Inamine *et al*., 1988; Su *et al*., 1987 as a discriminating probe. Based on sequence differences of the P1 gene and restriction fragment length polymorphism of genomic DNA, the species *M. pneumoniae* was divided into two subtypes. The prototype of subtype 1 became the strain *M. pneumoniae* M129 (ATCC 29342), of which the genome has been completely sequenced (Himmelreich *et al*., 1996), and the strain *M. pneumoniae* FH (ATCC 15531) represents subtype 2. Several subtyping analyses with patient isolates collected in different countries during the past 30 years confirmed the original observations that, based on the gene P1, all isolates can be classified as either subtype 1 or 2, although minor sequence differences in the P1 gene could be found in a few isolates (Dorigo-Zetsma *et al*., 2001; Dumke *et al*., 2003; Kenri *et al*., 1999). Only recently, attempts were made to find additional genetic markers for subtyping purposes (Dumke *et al*., 2003). The results of this study indicated a remarkable genetic stability among
the 115 *M. pneumoniae* isolates from patients collected in different countries over a period of 30 years. So far, in addition to the P1 gene, only the genes encoding the proteins P65 (MPN309) (Proft *et al*., 1995), P40 and P90 have turned out to be useful for subtyping. P40 and P90 are the products of the ORF6 gene. Both are surface exposed and probably arise by post-translational cleavage, since the nucleotide sequence of the ORF6 gene predicts an 130 kDa protein (Franzoso *et al*., 1993; Sperker *et al*., 1991). P40 and P90 are probably identical with the proteins B and C missing in certain avirulent, cytadherence-negative mutants of *M. pneumoniae* (Hansen *et al*., 1979; Hu *et al*., 1984; Krause & Balish, 2004). Cross-linking experiments indicated that P40 and P90 form a protein complex together with the P1 adhesin (Layh-Schmitt & Herrmann, 1994; Layh-Schmitt *et al*., 2000). It is specifically inserted into the region of the membrane that forms the terminal attachment organelle, an asymmetric extension of the bacterium, also denoted the tip structure. The proper formation of the attachment organelle is essential for adherence of *M. pneumoniae* to its host cell. Mutations in the ORF6 gene result in an avirulent, cytadherence-negative phenotype and a random distribution of the P1 protein over the whole surface of *M. pneumoniae* instead of the concentration of P1 at the tip structure as seen in wild-type strains (Baseman *et al*., 1982).

The ORF6 gene is part of the P1 operon (Fig. 1), which consists, in the following order, of the genes ORF4 (MPN140), P1 (=ORF5 (MPN141)) and ORF6 (MPN142). Repetitive DNA sequences are located within both the P1 gene and the ORF6 gene. P1 contains RepMP2/3 and RepMP4 while ORF6 contains RepMP5 (Colman *et al*., 1990; Ruland *et al*., 1990, 1994). Each of these repetitive sequences appears eight to ten times as similar copies dispersed on the genome of *M. pneumoniae* M129 (Himmelreich *et al*., 1996; Ruland *et al*., 1990). They vary in size and are about 1.5–1.8 kbp (RepMP2/3), 1.1–1.5 kbp (RepMP4) and 1.5–2.2 kbp (RepMP5) long. Most of the repetitive sequences consist of variable middle sections, which are bordered by two constant regions. Comparative sequence and PCR analyses of the P1 operon from 115 *M. pneumoniae* patient isolates had shown that there is a constant fixed subtype-specific combination of copies of RepMP2/3, RepMP4 and RepMP5. Although not proven, a switch from a *M. pneumoniae* M129-specific P1 or ORF6 gene to a *M. pneumoniae* FH-specific one could be explained by exchange of the subtype-specific RepMP copy by recombination between the constant regions (Ruland *et al*., 1994). So far, *M. pneumoniae* patient isolates carrying the combination of a *M. pneumoniae* M129-specific P1 gene and a *M. pneumoniae* FH-specific ORF6 gene or vice versa have not been found (Dumke *et al*., 2003), although a subtype switch would require such intermediates.

These results seem to indicate that the ‘correct’ combination of the P1 adhesin and ORF6 gene products is important for the adherence of *M. pneumoniae* to the host cells and the survival of the bacterium in its host environment, and that other combinations might be disadvantageous for the infection or the colonization process. To test this hypothesis, we constructed ‘new’ combinations of P1 and ORF6 genes and investigated the ability of *M. pneumoniae* transformants carrying these combinations to grow and survive in guinea pigs, which were introduced as suitable animal models for studying *in vivo* consequences of a *M. pneumoniae* infection (Jacobs, 1991).

For our studies we used the cytadherence-negative mutant *M. pneumoniae* B170 (ATCC 29343), a derivative of *M. pneumoniae* M129 (Lipman *et al*., 1969). It possesses M129-specific P1 and ORF6 genes but has lost the ability to synthesize P40 and P90 (Sperker *et al*., 1991) due to the deletion of one nucleotide (G) at position 1040 of the ORF6 gene (genome position 186787, P. C. Hu, personal communication). We complemented this mutant by introducing into its genome, via transposon, different ORF6 genes and compared the growth characteristics, expression of selected proteins, adherence properties and survival in an immunocompetent host of the resulting transformants with those of *M. pneumoniae* M129 and *M. pneumoniae* B170.

