Role of Pir1 in the construction of the *Candida albicans* cell wall

Ana I. Martínez, Luis Castillo, Ana Garcerá, María V. Elorza, Eulogio Valentín and Rafael Sentandreu

Departament de Microbiologia i Ecologia, Facultat de Farmacia, Universitat de València, Vicent Andrés Estelles s/n, 46100 Burjassot, València, Spain

Searches in a *Candida albicans* database (http://genolist.pasteur.fr/CandidaDB/) identified two Individual Protein Files (IPF 15363 and 19968) whose deduced amino acid sequences showed 42% and 45% homology with *Saccharomyces cerevisiae* Pir4. The two DNA sequences are alleles of the same gene (*CaPIR1*) but IPF 19968 has a deletion of 117 bases. IPF 19968 encodes a putative polypeptide of 364 aa, which is highly O-glycosylated and has an N-mannosylated chain, four cysteine residues and seven repeats. Both alleles are expressed under different growth conditions and during wall construction by regenerating protoplasts. The heterozygous mutant cells are elongated, form clumps of several cells and are hypersensitive to drugs that affect cell wall assembly. CaPir1 was labelled with the V5 epitope and found linked to the 1,3-β-glucan of the *C. albicans* wall and also by disulphide bridges when expressed in *S. cerevisiae*.

INTRODUCTION

The cell wall of *Candida albicans* plays essential roles in growth and development, and in interactions with mammalian cells and tissues during infection and colonization. Besides its primary protective role in shielding the cell against osmotic, chemical and biological harm, the wall of *C. albicans* is involved in many other functions, including morphogenesis, and some activities that may be termed ‘social’, such as morphological responses, antigenic expression, adhesion and cell–cell interaction (Calderone & Fonzi, 2001; Berman & Sudbery, 2002; Sundstrom, 2002). There are many data supporting the idea that temporal and spatial regulation of the synthesis and assembly of wall polymers are critical for the properties of the wall, which thus do not exclusively depend on their chemical composition, but also on the way that different polymers interact and assemble to give the final structure.

The cell wall is a composite of chitin fibrils immersed in an amorphous matrix made of β-glucans and mannoproteins. The three components are dispersed throughout the cell wall, although the mannoproteins are mostly concentrated on the outer surface (Sentandreu et al., 2001; Klis et al., 2002; Kapteyn et al., 1999b).

In *C. albicans* and *Saccharomyces cerevisiae* some wall proteins are released by hot SDS and the remaining ones are solubilized in the form of supramolecular highly polydisperse complexes, after the degradation of the structural skeleton by β-glucanases and chitinase (Marcilla et al., 1991, 1993). Three types of proteins that are released by β-glucanases and chitinase have been detected: glycosylphosphatidylinositol proteins (GPI-dependent wall proteins), Pir proteins (proteins with internal repeats) and other proteins. The proteins of the first group are linked to 1,3-β-glucan through a 1,6-β-glucan connector whereas the proteins of the second group are highly O-glycosylated, and are attached to the 1,3-β-glucan in the cell wall by unknown alkali-labile bonds, suggesting that they are retained through an O-glycosidic linkage (Mormeneo et al., 1995; Mrša & Tanner, 1999; Kapteyn et al., 2000; Klis et al., 2001). The third type of proteins detected in the cell walls lack signal peptide and are probably exported by a putative, non-classical export pathway: enolase, aconitase, pyruvate kinase, phosphoglycerate mutase, methionine synthase and many others have been identified (Cleves et al., 1996; Eroles et al., 1997; Pardo et al., 1999, 2000).

Pir proteins seem to be also present in *C. albicans* and other fungi, as immunological and Southern and Northern experiments suggested the presence of a protein related to the heat-shock-inducible product of the *HSP150/PIR2* gene of *S. cerevisiae* (Kandasamy et al., 2000; Kapteyn et al., 2000; Jaafar et al., 2003).

Kapteyn et al. (1999a) published evidence that the amount of Hsp150/Pir2 in the walls of 1,6-β-glucan-deficient mutants increases and suggested that this phenomenon is part of a general compensatory mechanism in response to cell wall weakening caused by low levels of 1,6-β-glucan (Kapteyn et al., 1999a).

Abbreviations: ConA, concanavalin A; Endo-F, endoglycosidase F; IPF, individual protein file.
This paper reports identification of a homologue of S. cerevisiae Pir4 by a BLAST search in a C. albicans genomic database (http://genolist.pasteur.fr/CandidaDB/). This new C. albicans Pir protein, CaPir1, has two alleles of different sizes. Both alleles seem to be expressed equally. After cloning, the C. albicans Pir protein was expressed in S. cerevisiae and overexpressed in C. albicans. The protein was labelled with V5 epitope and found to be linked by alkaline sensitive linkages to the wall.

