X-ray absorption spectroscopy of bacterial sulfur globules

Sulfur K-edge X-ray absorption spectroscopy is a powerful in situ probe of sulfur biochemistry in intact cells and tissues. Under favourable circumstances the technique can provide quantitative information on the chemical identity of the sulfur species that are present in a sample. Prange et al. (8, 9) have recently reported an X-ray absorption spectroscopic study of bacterial sulfur storage globules. Unfortunately there are substantial problems with the experimental technique employed that, we contend, lead to completely erroneous conclusions. In the more recent of their two papers Prange et al. (9) employed a curve-fitting method similar to that used by us (for more than 10 years) (2, 6, 7). In essence, the method employs simply fitting a linear combination of the spectra of standard compounds to that of the unknown (2), in this case cultures of bacterial cells. This type of analysis can provide quantitative estimates of the individual sulfur types in the sample, but is critically dependent upon the choice of reference spectra. Prange et al. (9) deduce substantial differences between the chemical forms of sulfur stored in the globules of different organisms; they conclude that the globules of Beggiatoa alba and Thiornargarita namibiensis contain cyclo-octasulfur (S_8), while those of other organisms contain polythionates (Acidithiobacillus ferrooxidans) and polymeric sulfur (e.g. Allothiobacillus vinosum). This is in contradiction with our earlier study (7), in which we found that sulfur in all globule species examined resembled that expected for various sized spherical particles of S_n. The discrepancy is due to an experimental artefact in the work of Prange et al. (8, 9) arising from their choice of transmittance detection, which we will now discuss.

X-ray absorption spectra of particulate samples collected in transmittance are known to be susceptible to ‘leakage’, ‘pinhole’ or ‘transmittance thickness’ effects (4). These arise from differences in absorption in different locations on the sample due to heterogeneity in sample thickness; distortions of an identical nature occur either with thin areas in the sample, or with actual holes. These effects distort spectra by attenuating intense features (4, 7). Thus, for transmittance measurements, particular care must be taken to prepare samples of uniform thickness. At the sulfur K-edge this requirement is particularly stringent due to the large X-ray absorption cross-section ($2200 \text{ cm}^2 \text{ g}^{-1}$ for elemental sulfur at 2480 eV). Indeed, a variation in sample thickness of only a few microns can result in significant distortion of the spectra. For example, approximating the variation in thickness as a Gaussian distribution, we calculate that a 100 µm thick sample of S_n, with a distribution half-width of only 3 µm will have more than a twofold attenuation of the most intense feature of the spectrum, relative to the edge jump. Prange et al. (8, 9) prepared their samples as finely ground powders on adhesive tape. We have previously pointed out (7) that samples prepared in this way are particularly susceptible to ‘pinhole’ artefacts, and that the resulting data are likely to be non-quantitative and difficult to reproduce experimentally.

Fortunately there is a technique that allows the collection of undistorted spectra of solid samples, using electron yield detection (e.g. 5). The technique involves detecting electrons ejected from the sample by the X-ray photons, and because the electron path-length is much shorter than the photon path-length, sample thickness is unimportant and undistorted spectra result. As an example, Fig. 1 compares three datasets of $\alpha-S_n$ one collected using electron yield, and two collected in transmittance. The two transmittance datasets are from Prange et al. (8, 9), and are quite obviously different from each other and from the electron-yield spectrum. Both transmittance spectra are clearly distorted to different degrees in the manner expected for pinhole effects (7). The differences between the spectra reported by Prange et al. (8, 9) were not noted in the later paper, but nicely illustrate our point that such transmittance data should be hard to reproduce. We note in passing that the near-edge spectrum of $\alpha-S_n$, reported by others (e.g. 1) agree with our data. A second major point, also ignored in the work of Prange et al. (8, 9), is that solids show quite different spectra from solutions (2). This is probably due to slight structural deformations and long-range order arising from crystal-packing effects, and the use of crystalline solids as standards for biological spectra is inappropriate (2). In the case of solutions the detection method of choice is by monitoring the X-ray fluorescence, although care must be taken that the solution is adequately diluted (3).