METHODS

Bacteria. *M. pneumoniae* reference strains M129 [ATCC 29342; subtype 1; broth passage no. 31] and FH [ATCC 15531; subtype 2 (Su *et al*., 1990); broth passage no. 5] were cultivated as described.
Frozen stocks of *M. pneumoniae* B170 cells were grown non-adherently in 500 ml glass flasks. Cells were harvested by centrifugation for 15 min at 8000 g at 4°C.

Isolation of genomic DNA, restriction analysis and Southern blot. These were done as described previously (Dumke et al., 2003).

DIG labelling of probes and hybridization. The genomic DNAs from single clones were characterized by Southern blotting, using DIG-labelled probes. These were generated by incorporating DIG-labelled probes. These were done as described previously (Dumke et al., 2003).

PCR and sequencing. The DNAs for the detection of *M. pneumoniae*-specific gene sequences by PCR were routinely extracted with the QIAquick DNA mini kit (Qiagen) according to the manufacturer’s recommendations. Most of the PCR products were done in a Mastercycler gradient (Eppendorf) in a final volume of 50 µl containing 5 µl 10 x DNA polymerase buffer, 100 mM each of dATP, dGTP, dTTP and dCTP, 30 pmol of each primer, 1 µl DNA polymerase [either Taq DNA polymerase 2000 or 5000 U ml⁻¹ (New England Biolabs), or DeepVent DNA polymerase 2000 U ml⁻¹ (New England Biolabs)] and 0·05 µg genomic or cosmid DNA as template. For amplification of any template DNA, 35 cycles were run under the following conditions: (i) heating of the reaction mixture for 2 min at 95°C; (ii) denaturation step during cycles for 30 s at 95°C; (iii) primer hybridization for 30 s at 48–60°C depending on the melting temperature of the primer; (iv) DNA synthesis for 45 s to 8 min at 72°C depending on the length of PCR product; (v) final extension for 10 min at 72°C. The PCR products were analysed in 1·5% agarose gels and purified with the High Pure Product purification kit (Roche).

The mutation in the ORF6 gene of *M. pneumoniae* B170 at gene position 1040 was confirmed by sequencing the relevant part of PCR products generated with primer set 3 or primer set 4. Primer set 11 was used for sequencing only.

The ORF6 gene from *M. pneumoniae* M129 was amplified with primer set 5 (primer o.7179 contains an additional Clal restriction site). This PCR product was ligated to the expression unit of MPN531. The expression unit was amplified with primer set 6 (primer o.6531 contains an additional PstI restriction site). The PCR was done as described above except that pcosMPG12 (Wenzel & Herrmann, 1989) was used as template. The ligation product of the expression

<table>
<thead>
<tr>
<th>Primer set no.</th>
<th>Oligonucleotide</th>
<th>Sequence (5’→3’)</th>
<th>Position*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGG ACT GGA AAT GAA TCA</td>
<td>TAA TCA ACT TAC</td>
<td>203–223 in the IS</td>
<td>Tn4001 IS256 specific</td>
</tr>
<tr>
<td>2</td>
<td>GAT ATA GTT GAA AAT GA</td>
<td>TAC TGG ATT TAC</td>
<td>620–612 in the IS</td>
<td>Tn4001 IS256 specific</td>
</tr>
<tr>
<td>3</td>
<td>CCG GTG TAT GAA CCC CTG</td>
<td>TCA TCC GAG TAT</td>
<td>168562–168568</td>
<td>Deletion ORF6 M. pneumoniae B170</td>
</tr>
<tr>
<td>4</td>
<td>TCA AAG CGG CAA AAC G</td>
<td>TCA TGG TGT TGC CCA C</td>
<td>168567–168569</td>
<td>Deletion ORF6 M. pneumoniae B170</td>
</tr>
<tr>
<td>5</td>
<td>ATG AAA TCG AAG GTA ATG</td>
<td>ATG AAA AAC AAG GTA</td>
<td>168578–168579</td>
<td>ORF6 M. pneumoniae M129</td>
</tr>
<tr>
<td>6</td>
<td>TTA AGC CTG TGT TCG TAC AAC</td>
<td>TTA AGC CTG TGT TCG</td>
<td>168585–168586</td>
<td>ORF6 M. pneumoniae M129</td>
</tr>
<tr>
<td>7</td>
<td>CTT TAT CCC CTT TCT TGT TTA ATA GGC</td>
<td>AAG TGC AGA ACC AAT GTA GCA</td>
<td>653950–653979</td>
<td>MPN531 expression unit</td>
</tr>
<tr>
<td>8</td>
<td>ACC CTT CAT AGC AAC ATT</td>
<td>AAG ACT GGA AAT GA</td>
<td>185921–185939</td>
<td>ORF6 M. pneumoniae B170/R, PCR1</td>
</tr>
<tr>
<td>9</td>
<td>CCA TCT TGT TTA TCA TCA</td>
<td>CAC TTT CGT TTA CAA ACA C</td>
<td>187916–187921</td>
<td>ORF6 M. pneumoniae B170/R, PCR1</td>
</tr>
<tr>
<td>10</td>
<td>TTA CTA CAT GCA TAT GAG TGC</td>
<td>GGA AAA AAC AAG GCC GGA</td>
<td>132530–132513</td>
<td>ORF6 M. pneumoniae B170/R, PCR2</td>
</tr>
<tr>
<td>11</td>
<td>CCA TCT GGT GCA AGG CCT</td>
<td>GCC CAC TGA TTA AGT AAC</td>
<td>133201–133192</td>
<td>ORF6 M. pneumoniae B170/R, PCR2</td>
</tr>
<tr>
<td>12</td>
<td>ATG AAA GAG AGG ACT</td>
<td>GTT TCA CTG CTA TGG CCC</td>
<td>654097–654080</td>
<td>MPN531 expression unit specific</td>
</tr>
</tbody>
</table>