METHODS

Micro-organisms and growth conditions. C. albicans, S. cerevisiae and Escherichia coli strains, and the plasmids used in this study, are listed in Tables 1 and 2, respectively. Strains were maintained on slants of YPD solid medium (1 % yeast extract, 2 % peptone, 2 % glucose, 2 % agar). Inocula were prepared by transfer of loopfuls of slants of YPD solid medium (1 % yeast extract, 2 % peptone, 2 % glucose, 2 % agar). Inocula were prepared by transfer of loopfuls of slants to YNB or YPD liquid medium, depending on the experiment, and the cells were incubated by shaking overnight at the appropriate temperature. YNB-maltose medium contained 2 % maltose, 0-167 % YNB and 0-5 % (NH₄)₂SO₄. E. coli DH5α was grown at 37 °C in Luria–Bertani (LB) broth supplemented with ampicillin (100 μg ml⁻¹) when appropriate. Agar was added to 1·5 % for LB plates.

Preparation of wall and soluble fractions. Yeast cells were collected by centrifugation (3000 g, 10 min), washed twice with chilled distilled water, then suspended in a small volume of 1 mM PMSF and broken by vortexing with glass beads (5 mg beads per mg cells); complete cell breakage was obtained. Cell breakage was assessed by examining the preparation with a phase-contrast microscope. The cell walls were sedimented (3000 g, 10 min) from the cell-free homogenate, washed four times with chilled distilled water, then boiled for 10 min (twice) with 2 % SDS in distilled water, and finally washed a further six times with chilled 1 mM PMSF in distilled water. Isolated walls were freeze-dried and stored at −20 °C until further use.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC5314</td>
<td>Wild-type</td>
<td>Gillum et al. (1984)</td>
</tr>
<tr>
<td>CAI4</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15 URA3</td>
<td>Fonzi & Irwin (1993)</td>
</tr>
<tr>
<td>CAI4/pADH-15</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15-URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAI4/pADH-15-unc</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15-unc URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAI4/pMAL-15-V5</td>
<td>ipf19968/Ipfp15363::URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAIP19</td>
<td>Δipfp19968/Ipfp15363::URA3</td>
<td>This work</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC5314</td>
<td>Wild-type</td>
<td>Gillum et al. (1984)</td>
</tr>
<tr>
<td>CAI4</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15 URA3</td>
<td>Fonzi & Irwin (1993)</td>
</tr>
<tr>
<td>CAI4/pADH-15</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15-URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAI4/pADH-15-unc</td>
<td>Δura3::imm434/Δura3::imm434 pADH-15-unc URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAI4/pMAL-15-V5</td>
<td>ipf19968/Ipfp15363::URA3</td>
<td>This work</td>
</tr>
<tr>
<td>CAIP19</td>
<td>Δipfp19968/Ipfp15363::URA3</td>
<td>This work</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>F⁻ φ80 d lac AM15 recA1 endA1 gyrA96 thi-1 hisd17 (rE₃ mC⁻)</td>
<td>Hanahan (1985)</td>
</tr>
</tbody>
</table>

Table 1. Strains

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characteristics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pADH-pl</td>
<td>Contains the promoter of ADHI of C. albicans, CaURA3, AmpR</td>
<td>Bertram et al. (1996)</td>
</tr>
<tr>
<td>Clp10-MAL2p</td>
<td>Contains the promoter of CaMAL2, CaURA3, AmpR</td>
<td>Backen et al. (2000)</td>
</tr>
<tr>
<td>p5921</td>
<td>Contains the hisG–URA3–hisG cassette, CaURA3, AmpR</td>
<td>Fonzi & Irwin (1993)</td>
</tr>
<tr>
<td>p15-1,2</td>
<td>Contains the 15-1,2 fragment</td>
<td>This work</td>
</tr>
<tr>
<td>p15-c</td>
<td>Contains the 15-3,4 fragment</td>
<td>This work</td>
</tr>
<tr>
<td>pADH-15</td>
<td>Contains the ORF of CaPIRI</td>
<td>This work</td>
</tr>
<tr>
<td>pADH-15-unc</td>
<td>Contains the ORF of CaPIRI fused to the c-myc epitope</td>
<td>This work</td>
</tr>
<tr>
<td>pMAL-15-V5</td>
<td>Contains the ORF of CaPIRI fused to the V5 epitope</td>
<td>This work</td>
</tr>
</tbody>
</table>
The cell walls (100 mg dry weight) were suspended in a solution of 0·01 M ammonium acetate, pH 6·3, containing 2 % (w/v) β-mercaptoethanol, shaken for 3 h at 28 °C and then pelleted. The supernatant was concentrated by freeze-drying and dissolved in Laemmli solution (1970). The cell wall residue was then extracted again with 15 mM NaOH (Kapteyn et al., 1999a).

Protein gel electrophoresis and Western blot techniques. Proteins were separated by SDS-PAGE performed basically as described elsewhere (Laemmli, 1970) in 10 % (w/v) acrylamide gels loaded with 20 μg protein. The gels were stained with Coomassie brilliant blue or transferred onto Hybond-C nitrocellulose membranes as described by Towbin et al. (1979) and Burnette (1981), and immunodetected with a polyclonal antibody preparation against the material extracted by Zymolyase from *C. albicans* yeast cell walls (Pahls) (1:1000), or anti-c-myc (1:500) and anti-V5 (1:500) monoclonal antibodies (Invitrogen). Detection was carried out by the enhanced chemiluminiscent (ECL) method from Amersham Biosciences, following the manufacturer’s instructions.