GUIDELINES

Communications should be in the form of letters and should be brief and to the point. A single small Table or Figure may be included, as may a limited number of references (cited in the text by numbers, and listed in alphabetical order at the end of the letter). A short title (fewer than 50 characters) should be provided.

Approval for the publication rests with the Editor-in-Chief, who reserves the right to edit letters and/or to make a brief reply. Other interested persons may also be invited to reply. The Editors of Microbiology do not necessarily agree with the views expressed in Microbiology Comment.

Contributions should be addressed to the Editor-in-Chief via the Editorial Office.
have different forms of sulfur in their sulfur globules may mislead the field. Our work indicates that the globules contain a form similar to α-S$_\text{v}$ in a variety of phototrophic and non-photosynthetic organisms (6). As we have previously pointed out (7), the presence of large-scale crystallites of α-S$_\text{v}$ can be excluded based on previous X-ray diffraction results (3). We have therefore suggested (7) a model consisting of a core of fragments with local structures resembling α-S$_\text{v}$ with a modified globule surface conferring hydrophobic properties. This might be due to the globule proteins or alternatively from modification of surface sulfur atoms to incorporate a polar group such as thionate, as previously proposed by Steudel (10).

Acknowledgements

This work was supported by the National Institutes of Health (GM57375). The Stanford Synchrotron Radiation Laboratory is funded by the Department of Energy, Office of Basic Energy Sciences. The Biotechnology Program is supported by the National Institutes of Health, Biomedical Research Technology Program, Division of Research Resources. Further support is provided by the Department of Energy, Office of Biological and Environmental Research.

Graham N. George, Eileen Y. Yu and Roger C. Prince

1Stanford Synchrotron Radiation Laboratory, SLAC MS 69, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
2ExxonMobil Research and Engineering Co., Annandale, New Jersey 08801, USA.

Author for correspondence:
Graham George. Tel: +1 650 926 4604. Fax: +1 650 926 4100. e-mail: g.george@stanford.edu

Fig. 1. Sulfur K-edge X-ray absorption spectra of solid α-S$_\text{v}$ measured by using electron yield (a) (data from ref. 7), and transmittance (b) and (c) for two different samples. The data shown in (b, c) were taken from references (8) and (9), respectively (digitized prior to replotting for comparison) with a -1.6 eV energy shift to account for the different methods of energy calibration. Charging artefacts in the electron yield data were eliminated by mixing with graphite.

Unfortunately, although Prange et al. (9) cite our sulfur globule paper (7) several times, they do not discuss our findings. Instead, they state that we ‘erroneously assumed that there is no difference between the S K-edge XANES spectra of carefully ground cyclo-octasulfur and polymeric sulfur,...’ and that we ‘... assume that the reduced white line of cyclo-octasulfur is induced by pinhole effects’. In fact, we stated that no reliable spectrum of polymeric sulfur was available to us, and that the α-S$_\text{v}$ spectrum reported by Prange et al. (8) is distorted by pinhole effects – the actual spectrum has an intense peak (or white line), as shown in Fig. 1. In their most recent paper, Prange et al. (9) tested their methodology by fitting different mixtures of α-S$_\text{v}$ and polymeric sulfur with the spectra of the components. That accurate results were obtained merely proves that the particle sizes, experimental procedures and overall thickness of the samples were consistent within their test samples. It does not indicate that the data are free from experimental artefact.