*All positions for *M. pneumoniae* sequences are genome positions (Dandekar et al., 2000).
unit and ORF6 gene was amplified by PCR, using primers o.6531 and o.7179, and subcloned into the ClaI and PstI restriction sites of the vector pBC (Stratagene).

The ORF6 gene from *M. pneumoniae* FH was amplified with primer set 7.

The recombinant ORF6 gene was assembled by ligating three different PCR products, PCR1, PCR2 and PCR3. They were synthesized with primer set 8 (PCR1, primer o.7199 contains a BlpI restriction site), set 9 (PCR3, primer o.7204 contains a BstEII restriction site) and set 10 (PCR2) using the cosmids (Wenzel & Herrmann, 1989) pcosMP07 (PCR1, PCR3) and pcosMP09 (PCR2) as templates. PCR2 and PCR3 were then ligated and the product used to amplify a PCR2/3 intermediate, which was ligated to PCR1. This new intermediate served as template for synthesizing, with primers o.7199 and o.7204, sufficient amounts of the final product. This DNA fragment, consisting in the 5'-3' direction of PCR1, PCR2 and PCR3, contained a BlpI restriction site near the 5' end and a BstEII site near the 3' end.

To prove the presence of Tn4001 in isolates of *M. pneumoniae* from bronchial alveolar lavage fluids a specific part of this transposon was amplified with primer set 2. The stable mutation in the ORF6 gene of the reisolated mutants at genome position 186877 was confirmed by amplifying the relevant part of the gene with primer set 3 and sequencing with primer set 11.

Sequencing was done using the BigDye terminator cycle sequencing kit and the DNA sequencer ABI PRISM 377 or 373A (Perkin-Elmer Applied Biosystems) or by using external sequencing facilities (GATC Biotech).

Cloning of ORF6 genes

(i) ORF6 of *M. pneumoniae* M129. The purified PCR products of the expression unit of MPN531 and of the ORF6 gene were ligated with T4 ligase (New England Biolabs) and inserted into the unique Smal site of the vector pBC (Stratagene), yielding the plasmid pC1. The ORF6 gene together with the expression unit of MPN531 was transferred from pC1 into the transposon Tn4000/mod, which is part of the plasmid pKV74 (Hahn et al., 1996). For this cloning step, the ORF6 gene was excised from pC1 with the restriction enzymes PstI and ClaI (New England Biolabs) and, after the sticky ends had been converted to blunt ends with the Klenow enzyme (AGS), ligated into the BamHI site of the vector pKV74. The sticky BamHI ends were also converted to blunt ends with the Klenow enzyme. The new plasmid was named pIC1.

(ii) ORF6 of *M. pneumoniae* FH. Plasmid pICT1 was digested with nucleases BstEII and BlpI, yielding a 10-8 kb fragment and a 1-8 kb fragment. The 10-8 kb fragment was isolated from a 0.8% agarose gel and ligated with a BstEII/BlpI DNA fragment carrying the FH-specific RepMP5 copy. This fragment was amplified with primer set 7 from the FH-specific ORF6 gene using genomic DNA of *M. pneumoniae* FH as substrate. The new plasmid was named pICT2.

(iii) Recombinant ORF6. The PCR product containing RepMP5 833 was synthesized as described. It was directly cloned into the unique Smal site of the vector pBC. The resulting plasmid was called pIC3. The new recombinant ORF6 was excised from pIC3 with BlpI and BstEII and ligated into the plasmid pICT2, also treated with BlpI and BstEII, such that it replaced the FH-specific ORF6 gene, generating the new plasmid pICT3.

Transformation of *M. pneumoniae*. *M. pneumoniae* cells were transformed with the corresponding plasmids by electroporation as described previously (Hederyda et al., 1993) and transformants were selected on PPLO agar plates containing gentamicin (80 μg ml⁻¹). Colonies were picked from PPLO agar plates and grown in 1 ml modified Hayflick medium also containing gentamicin (80 μg ml⁻¹). These cultures were then used for inoculation of new expanded cultures or stored at −70 °C.

Filtration technique for Mycoplasma. To get single colonies from *M. pneumoniae* suspensions, the standard technique as described by Tully (1983) was used with the following modifications. The cells were passed sequentially through a 400 nm, a 220 nm and a 100 nm filter, plated on PPLO agar plates and incubated at 37 °C. Single colonies were picked after 10–14 days from plates and cultured in liquid broth culture.

Haemadsorption test. The haemadsorption test was done as published (Krause et al., 1982) with the modification that concentrates of human erythrocytes were diluted in Dulbecco’s modified Eagle medium (Gibco) until the OD₆₀₀ was 0.8. Pictures were taken with an Olympus DP50 digital camera connected to a Zeiss Axio phot with the 20 × objective.