Mannoproteins were stained by the protocol described by Hawkes (1982) and modified by Millete & Scott (1984). To remove N-glycosylated chains of mannoproteins, samples containing 15 μg protein were treated with endoglycosidase F (Endo-F; Roche) following the manufacturer’s instructions.

Protoplast preparation and regeneration. Preparation and regeneration of *C. albicans* CAH4 protoplasts were carried out as described by Elorza et al. (1983). Regeneration was performed for 30 min, 1 h, 2 h, 3 h and 5 h. Regenerated protoplasts in each condition were recovered by centrifugation (10 min, 2000 g) and stored at −20 °C.

Mycelium induction. For germ tube induction, cells were cultured in modified Lee’s medium as described previously (Elorza et al., 1988).

Heat-shock assay. *C. albicans* CAH4 was grown overnight at 25 °C in YNB medium at 200 r.p.m. One millilitre was inoculated into a 110 ml YNB medium preheated at 25 °C and incubated at 25 °C for 30 min. The other was added to 50 ml YNB medium preheated at 25 °C and incubated at 25 °C for 30 min. Cultures were harvested at room temperature by centrifugation (2000 g, 5 min) and stored frozen until RNA extraction.

Genetic constructions. To construct the heterozygous *PIR1* mutants, part of the gene (522 bp) was replaced with a hisG::URA3::hisG cassette (Fonzi & Irwin, 1993). This cassette was made by a two-step PCR amplification procedure. In the first step, an amplicon of 512 bp was obtained from genomic DNA using primers 15-I (TTCCGAGCTCGTTAGATGTGTTACTTTGTTAG) and 15-II (TTCTGCAGTTTAACAGTTGACAAATTCAATGACAC) containing the V5 epitope sequence corresponding to the V5 epitope was added at the 3′ end. The product was digested with Bgl II and ligated with the 12·1 kb Bgl II–EcoRV fragment of pADH-pl (Bertram et al., 1996) to generate pADH-15.

To construct pADH-15-myc, the coding region of *CaPIR1* was amplified by PCR using the oligonucleotides ADH 15 5′-TTCAATGACAC) containing the V5 epitope sequence (in bold), the stop codon TAA, an EcoRV restriction site (underlined) and 23 bp of the 3′ end. The PCR product was digested with Bgl II and EcoRV and ligated with the 12·1 kb Bgl II–EcoRV fragment of pADH-pl (Bertram et al., 1996) to generate pADH-15-myc.

Plasmid pMAL-15-V5 was constructed to tag the CaPIR1 protein with a V5 epitope. The *CaPIR1* coding region was amplified with primers designed to introduce an EcoRV site at position −1 with respect to the first nucleotide of the coding region and an Mlu I site at the 3′ end. The sequence corresponding to the V5 epitope was added at the 3′ end. The primer sequences used were 15-V5 5′-TTCTGATATCTAAAGATCCTCTCTGGAGATGTT TTGTTACAGTGTGACAAATTCAATGACAC) containing the c-myc sequence (in bold), the stop codon TAA, an EcoRV restriction site (underlined) and 23 bp of the 3′ end. Two 50 ml samples were taken. One was added to 50 ml YNB medium preheated at 25 °C to OD 600 0·6. Two 50 ml samples were taken. One was added to 50 ml YNB medium preheated at 25 °C and incubated at 25 °C for 30 min. The other was added to 50 ml YNB medium preheated at 53 °C and incubated at 37 °C for 30 min. Cultures were harvested at room temperature by centrifugation (2000 g, 5 min) and stored frozen until RNA extraction.

**Uridine and integrative analysis was checked by PCR, RT-PCR and Southern blot analysis. Some of the heterozygous disruptants obtained from each allele (*PIR1*15363/15*PIR1*996Δ and *PIR1*15363/15*PIR1*996A) were plated on YNB medium containing uridine and 5-fluoro-orotic acid to select *ura* revertants produced as a result of recombination of the flanking hisG repeats (Boeke et al., 1984).

C. albicans CAH4/pADH-15 and *S. cerevisiae pir A4/pADH-15 strains with constitutive expression of CaPIR1 were obtained by transformation of *S. cerevisiae* pir A4 mutant or *C. albicans* CAH4 with plasmid pADH-15. To construct this plasmid the *CaPIR1* coding region was PCR-amplified. Primers designed to introduce a Bgl II site at position −1 with respect to the first nucleotide of the coding region and an EcoRV site in the 3′ end were used. The primer sequences were ADH 15′-TTACTGAGCTATGAGATGTTCTTTGTTAG and ADH 1953′-GGGCCGGATATCTTAATAGTGTGACAAACTC; they include Bgl II and EcoRV sites respectively (underlined). The PCR product was digested with Bgl II and EcoRV and ligated with the 12·1 kb Bgl II–EcoRV fragment of pADH-pl (Bertram et al., 1996) to generate pADH-15.
of 3 µl were placed onto the surface of YNB plates containing increasing concentrations of Calcofluor white (0–150 µg ml⁻¹) and Congo red (0–30 µg ml⁻¹). Plates were incubated at 28 °C and monitored after 3 days.