In summary, X-ray absorption near-edge spectroscopy (XANES) is a powerful in situ probe of sulfur biochemistry, but care must be taken to avoid experimental artefacts, and to employ appropriate standards [e.g. solutions for aqueous biological samples (2)]. The basis of the quantitative analysis of sulfur globules presented by Prange et al. (9) resides not only in the spectra of the bacterial samples, but also in the model compound data. Because all of the model data presented by these workers show various degrees of pinhole-induced distortion, neither their quantitative analysis of bacterial spectra nor their conclusions are likely to be correct. This is important because their conclusion that different sulfur bacteria

X-ray absorption spectroscopy of bacterial sulfur globules: a detailed reply

(A) Biological part

Over the last decades the molecular nature and structure of sulfur globules has been discussed for various bacteria (e.g. 3, 4, 5, 6, 7, 13, 14, 17). It has become clear in all these investigations that the properties of the bacterial sulfur globules do not match those of pure elemental sulfur. Hence, et al. (5) obtained evidence using X-ray diffraction that the sulfur in sulfur globules of Chromatium okinii is liquid and amorphous, whereas all forms of elemental sulfur are solid and usually crystalline at ambient temperature. Furthermore, for the globules formed by Allochromatium vinosum, booyant densities of only 1.22 g cm$^{-3}$ (3) and 1.31 g cm$^{-3}$ (6) have been determined. The density of liquid sulfur at 23 $^\circ$C, however, is approximately 1.89 g cm$^{-3}$ (18). The densities of all crystalline sulfur allotropes are in the range 1.9–2.2 g cm$^{-3}$ (14). On the basis of these discrepancies, Steudel et al. (18) pointed out that a large fraction of the sulfur globules must consist of a low density material and Guerrero et al. (3) have described the sulfur globules as ‘hydrated sulfur’. In addition, Raman-spectroscopic investigations yielded evidence that the sulfur globules of A. vinosum, Halorobospora abdellalekii and Halorobospora halobloris do not contain significant amounts of cyclo-octasulfur (S$_8$) (12, 19). Furthermore, the sulfur globules of these bacteria are insoluble in non-polar solvents, which indicates the hydrophilic nature of the sulfur globules. The hydrophobic properties of the sulfur globules can not be related to the globule proteins as speculated by Pickering et al. (9) because the sulfur globule proteins of A. vinosum are extremely hydrophilic and insoluble in water (2, 8). Steudel (12) proposed
A clear correlation between sulfur speciation and occurrence of oxygen during growth of the bacteria is evident: sulfur chains occur in the anaerobically grown phototrophic sulfur bacteria, while sulfur rings (Beggiaota alba, Thiomargarita namibiensis) and polythionates (Acidithiobacillus ferrooxidans) were found in aerobically grown organisms (10, 11). The influence of oxygen – which can lead to spontaneous ring formation – on the sulfur speciation can furthermore be clearly observed in the spectrum of isolated sulfur globules, which is quite different to that of intact cells of A. vinosum (11). It therefore seems plausible that in different bacteria different sulfur species are present, depending on the presence of oxygen in the environment.

Our results are also in good agreement with previous findings by Hageage et al. (5), Guerrero et al. (3), Steudel (13), Steudel et al. (17), Mas & van Gemerden (6) and Steudel & Albertsen (15). Thus, beyond the successful verification on sample systems, we find independent support for our results in the literature and can provide a biological interpretation for our findings.

Contrary to the statements in the previous article by George et al. (12), all three modes of measuring X-ray absorption spectra, namely transmission, electron yield and fluorescence yield, imply pitfalls which may lead to distortions. The inherent problem connected to electron yield techniques is the accumulation of charge on the sample, which can lead to a distortion of the spectrum especially for nonconducting samples. As a remedy, graphite is mixed with the sample [compare with Fig. 1 legend of George et al. (12)]. This achieves an electronic contact between the sample and graphite, which is necessary to prevent charge accumulation. During the process of mixing, chemical and/or phase transformations can occur which may influence the measured spectrum. This argument is used in the paper by Pickering et al. (9) themselves to explain why none of the readily available other forms of elemental sulfur could be measured using electron yield techniques.