Polyclonal antibodies and preparation of antisera. The specific antigen against the P40 proteins of subtypes 1 and 2 were obtained by immunizing rabbits with the following peptides, which have been coupled to keyhole limpet haemocyanin (mKLH, Pierce): pep 2523F CDESSWKNKTTAEND (amino acid residues 275–290; specific for *M. pneumoniae* M129); pep 2527M CSDSSGQGGGT- TDDNKFQKY (amino acid residues 330–346; specific for *M. pneu- moniae* FH – see Fig. 5). For coupling the peptides to mKLH, a cysteine residue was added at the amino-terminus of each peptide. The peptides were synthesized by M. Ellis and T. Ruppert (ZMBH). The antisera were delivered from Peptide Speciality Laboratories. The antisera against P1 (Dumke et al., 2003), P65 (Prof & Herrmann, 1994), P90 and P40 (Sperker et al., 1991) have been described.

SDS-PAGE and Western blotting. The determination of the protein concentration, the SDS-PAGE and the Western blotting were carried out as published (Dumke et al., 2003).

Animal experiments. Three male guinea pigs (450–600 g, Dunkin-Hartley, Charles River) per group were intranasally infected with an identical inoculum of a specific *M. pneumoniae* strain on the same day (Dumke et al., 2004). The inoculum varied between groups from approximately 4 × 10⁶ to 6 × 10⁶ c.f.u. suspended in 300 μl PBS. The infected animals were kept separately in air-conditioned boxes with filter systems (Biozone) until they were sacrificed. The experiments with the different transformant groups were organized in such a way that the groups were infected one after the other to avoid any cross-contamination. Ten days after infection, the animals were killed by heart puncture under anaesthesia (Jacobs, 1991). The trachea was prepared and a small catheter device was introduced into the trachea drainage hole. For bronchoalveolar washing we instilled approximately 10 ml PPLO broth. The regained solution (approx. 3 ml) was used to isolate *M. pneumoniae* from the lower respiratory tract of the animals.

Two hundred microlitres of the infection suspensions and of the bronchial alveolar lavage fluids were spread on PPLO agar and incubated for at least 3 weeks at 37 °C. In the case of negative results the remaining bronchial alveolar lavage fluid (stored at −20 °C) was concentrated by centrifugation (8000 g, 10 min), and the sediments were resuspended in 500 μl PPLO broth and incubated in the same way. In parallel, 100 μl concentrated bronchoalveolar washing fluid was added to 900 μl PPLO broth and incubated at 37 °C until the colour of the medium changed from red to orange, or for at least 3 weeks. For molecular characterization selected colonies were picked and incubated in 1-5 ml PPLO broth at 37 °C.
RESULTS

Complementation of M. pneumoniae B170 with the ORF6 gene of M. pneumoniae M129

First of all, we resequenced the ORF6 gene of our M. pneumoniae B170 clone and confirmed that it still had the frame-shift mutation in the ORF6 gene. Western blotting analyses with P40- and P90-specific polyclonal antibodies (Sperker et al., 1991) supported the DNA sequencing results, showing that neither P40 (Fig. 2a, lane 6) nor P90 (data not shown) was synthesized in the cytadherence-negative mutant M. pneumoniae B170.

To prove that the cytadherence-negative phenotype is caused only by the frame-shift mutation in the ORF6 gene we complemented M. pneumoniae B170 with the intact ORF6 gene from M. pneumoniae M129. The gene was integrated into the mutant genome via the modified transposon Tn4001, which is part of the plasmid pKV74 (Hahn et al., 1996). This vector contains the unique restriction sites for the endonucleases EcoRI and BamHI. The ORF6 gene of M. pneumoniae M129 was amplified by PCR and fused to the expression unit of MPN531 (clpB) also amplified by PCR. The expression unit was defined as the DNA segment beginning at the first nucleotide in front of the start codon of MPN531 and ending 313 nucleotides further upstream (genome position 653950–654263). The transcriptional start point of this gene (Weiner et al., 2000) and its relative transcription rate (Weiner et al., 2003) were determined experimentally. We selected this expression unit, because clpB is well transcribed and translated (Ueberle et al., 2002) and can be up- and down-regulated by changes in temperature (Weiner et al., 2003). This promoter fusion was necessary, because the ORF6 gene, as part of an operon, does not have its own promoter (Fig. 1). The amplified and modified ORF6 gene was ligated first into the BamHI site of the plasmid pBC, generating the plasmid pIC1, and from there transferred into the transposon Tn4001 (see Methods). This new plasmid was named pICT1. After confirming the correct nucleotide sequence of the modified ORF6 gene, M. pneumoniae B170 was transformed with pICT1 by electroporation. Transformants, now called M. pneumoniae B170/M, which could grow in the presence of gentamicin (80 μg ml⁻¹) either in liquid medium or on agar plates, were filter cloned by standard methods and tested (i) for the presence of Tn4001 sequences, (ii) for adsorption to plastic surfaces and erythrocytes and (iii) for synthesis of the products of the intact ORF6 gene, P40 and P90. The results for transformants M. pneumoniae B170/M5, M. pneumoniae B170/M19 and M. pneumoniae B170/M31 are shown as examples (Figs 2a, 3a and 4c).