RT-PCR analysis. Total RNA was prepared from *C. albicans* CAI4 after growth in different conditions by the method described by Langford & Gallwitz (1983).

RNA was treated with RNase–free DNase I (Amersham Biosciences) to eliminate genomic DNA contamination. The first-strand cDNA synthesis reaction was catalysed by the SuperScript First Strand Synthesis System for RT-PCR (Invitrogen) and the primers used to amplify IPF 15363 and IPF 19968 were ADH 15 5′ and ADH 15 3′. PCR generated an amplicon of 1120 bp from the first allele and another of 1003 bp for IPF 19968. In a parallel experiment and as an internal control the RT-PCR was performed using new primers that amplify CaRPS0 (Baquero et al., 2001). This gene carries an intron, and genomic DNA gave a fragment of 870 bp and cDNA one of 545 bp. The oligonucleotides used in this case were YST11B (TTTACTTAACT-CCGAAAGACCG) and YST12B (ACCTTAAACTCAAGACTCTCTAGCC). cDNA was quantified in a GeneQuant II spectrophotometer (Amersham Pharmacia Biotech) and all samples contained the same quantity of first-strand cDNA (1 µg) for PCR amplification. In some experiments, several cycles of amplification were analysed and PCR products were run on 0-8 % agarose gels.

RESULTS

Identification of putative Pir proteins in *C. albicans*

N-terminal sequencing of a protein extracted by protein (Hsp150/Pir2; Kapteyn & Langford, 1983).

Structural analysis of the amino acid sequence encoded by CaPIR1

CaPIR1 encodes two putative polypeptides, of 385 aa (IPF 15363) and 364 aa (IPF 19968), respectively, with calculated molecular masses of 40.5 and 36.4 kDa and pl of 4.85 and 4.75. Analysis of the predicted amino acid sequences revealed an N-terminal region with characteristics of a signal peptide (von Heijne, 1986) and a predicted cleavage site at positions 18–19 (...SLA-AT...). Assuming that the cleavage site is at position 18, the mature proteins consisted of 367 aa and 328 aa, respectively, with a calculated molecular mass of 38.9 kDa (IPF 15363) and 34.7 kDa (IPF 19968). Approximately 20 % of the amino acid residues are Ser or Thr in both IPFs, indicating that CaPir1 could be a highly O-glycosylated protein. One potential N-glycosylation site (N-Xaa-S/T) was identified at amino acid position 233–235 (NST) in IPF 15363 and 194–196 (NST) in IPF 19968. Another structural feature of CaPir1 is the presence of four Cys residues in the C-terminal part of the protein (−C-66aa- C-16aa-C-12aa-C-COOH) (Fig. 1), which is characteristic of the ScPir protein family. ScPir proteins are also identified by the presence of amino acid repeats in their sequences; in this regard ScPir4 has one [−(S-Q-(I/V)-(S/T/G/N/H)-D-G- Q-(L/I/V)-(Q-(A/I/V)-(S/T)-A)] whereas CaPir1 has nine (IPF 15363) or seven (IPF 19968) with a slightly different structure [−(A/K/Q)-Q-I-(S/T/G/N)-D-G-Q-I-Q-H-Q-T-].

Expression patterns of CaPIR1

The presence of different alleles of *CaPIR1* opened the possibility of finding if both alleles were expressed equally under the same environmental conditions or if they had a different expression control. The expression of *CaPIR1* was examined by RT-PCR. Fig. 2(a, b) shows the RT-PCR amplification of *CaPIR1*-specific fragments (1120 and 1003 bp) from first-strand cDNA derived from cells growing in different conditions. Different samples, containing the same quantity of first-strand cDNA, were prepared and subjected to different cycles of amplification. Fig. 2(a, b) shows that the quantity of *CaRPS0*-specific amplicon (545 bp) was approximately the same in each of the first-strand cDNA samples. The presence of one intron in the corresponding region of the *CaRPS0* genomic DNA allows differentiation between bands amplified from cDNA and any contaminating genomic DNA (870 bp) (Baquero et al., 2001). The results indicated that the two alleles of *CaPIR1* were expressed in the same amount independently of the cellular morphology, yeast or mycelium (Fig. 2a). In *S. cerevisiae* at least one of the Pir proteins is a heat-shock protein (Hsp150/Pir2; Kapteyn et al., 1999a); to determine if CaPir1 could be a heat-shock protein and so a functional homologue of ScPir2, a semi-quantitative RT-PCR was performed from cells growing at 25 °C and then transferred to 37 °C. As shown in Fig. 2(b), no differences in expression were observed, suggesting that CaPir1 is not a heat-shock
protein. One interesting observation was made from protoplasts under cell wall regeneration conditions. C. albicans protoplasts were incubated in a regeneration medium, and after 30, 60, 120, 180 and 300 min, samples were taken and the CaPIR1 expression examined by RT-PCR. The results (Fig. 2c) indicated that CaPIR1 expression increased with time of regeneration, showing a maximum after 120 min of incubation.