The key problem related to the fluorescence yield technique, however, is self-absorption, especially in samples with a high concentration of the target element. Pickering et al. (9) follow a theoretical scheme to correct for self-absorption effects in their paper to turn this weakness into a strength and propose a way to determine the size of the globules. They use a spectrum of \(\alpha-S_n \) measured in electron yield as the undistorted spectrum of \(\alpha-S_n \) and attribute deviations from it to self-absorption. To extract the particle radius from this information, one needs to know the shape of the particle and its density. The method is not verified on a sample system with known particles and particle sizes. Until now, the procedure has only been applied to \(\alpha-S_n \) (9). None of the other solid forms of elemental sulfur is included in the basis set for the fit. Using their model, previously determined densities by Guerrero et al. (3) of the sulfur globules lead to unrealistic particle radii. These data are discarded and instead the ones of \(\alpha-S_n \) are used. Under these conditions, it turns out that of course \(\alpha-S_n \) contributes strongly to the best fit.

Fig. 1. Sulfur K-edge XANES spectra (dotted lines) of ZnS (top) and \(S_n \) (bottom) compared to the pDOS (solid line) of these materials calculated on 190 atom clusters using the FEFF8 code. The experimental spectra have been shifted to the energy scale of the calculation and rescaled.

(B) Physical part

Mixtures of organyl sulfanes with hydrophilic end groups (e.g. cysteine or similar), which are insoluble in non-polar solvents, as the dominant form of sulfur in bacterial sulfur globules. Mixtures of bis-organyl sulfanes with sulfur chains of different lengths are pale-yellow or white-coloured oils with a high refraction index and liquid-like (12, 15). Since chains of sulfur atoms are hydrophobic, the required hydrophilic nature can only be achieved by suitable end groups (R). To make a very hydrophilic molecule at least partly hydrophobic and to guarantee a certain solubility in water, which seems to be mandatory for the transport of the \(S^n \) material through membranes, cell walls etc., R has to carry an ionic charge or to contain polar groups (14).

Thus, considerable evidence achieved by different methods indicates that the material the globules consist of clearly is not simply solid \(S_n \) as claimed by Pickering et al. (9). It should be emphasized that the clear differences found in our work between the species of sulfur in the sulfur globules of different metabolic groups of sulfur oxidizing bacteria reflect the different ecological niches and physiological properties of these bacteria.
Morphogenetic checkpoint in fission yeast? Yes!

Cylindrical-shaped fission yeast cells grow at their cell tips, where actin is polymerized and forms patches. Length growth has to continue until cells reach a critical length, when they enter mitosis; this mechanism is called cell-size (or mass) control. Very recently, Rupé et al. (5) have carefully analysed the effect of the actin depolymerizing drug Latrunculin A (Lat A) on cell growth and cell-cycle progression of fission yeast cells (5). As expected, the drug slows down (in a concentration-dependent manner) cell length extension by disrupting the actin cytoskeleton and it also causes a mitotic delay at lower concentrations, or a G2 block at higher concentrations of the drug. This delay of mitosis can be explained either by the activation of a morphogenetic checkpoint or by prevention of the cell reaching a critical length.

Rupé et al. (5) distinguish between these two possibilities by using oversized cells made by a temporal cell cycle block in a cdc25C temperature sensitive) mutant. Since oversized cells were not blocked in G2 by even a high concentration (10 µM) Lat A treatment, the authors rule out the possibility of a morphogenetic checkpoint (5). Although all of these conclusions seem to be straightforward and logical, they are based on the following paradigm: any checkpoint mechanism should work equally well in cells irrespective of their size. However, this assumption is not necessarily valid and actually it contradicts the present models of cell-cycle controls (8).

The measured parameters in former size control studies were either protein contents (2) or cell lengths of fission yeast cells (1, 4, 6), and both ways were correct, since in exponentially growing cultures these two parameters are closely correlated during the division cycle of a cell. The ultimate question is how cells measure their size (or mass) and how the size-control checkpoint operates. Despite the long history of these control mechanisms, an absolutely satisfactory answer cannot be given. However, it seems more likely that cells do not measure their size (e.g. length) per se but rather the concentration of a molecule that is proportional to their total cytoplasmic mass. That cell length is not the critical factor for entering mitosis is also obvious from the data in Fig. 1B of Rupé et al. (5): by estimating cell length at the time when 50% of the cells entered mitosis, we find that cell length progressively decreases with Lat A concentration (Fig. 1). If it is not cell length that is measured before mitotic onset, then what is it?