Southern blotting analysis confirmed the presence of Tn4001 in all transformants by identification of the IS element and of the gentamicin-resistance gene. We used the endonuclease BglII for restriction of the genomic DNA. Since it did not cut the plasmid pICT1, the gentamicin- and IS-specific probes recognized the same DNA fragments (Fig. 3a). The sizes of the reacting DNA fragments of individual transformants were different, indicating that the sites of insertion of the transposon into the genomes of these transformants were not identical. The site of insertion was determined precisely for M. pneumoniae B170/M31. This was done by digesting the complete genomic DNA with restriction endonuclease HindIII, cloning the DNA fragment which contained the transition between the end of the transposon and the genomic DNA into the vector pBC and sequencing the relevant DNA region. The transposon was inserted within MPN285 between nucleotides 340652 and 340653. This gene encodes a prrB homologue. It is a member of a family of restriction enzymes and obviously nonessential, since M. pneumoniae B170/M31 shows normal growth. Western blotting analyses with...
polyclonal antisera against P40 (Fig. 2a, lanes 1–3) and P90 (data not shown) proved the synthesis of the corresponding proteins. These two proteins must have been translated from the newly inserted ORF6 gene since the frame-shift mutation in the original ORF6 gene was still present.

The sequence analysis of a PCR fragment amplified with two primers (set 3) binding at a unique position (o.1935) near the end of the P1 gene of *M. pneumoniae* B170 and downstream of the position of the frame-shift mutation in the ORF6 gene (o.672) confirmed the frame-shift mutation in the original ORF6 gene. Antisera against P1 (Fig. 2a) and P65 (data not shown) proved that both proteins were also expressed in all three transformants. The regained ability of *M. pneumoniae* B170/M31 to adhere to surfaces (glass, plastic) and erythrocytes (Fig. 4c) was in agreement with the Western blot results.

Selection of RepMP5 copies for constructing ‘new’ ORF6 genes

After proving that trans-complementation with the ORF6 gene products is in principle possible, we constructed two ‘new’ P1–ORF6 combinations composed of the *M. pneumoniae* M129-specific P1 gene complemented with either the *M. pneumoniae* FH-specific ORF6 gene (Ruland et al., 1994), or a RepMP5-specific copy occurring outside the P1 operon of *M. pneumoniae*. These combinations have, so far, not been detected in *M. pneumoniae* isolates (Dumke et al., 2003).

To simulate possible recombination events between the ORF6 gene and the repetitive elements, a set of scripts was created in the Perl programming language to simulate in silico all possible recombination events between the ORF6 gene and the repetitive elements. Two DNA fragments – one from ORF6, the other from a repetitive element – were assumed to be possible recombination sites if (i) the recombination site was longer than 20 bp (Cohan, 1994), (ii) there was a perfect match of at least 10 bp at either end of one recombination site, (iii) there was a

Fig. 3. Southern blots of genomic DNAs from cloned transformants of *M. pneumoniae* B170. The genomic DNAs were digested with restriction enzyme *Bgl*II (a, d) or *Dra*III (b, c), separated on 0.8% agarose gels and transferred to a nylon membrane. Hybridizations were done with DIG-labelled PCR-fragment specific either for the IS element or for the gentamicin-resistance gene. The concentration was 8 ng per ml of hybridization solution. (a) Lane 1, pICT1; lane 2, *M.* pB170; lanes 3–5: *M.* pB170/M5, *M.* pB170/M19, *M.* pB170/M31. (b) Lane 1, pICT2; lane 2, *M.* pB170; lanes 3–5, *M.* pB170/F1, *M.* pB170/F5, *M.* pB170/F3. (c) Lane 2, *M.* pB170; lanes 3–5, *M.* pB170/fr1, *M.* pB170/fr2, *M.* pB170/fr4. (d) Lane 1, pICT3; lane 2, *M.* pB170; lanes 3–5, *M.* pB170/R1, *M.* pB170/R2, *M.* pB170/R3.

Fig. 4. Erythrocyte-binding assay. Colonies were incubated with human erythrocytes: (a) *M. pneumoniae* M129; (b) *M. pneumoniae* B170; (c) *M. pneumoniae* B170/M31; (d) *M. pneumoniae* B170/F3; (e) *M. pneumoniae* B170/fr4; (f) *M. pneumoniae* B170/R1. *M. pneumoniae* B170/fr1 and fr2 bind to erythrocytes like *M. pneumoniae* B170/fr4 (data not shown).
similarity of at least 90% between the two fragments and (iv) the longest mismatch stretch was not longer than 3 bp. Next, all found recombination sites were permuted and the sequences were recombined at these sites, so that 5’ and 3’ regions came from the original ORF6 gene, and the central region from a repetitive sequence. Recombined sequences which contained a frame-shift or a stop mutation, or were more than 70 amino acids shorter than the original P1 protein, were rejected. Finally, a multiple alignment of all 601 resulting recombined sequences was done using the program CLUSTAL W. A recombined sequence contained in a cluster distant as far as possible from both M129- and FH-specific ORF6 gene sequences was chosen for further analysis. The central region of this sequence was derived from the repetitive element RepMP5 833, located on the genome between nucleotides 131796 and 133581 (Figs 1 and 5; for more details see the supplementary files with the online version of this paper).