Construction of CaPIR1 mutants

To investigate the function of CaPir1 protein, construction of null mutants by targeted gene disruption was attempted. Disruption of the CaPIR1 gene was performed by using a strategy originally developed for S. cerevisiae (Alani et al., 1987) and modified for use in C. albicans (Fonzi & Irwin, 1993). This method uses a cassette consisting of the C. albicans URA3 gene flanked by direct repeats of the Salmonella typhimurium hisG gene. This cassette was used to replace approximately 50 % of the ORF of the two alleles of CaPIR1 (IPF 15363 and IPF 19968). A linear SadI–PstI fragment from plasmid p15-c, including the cassette flanked by CaPIR1 sequences, was used to transform C. albicans CAI4 to Ura⁺ (see Methods).

Fourteen of the resulting Ura⁺ transformants were analysed and eleven of them contained the desired insert at the CaPIR1 locus (data not shown). Southern blot analysis of different isolates, after digestion with SadI, revealed that the cassette had integrated into one of the two CaPIR1 alleles (Fig. 3a), giving rise to a 13.8 kb fragment; this is consistent with the replacement of one allele of CaPIR1 with the transforming DNA. The 10 kb SadI fragment corresponds to the other allele which was still present in the Ura⁺ transformants. To determine which of the two alleles had been disrupted, an RT-PCR assay was performed. As shown in Fig. 3(b), disruptants of the two alleles were obtained. A representative isolate of each mutant was chosen; these isolates were named C. albicans CAPIR15 and C. albicans CAPIR19, heterozygous mutants for allele IPF 15363 and IPF 19968, respectively. Ura² segregants were selected on medium containing 5-fluoro-orotic acid (Boeke et al., 1984) and examined by Southern blot analysis. More than 60 independent segregants were examined and all of them had experienced an interchromosomal recombination event, reverting to the C. albicans CAI4 genotype (data not shown).

By this method of disruption only heterozygous mutants in one or other of the two CaPIR1 alleles were obtained (Fig. 3b) so we tried to obtain null mutants by the technique of Wilson et al. (1999). By this technique again only heterozygous mutants were obtained (data not shown). By using this technique it is not necessary to obtain any Ura² segregants to disrupt the second allele, and the fact that no homozygous mutants were obtained with both techniques

Fig. 1. Alignment of the S. cerevisiae Pir4 sequence and the sequences deduced from IPFs 19968 and 15363. Internal repetitions are shadowed in black, the point mutation (Leu281/Ser242) in grey and the four conserved cysteine residues in bold. The arrow indicates the 39 aa lacking in the sequence deduced from IPF 19968.
could indicate that CaPIR1 is an essential gene for cell viability.

Phenotypic analysis of the Capir1/CaPIR1 mutants

Phenotypic analysis of the heterozygous mutants obtained in comparison with the parental strain was performed. The specific growth rates of the cells at 28°C and 37°C on minimal medium were slower in both heterozygous mutants than in the parental strain (data not shown). In addition, cells of *C. albicans* CAPIR15 and CAPIR19 mutant strains showed some differences in morphology when they were grown at 28°C or 37°C (Fig. 4a). Mutant cells appeared elongated and many of them had an abnormal shape with a tendency to form clumps of different numbers of cells (Fig. 4a).

Possible alterations in the cell wall were studied by testing the sensitivities of the two heterozygous strains, *C. albicans* CAPIR15 and CAPIR19, to Calcofluor white and Congo red, as described in Methods. Sensitivities to these compounds did increase in the two mutant strains with respect to *C. albicans* CAI4 parental cells (Fig. 4b), suggesting that both *CaPIR1* alleles, IPF 15363 and IPF 19968, contribute to maintaining the architecture of the cell wall.

Overexpression and cellular localization of CaPir1 in *C. albicans*

Overexpression of *CaPIR1* was achieved by subcloning an amplicon containing the IPF 15363 allele of *CaPIR1* in a pADH episomal vector (Bertram et al., 1996) under the control of the *ADH1* promoter. The new plasmid was named pADH-15 and it was used to transform *C. albicans* CAI4. To

Fig. 2. (a, b) Expression of *CaPIR1* mRNA under different conditions measured by semiquantitative RT-PCR: (a) yeast and mycelium; (b) heat shock (25 and 37°C). Samples containing 1 μg cDNA were amplified and several cycles of amplification were analysed (cycle numbers are shown at the top of each panel). (c) Protoplast regeneration at 28°C (30, 60, 120, 180 and 300 min regeneration) measured by RT-PCR, using as control cDNA obtained from an exponential-phase CAI4 culture in YNB medium at 28°C (C). Samples containing 1 μg cDNA were subjected to 30 cycles of amplification and then run on a 0.8% agarose gel. Primers that amplified a 545 bp fragment of *CaRPS0* (a constitutive gene with an intron in its sequence) were used as control. Primers that amplified the complete ORF of *CaPIR1* were used to measure *CaPIR1* expression.