The master regulator of the fission yeast cell cycle is the Cdc2/Cdc13 protein kinase. Cdc2/Cdc13 activity can have three characteristically different values during the cycle: a

Microbiology Comment

A mixture of both sulfur species using these reference spectra as demonstrated in the section "verification of the quantitative analysis" (11).

What remains is an interesting physical question: why do the spectra of S\(_n\) taken in transmission and electron yield mode look that different from each other? Presently, we cannot provide a final answer to this question. To us, it seems strange that such a drastic distortion effect should occur only when dealing with elemental sulfur. Our disbelief in this explanation is backed by theoretical calculations using the FEFF8 code (1). Fig. 1 shows a comparison between the calculated S pDOS (p-projected density of states) and the measured S K-XANES (X-ray absorption near edge structure) spectrum of ZnS. Evidently, the relative intensity of the structures in the white-line region of the measured spectrum below the ionization edge is directly reflected by the intensity of the corresponding structure in the pDOS. Also displayed is the pDOS calculated for S\(_{1}\) at the S K-edge in comparison to an experimental spectrum. Although the energy scale of the calculation appears slightly to an experimental spectrum. Although the differences between the spectra measured in yield data based only on the evidence at hand to discard the spectra obtained from electron to the imperfect calculation we are not ready relative intensities of these structures in our spectrum. The relative intensity of these peaks calculated for S\(_{1}\) below the ionization edge is directly reflected white-line region of the measured spectrum the relative intensity of the structures in the species. Bacteriol 101, 464–469.

very low value in G1 phase, an intermediate value in S and G2 phases, and a high value in mitosis (8). Which activity of the Cdc2/Cdc13 kinase is taken depends on total cellular protein content. As a consequence, to get to the higher Cdc2/Cdc13 activity stage and to the next cell-cycle phase, the cell has to reach a critical cytoplasmic mass (protein content). In this picture the (nuclear) concentration of the Cdc2/Cdc13 kinase is dependent on cytoplasmic mass. For the present discussion the G2/M transition that is important is inhibited by the Wee1 tyrosine kinase and promoted by the Cdc25 phosphatase; the enzymes that are phosphorylating and dephosphorylating the Tyr15 residue of the catalytic Cdc2 subunit, respectively.

Imagine that Lat A, by disrupting the actin microfilament system, activates a morphogenetic checkpoint in fission yeast as it does in budding yeast (3). The morphogenetic checkpoint in budding yeast blocks initiation of mitosis via tyrosine phosphorylation of Cdc28/Cib complexes (the budding yeast homologues of Cdc2/Cdc13), which is not characteristic of the interphase cell cycle [10]. A major difference between the two yeasts is that fission yeast tyrosine-phosphorylates Cdc2/Cdc13 dimers even in the absence of actin disruption (i.e. in the absence of a morphogenetic checkpoint). If Lat A treatment increases the ratio of Wee1:Cdc2 activity in a concentration-dependent manner, either by up-regulating Wee1 or down-regulating Cdc25, then the threshold cell mass at which cells can enter mitosis, will be increased (but not to infinity!). This increase in the threshold mass could be an alternative explanation for the mitotic delay observed in wild-type cells after Lat A treatment by Rupeš et al. (5).