Construction of ‘new’ ORF6 genes

The ‘new’ ORF6 genes were constructed by replacing a 1824 bp inner DNA fragment of the ORF6 gene of M. pneumoniae M129 located between the two unique restriction sites for the endonucleases BlpI (genome position nucleotide 185989) and BstEII (genome position nucleotide 187815). These two restriction sites are located outside of the variable RepMP5 repeat region within the conserved part of the ORF6 gene M129, the ORF6 gene FH and the RepMP5 833 copy (Fig. 1). The DNA manipulations were done with either plasmid pIC1 or pICT1 (see above), both carrying the ORF6 gene M129, by exchanging their BlpI/BstEII fragment (1824 bp) and inserting either the BlpI/BstEII fragment (1623 bp) from the ORF6 gene FH or the BlpI/BstEII fragment (1680 bp) from RepMP5 833 (=ORF6 gene R, for details see Methods). The plasmids carrying the ORF6 gene FH were called pIC2 and pICT2, and the plasmids carrying the ORF6 gene R were called pIC3 and pICT3 (Table 2). The correctness of these gene constructions was confirmed by sequencing each of the newly constructed ORF6 genes. An amino acid sequence
comparison of the variable regions of the three ORF6 gene products used in this study is shown in Fig. 5.

After transforming *M. pneumoniae* B170 with pICT2 or pICT3 several transformants were isolated and tested for the same criteria as *M. pneumoniae* B170/M. *M. pneumoniae* B170 transformed with the ORF6 gene FH were named *M. pneumoniae* B170/F and those transformed with ORF6 gene R were named *M. pneumoniae* B170/R. Both *M. pneumoniae* B170/F and *M. pneumoniae* B170/R behaved like *M. pneumoniae* B170/M. They adhered to plastic and erythrocytes (Fig. 4d, f) and synthesized P40 as shown by Western blotting with subtype-specific antisera against P40 (Fig. 2b, c). The sera were directed against the peptide pepF2528 (=P40 FH-specific) or peptide pepM2527 (=P40 M129-specific). Since the ORF6 gene R also encodes the M129-specific peptide but not the FH-specific one, it reacts only with the M129-specific anti-P40 serum. Subtype-specific sera for P90 or for ORF6 gene R derived P40 and P90 were not available, but an antiserum against the non-variable region of P90 (Sperker et al., 1991) recognized P90 of *M. pneumoniae* B170/M, B170F and B170R (data not shown). All transformants but one (Fig. 2b, lane 2), which gave positive results with anti-P40 antisera, had still the original frame-shift mutation in the ORF6 gene, as was shown by PCR amplification and sequence analyses of the relevant regions (data not shown). The single exception was *M. pneumoniae* B170/F8, protein extracts of which reacted positively (Fig. 2b, lane 2) with both the *M. pneumoniae* M129- and the *M. pneumoniae* FH-specific anti-P40 serum. Sequence analysis proved that this strain was a revertant carrying two intact ORF6 genes. In support of the data from Western blotting, we confirmed the transformation of *M. pneumoniae* B170 by identifying parts of the transposon Tn-4001 in Southern blotting experiments as already described for *M. pneumoniae* B170/M (Fig. 3). Although the two tested ORF6 genes restored the ability of *M. pneumoniae* B170 to adhere to erythrocytes, we determined the site of insertion of the corresponding transposon, to ensure that no known cytadherence-relevant gene had been inactivated. The insertion sites of the transposons in the genomes of the transformants used in the erythrocyte-binding assay (Fig. 4) were for *M. pneumoniae* B170/F3 in gene MPN506 (putative lipoprotein, unknown function) after nucleotide position 616708 and for *M. pneumoniae* B170/R1 within gene MPN077 (hypothetical ORF) after nucleotide position 113895. The results proved that a specific combination between a P1 and an ORF6 gene as seen in the prototype of subtypes 1 and 2 was not mandatory for the ability to adhere to erythrocytes.

Intranasal infection of guinea pigs with selected *M. pneumoniae* strains

To determine whether the transformed bacteria were able to colonize the host respiratory tract, we infected guinea pigs with selected transformants and screened for surviving bacteria in the bronchial alveolar lavage fluids.

In five sets of separate experiments three guinea pigs each were infected with a specific *M. pneumoniae* strain. The infection doses varied between 3×10^6 and 6×10^6 c.f.u. The following strains were tested for their ability to survive in the respiratory tract of the infected animals: (i) *M. pneumoniae* M129 (positive control for host colonization), expressing the characteristic subtype 1-specific P1 and ORF6 proteins (P40/P90); (ii) *M. pneumoniae* B170 (negative control for host colonization), unable to synthesize P40 and P90; (iii) three transformants of *M. pneumoniae* B170 containing the described ORF6 genes (Table 3), namely *M. pneumoniae* B170/M31 (clone 31, subtype 1-specific ORF6 gene), *M. pneumoniae* B170/F3 (clone 3, subtype 2-specific ORF6 gene) and *M. pneumoniae* B170/R1 (clone 1, RepMP5 833-derived ORF6 gene). Ten days after infection the bronchial alveolar lavage fluids were tested for viable *M. pneumoniae* strains surviving in the host environment, on agar plates and, in the case of negative results, enriched in liquid medium (Table 4).