Fig. 3. (a) Southern blot analysis of genomic DNAs from *C. albicans* CAI4, CAPIR15 and CAPIR19 digested with SacI and hybridized with a DIG-labelled DNA probe (amplicons 15-1,2 and 15-3,4). The wild-type and disrupted alleles are shown on the left. (b) RT-PCR analysis of the transformants using ADH 15 5′ and ADH 15 3′ as primers. Primers that amplified a 545 bp fragment of *CaRPS0* (a constitutive gene with an intron in its sequence) were used as control. Primers that amplified the complete ORF of *CaPIR1* were used to measure *CaPIR1* expression.
medium containing the indicated amounts of CR and CFW. A dilution series of each strain was inoculated onto YNB medium (1) and heterozygous strains (CAPIR15 and CAPIR19; 2 and 3 respectively). Cells were grown in YPD medium and a 1/10 dilution of each strain was inoculated onto YNB medium containing the indicated amounts of CR and CFW.

Determine in which cell wall fraction the overexpressed material was located, a Western blot analysis of β-mercaptoethanol and alkaline cell wall extracts, and also the spent medium, using PAbL antibodies, was performed. An increased amount of the material released by alkaline solutions, but not in the material released by β-mercaptoethanol or present in the spent medium, was observed in the strain that overexpressed CapIR1 when compared with C. albicans CAI4 (Fig. 5a). No change in morphology or growth rate of cells was observed in the overexpressing C. albicans strain.

To confirm that the overexpressed material, detected in the alkaline extracts, corresponded to CapIR1, and not to other kinds of material recognized by the PAbL antibody, the allele IPF 15363 was tagged with the V5 epitope. This epitope is a 14 aa peptide (Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu-Gly-Leu-Asp-Ser-Thr) that has been described as being convenient for tagging C. albicans extracellular proteins (Spreghini et al., 2003). The V5 epitope was introduced into the C-terminal end of CapIR1 as described in Methods. As shown in Fig. 5(b), the recombinant protein was bound directly to the 1,3-β-glucan, as it could only be released from the cell wall by treatment with alkaline solutions. Small amounts of the protein were also detected in the spent medium (Fig. 5b).

The difference between the predicted size of CapIR1 (about 40 kDa in the case of the allele IPF 15363) and that deduced from the mobility in SDS-PAGE (about 180 kDa, Fig. 5b) could be accounted for by N- and/or O-glycosylation. To determine if CapIR1 was modified posttranslationally by N-glycosylation, the material released to the spent medium by C. albicans expressing CapIR1 tagged with V5 was treated with Endo-F. Western blot analysis with anti-V5 antibodies showed that the 180 kDa species disappeared after Endo-F treatment, and a new species of 110 kDa appeared (Fig. 5c), indicating that CapIR1 was N-glycosylated. There is a substantial difference between the molecular mass of CapIR1 (IPF 15363) treated with Endo-F (110 kDa) as determined by SDS-PAGE, and its predicted molecular mass (40.5 kDa) calculated from the deduced amino acid sequence. This discrepancy could be accounted for by the potential O-glycosylation, as 20% of its amino acids are Ser/Thr, which is known to increase the apparent size in the Laemmli gel system.

Expression of CapIR1 in S. cerevisiae

To analyse whether CapIR1 could be incorporated into the walls of S. cerevisiae, cells of S. cerevisiae pir4Δ transformed with plasmid pADH-15 were grown and their cell walls isolated. Cell walls were treated with β-mercaptoethanol or alkaline solutions; the spent medium was also analysed. The solubilized material was analysed by Western blotting using PAbL antibodies and ConA-peroxidase. A major band with an apparent molecular mass of 110 kDa was detected in β-mercaptoethanol extracts (Fig. 6a). A band with a similar mobility was also detected in the spent medium and in the material extracted by alkaline solutions from the isolated cell walls of the S. cerevisiae CapIR1-expressing strain (data not shown). No changes in either morphology or growth rate of cells were observed in S. cerevisiae pir4Δ expressing CapIR1.

As indicated above, CapIR1 is N-glycosylated in C. albicans. To determine whether the protein is also N-glycosylated when expressed in S. cerevisiae, material obtained by β-mercaptoethanol was treated with Endo-F. No new species appeared (Fig. 6b), indicating that CapIR1 is not N-glycosylated by the enzymic machinery of S. cerevisiae.

DISCUSSION

Wall biogenesis in fungal cells, and specifically in C. albicans, is the result of several steps that are initiated by the synthesis of the proteins at the level of the endoplasmic reticulum, followed by their glycosylation in the vesicles of the secretory pathway and release to the periplasmic space, where they interact with the nascent wall polysaccharides. The process ends with bond formation between the different components, producing the final architecture of the wall. Although

Fig. 4. (a) Morphology of C. albicans strains CAI4 and CAPIR15 in YNB medium at 28 °C and 37 °C. (b) Sensitivities to Calcofluor white (CFW) and Congo red (CR) of the parental (1) and heterozygous strains (CAPIR15 and CAPIR19; 2 and 3 respectively). Cells were grown in YPD medium and a 1/10 dilution series of each strain was inoculated on to YNB medium containing the indicated amounts of CR and CFW.
some of the proteins and protein–polysaccharide bonds are fairly well known, identification of additional wall proteins and the enzymes catalysing formation of the different bonds is needed.

S. cerevisiae Pir4 was identified from the material released from isolated walls with β-mercaptoethanol (Castillo et al., 2003). New potential *C. albicans* cell wall proteins related to *S. cerevisiae* Pir4 were identified by an in silico search of a *C. albicans* database. Only two ORFs were found (IPF 15363 and 19968; Fig. 1). Additional BLAST searches in the *C. albicans* database for other homologues of the Pir family of *S. cerevisiae* (Pir1, Pir2 and Pir3) gave negative results (Toh-e et al., 1993). Due to the similarity in the homology percentages, CaPir1 can not be designated as the functional homologue of a specific Pir protein.

Three main differences have been detected in the *C. albicans* proteins in comparison to ScPir4: (i) absence of a potential Kex2 site (Lys-Arg, Arg-Arg and Pro-Arg) close to the N-terminal part of the proteins (cleavages occur at the carboxyl side of pairs of basic residues: Brenner et al., 1994; Mizuno

Fig. 5. (a) Western blot analysis of the materials released to the culture medium (lanes 1 and 2), or extracted from purified cell walls by β-mercaptoethanol (lanes 3 and 4) or alkali solutions (lanes 5 and 6) from strains CAI4 (lanes 1, 3 and 5) and CAI4/pADH-15 (lanes 2, 4 and 6) reacted with PAbL polyclonal antibody against the cell wall of *C. albicans* in yeast morphology. (b) Western blot analysis of the material released to the culture medium (lanes 1 and 2), or extracted from purified cell walls by β-mercaptoethanol (lanes 3 and 4) or alkali solutions (lanes 5 and 6) from strains CAI4 and CAI4/pMAL-15-V5 grown in YNB-maltose medium, probed with anti-V5 antibody. (c) Western blot analysis of the material released to the culture medium by strain CAI4/pMAL-15-V5 and developed with anti-V5 monoclonal antibody, before (−) and after (+) Endo-F treatment.

Fig. 6. (a) Analysis by SDS-PAGE and Western blotting of the materials released by β-mercaptoethanol from purified cell walls. The *S. cerevisiae* strains used were: 1, BMA64-1A; 2, pir4Δ; 3, pir4Δ/pADH-15. The nitrocellulose membranes were probed with PAbL and ConA-peroxidase. (b) Western blot analysis of β-mercaptoethanol extracts from purified cell walls of *Scpir4Δ/pADH-15-myc* before (−) and after (+) Endo-F treatment, reacted with anti-c-myc monoclonal antibody. The 110 kDa band is arrowed.
et al., 1989; Goller et al., 1998); (ii) the *C. albicans* protein encoded by IPF 15363 has nine tandem repeats of 11 aa (QITDGQVQHQHT) and IPF 19968 seven tandem repeats, whereas the ScPir4 has only one repeat (SQIGDGQVQA); and (iii) a point mutation (Leu281/Ser242) that could be a real point mutation. A homologue of *S. cerevisiae* Hsp150/Pir2 has been reported in *C. albicans* (Kapteyn et al., 2000; Kandasamy et al., 2000), but the results obtained in *silico* and by mass spectrometry (unpublished results) indicated that the product of a single *PIR* gene (*CaPIR1*) is found in *C. albicans* cell wall. Therefore it is possible that the protein previously reported is the same as the one described in this paper which we have named CaPir1.

It is interesting that both IPF 15363 and IPF 19968 are expressed under normal laboratory growth conditions, after heat shock and in both yeast and mycelial forms. The codon bias index (CBI) for IPF 15363 is 0.345, suggesting that it is a poorly expressed gene. The low expression of *CaPIR1* contrasts with the situation of the *PIR* genes in *S. cerevisiae* because *PIR1*, *PIR2* and *PIR3* are among those expressed abundantly (Toh-e et al., 1993).

To define the cellular function of *PIR1*, we attempted to construct a null mutant to search for informative phenotypes. However, we were unable to obtain a null mutant even though both the Fonzi & Irwin (1993) and Wilson et al. (1999) techniques were used. We have no explanation for these results, but the phenotype of the heterozygous mutants, independently of the allele interrupted (specific growth rates, clump formation and hypersensitivity to cell-wall-perturbing agents such as Calcofluor white and Congo red) (Elorza et al., 1983; Ram et al., 1994; Mrša et al., 1999), and the fact that in *S. cerevisiae* there are four *PIR* genes instead of one, indicated the possibility that the null mutant is lethal. In the case of *S. cerevisiae*, sequential disruption of *PIR* genes brings increasingly irregular shape, clumping of the cells and a pronounced destabilization in the presence of Calcofluor white and Congo red (Mrša & Tanner, 1999); therefore *C. albicans* *PIR1* may be an essential gene.