As expected, the subtype 1 strain *M. pneumoniae* M129 was re-isolated on agar plates from the bronchial alveolar washing fluids of all infected guinea pigs and the mutant *M. pneumoniae* B170 was negative on direct agar cultivation, but also after enrichment and subcultivation, indicating that this strain was not able to colonize any of the three

Table 3. *M. pneumoniae* strains and mutants

<table>
<thead>
<tr>
<th>Strain/mutant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M129 (ATCC 29342)</td>
<td>Subtype 1</td>
</tr>
<tr>
<td>FH (ATCC 15531)</td>
<td>Subtype 2</td>
</tr>
<tr>
<td>B170 (ATCC 29343)</td>
<td>Subtype 1, deletion in ORF6 gene (no expression of proteins P40 and P90)</td>
</tr>
<tr>
<td>B170-derived mutants*</td>
<td></td>
</tr>
<tr>
<td>B170/M</td>
<td>*M. p. B170 complemented with the ORF6 gene specific for M. p. M129</td>
</tr>
<tr>
<td>B170/R</td>
<td>*M. p. B170 complemented with the ‘new’ ORF6 gene containing RepMP5 833 from M. p. M129</td>
</tr>
<tr>
<td>B170/F</td>
<td>*M. p. B170 complemented with the ORF6 gene specific for M. p. FH</td>
</tr>
<tr>
<td>B170/fr</td>
<td>Re-isolates of M. p. B170/F from infected guinea pigs</td>
</tr>
</tbody>
</table>

*Individual clones received numbers e.g. *M. pneumoniae* B170/M31.*
animals. Further colony growth on agar plates was detected in the bronchial fluids from guinea pigs which were infected with the transformant M. pneumoniae B170/F3. Growth of M. pneumoniae could be detected after incubating the bronchial alveolar fluids in liquid medium in two bronchial fluids of two guinea pigs infected with M. pneumoniae B170/M31 and in samples of three guinea pigs infected with M. pneumoniae B170/R1. These latter five positive cultures in PPLO broth were subcultured on PPLO agar. Twenty randomly picked M. pneumoniae colonies (except animal 2 from the guinea pigs infected with M. pneumoniae B170/F3, from which only five colonies were recovered), derived either from the primary agar plates or from subcultures of enriched PPLO broth cultures, were characterized by PCR, DNA sequencing, Southern blotting and their ability to adhere to erythrocytes. Compared with the initial inoculum we found no differences. All re-isolates had the one nucleotide deletion at position 1040 of the original ORF6 gene, still contained the inserted transposon with the specific new ORF6 sequences at the same genome position as determined by Southern blotting analysis and retained the ability to adhere to human erythrocytes. As examples, we show the results of the analyses of three isolates (M. pneumoniae B170/fr1, fr2 and fr4), which were recovered from M. pneumoniae B170/F3-infected guinea pigs (Figs 3c and 4e).

DISCUSSION

The cytadherence-negative mutant M. pneumoniae B170 was converted to a cytadherence-positive strain by complementation with each of three different ORF6 genes. These results confirmed that besides the P1 protein an expressed ORF6 gene is essential for cytadherence and persisting survival of M. pneumoniae in a host environment and that M. pneumoniae strains with the same P1 protein but different expressed ORF6 genes show a colonization-positive phenotype in guinea pigs.

The number of recovered colonies after plating without prior enrichment in liquid medium is rather low (Table 4), but this is a general phenomenon of the fastidiously growing M. pneumoniae cells. For this reason it is recommended microbiological practice in diagnostics not only to spread infected samples directly on agar plates but also to enrich the bacteria in liquid medium. A positive result, the identification of an infectious M. pneumoniae is achieved if, with either procedure, bacteria were re-isolated. Applying these procedures we recovered the ORF6-complemented M. pneumoniae strains from almost all infected guinea pigs and confirmed by molecular methods that they were identical with the inoculum strains. In agreement with published data (Lipman et al., 1969), the only strain that could not be recovered was the non-adhering M. pneumoniae B170. It was eliminated by the natural clearance of the bronchial tract within 10 days.

Due to the problems concerning the recovery of M. pneumoniae directly from samples of the bronchial washing fluids, plating efficiencies cannot be used to quantify differences in the ability of individual strains to adhere and to colonize the host. The re-isolation of M. pneumoniae from bronchial fluids on agar plates or in liquid medium is

Table 4. Recovery of M. pneumoniae in bronchial washing fluids after intranasal infection of guinea pigs with mutants B170, B170/M31, B170/F3, B170/R1 and the control strain M129