The haploinsufficiency phenotypes indicate that both *PIR1* alleles contribute to maintaining the correct cell wall organization in wild-type strains. This situation is in some respects similar to that in *S. cerevisiae*, as the phenotype shown by this species is progressively more apparent as the number of *PIR* genes disrupted increases (Mrša & Tanner, 1999).

CaPir1 was found as a new cell wall band when expressed in *S. cerevisiae*. This band reacted with ConA, demonstrating that it was a glycoprotein, but it could not be detected in *C. albicans* as the material released from the wall was highly polydisperse and no specific antibodies were available. A recombinant CaPir1 tagged with the V5 epitope was found linked only to the 1,3-β-glucan through an alkali-sensitive b-1,3-glucan (the protein is not detected in the material extracted by β-mercaptoethanol by immunological or mass spectrometry techniques; unpublished observations); and (ii) four proteins are found in the *S. cerevisiae* Pir family whereas in *C. albicans* only one Pir homologue has been found. BLAST searches to find other members in the *C. albicans* genetic database have given negative results. Recently it has been reported that ScPir2 is more efficiently retained in the wall of *S. cerevisiae* growing at low pH and it was suggested that this is also the case for other Pir proteins (Kapteyn et al., 2001) and that probably all members of this protein family are at least functionally equivalent in the cell wall.

Although the actual function of CaPir1 is unknown, it may be critical in the organization of the wall because during the initial steps of protoplast regeneration (2–3 h) the levels of expression are significantly high.

Two interesting differences have been detected between CaPir1 and ScPir4 from the structural and functional points of view: (i) ScPir4 is retained in the wall by two types of bonds (disulphide bridges and covalently bound to the 1,3-β-glucan) whereas CaPir1 seems to be only attached to the 1,3-β-glucan (the protein is not detected in the material extracted by β-mercaptoethanol by immunological or mass spectrometry techniques; unpublished observations); and (ii) four proteins are found in the *S. cerevisiae* Pir family whereas in *C. albicans* only one member of this family (CaPir1, as determined in *silico*) has been found. CaPir1 has an *N*-glycosylation sequon in its sequence (NXxxS/T) at positions 233–235 and the protein moves with an apparent molecular mass of 180 kDa that is reduced to 110 kDa after treatment with Endo-F. But it seems that it is not *N*-glycosylated when expressed by *S. cerevisiae*. This result is of interest but its reason is unknown; it could be due to the different specificity of the oligosaccharidyltransferase (the enzyme complex that transfers the inner core of the carbohydrate moiety) in the two organisms, or to steric hindrance as occurs with *S. cerevisiae* invertase; this enzyme contains 14 sequons but only eight or nine are glycosylated (Reddy et al., 1988).

Nothing is known about the function of CaPir1. Toh-e et al. (1993) isolated in *S. cerevisiae* three highly homologous genes of the *PIR* family (*PIR1*, *PIR2* and *PIR3*), and genes homologous to *PIR* have been also found in *Kluyveromyces lactis* and *Zygosaccharomyces rouxii* but not in *Schizosaccharomyces pombe*, suggesting that the *PIR* genes play a role in budding yeast. In addition, null mutants of each gene are viable, indicating that none of them is essential, but they are required for tolerance to heat shock (*PIR2/HSP150* (Toh-e et al., 1993) and determine resistance to the plant protein osmotin (Yun et al., 1997; Ibas et al., 2001). By functional genomics it has been found that ScPir4 interacts with Yjr030 and Bur2 (Ito et al., 2001) and it was suggested that it might strengthen the regenerating cell wall of protoplasts (Pardo et al., 1999). In this context it is important to emphasize that the *S. cerevisiae* Pir family is formed by four proteins (Pir1, Pir2, Pir3 and Pir4) whereas in *C. albicans* only one Pir homologue has been found. BLAST searches to find other members in the *C. albicans* genetic database have given negative results. Recently it has been reported that ScPir2 is more efficiently retained in the wall of *S. cerevisiae* growing at low pH and it was suggested that this is also the case for other Pir proteins (Kapteyn et al., 2001) and that probably all members of this protein family are at least functionally equivalent in the cell wall.
Finally, the cell wall of S. cerevisiae cells has been engineered using Pir1 or Pir2 to anchor proteins by fusion of the corresponding genes with PIR1 or PIR2 and the enzymatic activities produced by fusion proteins on their surface detected (Abe et al., 2004), opening the possibility to express C. albicans heterologous proteins by fusion of the corresponding genes with CaPIR1.

ACKNOWLEDGEMENTS

This work was partially supported by grants from the European Union (MRTN-CT-2003-504148), the Spanish Ministerio de Ciencia y Tecnologia (BMC2003-01023) and Agencia Valenciana de Ciencia i Tecnologia de la Generalitat Valenciana (Grupos 03/187). We thank Ismail Moukadiri and Jesus Zueco for S. cerevisiae BMA64-1Apir4A.

REFERENCES

Toh-e, A., Yasunaga, S., Nisogi, H., Tanaka, K., Oguchi, T. & Matsui, Y. (1993). Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9, 481–494.