<table>
<thead>
<tr>
<th>Strain/mutant of M. pneumoniae</th>
<th>Infection dose (c.f.u.)</th>
<th>Animal</th>
<th>C.f.u. ml⁻¹ on PPLO agar</th>
<th>Growth in PPLO broth</th>
</tr>
</thead>
<tbody>
<tr>
<td>M129</td>
<td>6·3 × 10⁸</td>
<td>1</td>
<td>4·1 × 10²</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4·6 × 10²</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3·0 × 10³</td>
<td>ND</td>
</tr>
<tr>
<td>B170</td>
<td>8·7 × 10⁷</td>
<td>1</td>
<td>no colonies</td>
<td>no growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>no colonies</td>
<td>no growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>no colonies</td>
<td>no growth</td>
</tr>
<tr>
<td>B170/M31</td>
<td>1·7 × 10⁷</td>
<td>1</td>
<td>no colonies</td>
<td>no growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>no colonies</td>
<td>+*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>no colonies</td>
<td>+*</td>
</tr>
<tr>
<td>B170/F3</td>
<td>3·9 × 10⁶</td>
<td>1</td>
<td>3·5 × 10⁴†</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5·0 × 10⁶†</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2·5 × 10⁴†</td>
<td>ND</td>
</tr>
<tr>
<td>B170/R1</td>
<td>1·1 × 10⁷</td>
<td>1</td>
<td>no colonies</td>
<td>+‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>no colonies</td>
<td>+‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>no colonies</td>
<td>+‡</td>
</tr>
</tbody>
</table>

ND, Not done.
*Confirmed by PCR and sequencing as B170/M.
†Confirmed by PCR and sequencing as B170/F.
‡Confirmed by PCR and sequencing as B170/R.
since it avoids the considerable losses of proteins occurring during cleavage (Jaffe, 1988). We explain the failure to detect such ORF6 gene products? What is the function of the seven additional copies of RepMP5, which supply a potential reservoir – at least in theory – for generating many different ORF6 genes (Himmelreich et al., 1996; Rocha & Blanchard, 2002)?

In contrast to these findings are the results from analyses of the composition of the P1 operons from 115 M. pneumoniae strains collected from patients in different countries over a period of 30 years. They showed that only two subtype 1- and 2-specific combinations of the genes P1 and ORF6 could be identified (Dumke et al., 2003). How can we explain the discrepancy between the results from the patient isolates and the in vitro generation of transformants with hitherto unknown combinations of P1 protein and ORF6 gene products? What is the function of the seven additional copies of RepMP5, which supply a potential reservoir – at least in theory – for generating many different ORF6 genes (Himmelreich et al., 1996; Rocha & Blanchard, 2002)?

If we exclude the possibility that the isolation procedure for M. pneumoniae strains from patients is selective, then we should find more ‘new’ combinations of the P1 and ORF6 genes in the P1 operon carrying different repetitive DNA sequences, as we indeed observed in the described experiments (Dumke et al., 2003). These ‘new’ combinations could be generated by homologous recombination leading, among others, to the same P1/ORF6 combination as in the transformants M. pneumoniae M129/F and M129/R. We explain the failure to detect such M. pneumoniae strains by the lack of an efficient system for homologous recombination.

We assume that the crucial enzyme for this reaction is RecA. M. pneumoniae contains the corresponding gene (MPN490), but in a transcriptome analysis of M. pneumoniae M129 (Weiner et al., 2003) only low signals were obtained for a RecA-specific mRNA. In addition, RecA has not been identified in a proteome analysis combining 2D gel electrophoresis and mass spectrometry (Ueberle et al., 2002) although the features of RecA, pI 9-77 and no predicted transmembrane segment, should have allowed the identification, unless the amount is too low for detection by standard 2D gel electrophoresis and mass spectrometry. However, recently RecA was identified in a total protein extract of M. pneumoniae FH by a proteome analysis, which was done without separation of the total protein extract into individual proteins prior to tryptic cleavage (Jaffe et al., 2004). This method is more sensitive, since it avoids the considerable losses of proteins occurring during 2D gel electrophoresis and allows the application of higher amounts of protein extracts. Therefore, the concentration of RecA in M. pneumoniae could be rather low. In agreement with these observations are the negative results from experiments aiming to construct mutants from M. pneumoniae by homologous recombination, which is in contrast to the results with the closely related species Mycoplasma genitalium (Dhandayuthapani et al., 1999). The latter organism was successfully transformed by integration of foreign DNA via homologous recombination and its RecA was also identified on 2D gels of total M. genitalium cell extracts (Wasinger et al., 2000).

Similar experiments as those carried out with the ORF6 gene should also be done with the P1 gene, although this will be more complicated, because this gene contains two repetitive DNA sequences, RepMP2/3 and RepMP4 (Fig. 1; Ruland et al., 1990). In a first step, one of these sequences of a subtype 1-specific P1 gene could be exchanged with a subtype 2-specific one and the resulting M. pneumoniae strain tested for adherence, ability to infect hosts and its potential to serve as a true precursor for a complete subtype switch. Experiments along this line will help to explain whether the observed switch of the dominating subtype in epidemic outbreaks of M. pneumoniae appearing in intervals of 3–7 years is caused by conversion of one subtype to another one or by faster growth of one subtype in a mixture of both subtypes. Since the human immune defence would be primarily directed against the dominating infecting subtypes, the second subtype could grow uninhibited, at least for some time, and should become the dominating infectious subtype in the following years.

ACKNOWLEDGEMENTS

We thank E. Pirkl for excellent technical assistance, C.-U. Zimmerman for critically reading the manuscript and I. Schmid for secretarial work. This project was supported by grants He 399-2 and Ja 399-2 from the Deutsche Forschungsgemeinschaft.

REFERENCES