Analysis of the data of Rupeš et al. (5) suggests that this is indeed the case (Fig. 1). Let’s assume that Lat A has no effect on overall protein synthesis. Therefore after Lat A treatment the balanced growth between cell length and protein content is dissociated: cells are increasing their cytoplasmic mass at a normal rate (at least for some time) while their length and volume extension is slowed down. From the data given in Fig. 1B of Rupeš et al. (5) we evaluated the (linear) length growth rate, and found that it is sharply decreasing with increasing Lat A dose (data not shown). With the assumption that mass (protein) growth rate is not influenced, we can calculate the relative cell mass at mitosis in arbitrary cell-length units (cell mass is expressed in length units, which means how long the cell with this mass would be if balanced growth were not perturbed by Lat A treatment), and this quantity increases linearly with Lat A dose (Fig. 1). This correlation between Lat A concentration and calculated cell mass at mitosis can be observed up to 5 µM Lat A. The only analysis with higher concentrations was at 10 µM when wild-type cells could never enter mitosis. The extrapolation of the regression line (estimated between 0 and 5 µM Lat A) to 10 µM Lat A gives a threshold mass value for mitosis of 21 µm units (Fig. 1). However, this value cannot be reached by wild type cells starting with small mass (and length) values and inhibited in length growth, because their density should increase more than 2.5-fold above the normal value. As a consequence, small wild type cells treated with 10 µM Lat A will not enter mitosis.

However, as Rupeš et al. (5) established, the oversized cells (produced by cdc25Δ temperature block and release) can enter mitosis in the presence of this drug concentration, if they are longer than 20.7 µm (5). Observe that this data point is situated almost exactly on the extrapolated regression line (Fig. 1). Oversized cells can enter mitosis because their balanced growth is perturbed by the Lat A treatment at higher mass value and their density increase does not become effective before reaching the threshold mass value. This result supports the notion that there is a mass (protein) requirement of mitotic onset in fission yeast rather than a length requirement, and this threshold mass is elevated by the disruption of the actin cytoskeleton (morphogenetic checkpoint).

By analysing the response of different cell-cycle mutants to a treatment with 10 µM Lat A, Rupeš et al. (5) established that Cdc25 is a target of the mitotic size-control mechanism rather than Wee1. This is in sharp contrast to former experimental results, which all proved the opposite; namely that wee1 is an essential gene operating in this process (2, 6), but cdc25 is not (7). This contradiction can be simply solved now, after showing that the experimental protocol used by Rupeš et al. (5) is not suitable to study size control. Instead, they have discovered that the morphogenetic checkpoint acts through cdc25.

Based on this analysis of the data of Rupeš et al. (5), we propose the existence of a morphogenetic checkpoint in fission yeast, which operates as it does in budding yeast (3). The only difference between the two yeasts in this respect is that the checkpoint down-regulates the Cdc25 activity in fission yeast rather than stabilizes Swe1 (the budding yeast homologue of Wee1).

Acknowledgements

We are grateful to Dr Ivan Rupeš for communicating the conditions of their experiments. A.S. is grateful to the Hungarian Academy of Sciences for a Janos Bolyai Research Fellowship. A.C.-N. is grateful to the Hungarian Ministry of Education for a Gyorgy Bekesy Postdoctoral Fellowship. This work was supported by the Hungarian Ministry of Education (FKFP 0014/2001).

Akos Sveiczer, Attila Csikasz-Nagy and Bela Novak

Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, H-1111 Budapest, Szt. Gellert ter 4, Hungary

Author for correspondence: Akos Sveiczer.
Tel: +36 1 4632349. Fax: +36 1 4632598.
e-mail: ASveiczer@mail.bme.hu

Morphogenetic checkpoint in fission yeast? No!

Fission yeast do not have a ruler. They cannot use their length as a direct measure of their

Microbiology Comment

Microbiology 148, August 2002

2271

Fig. 1. Effects of Lat A on mitotic size of wild-type fission yeast cells. On one hand, increasing Lat A dose increases the mass (protein) requirement of mitotic onset (●), causing an increasing delay in G2. On the other hand, increasing Lat A decreases growth rate in cell length, leading to an apparent decrease in cell length at mitosis (●). Diverging cell mass from cell length results in a density increase, which at a critical dose (somewhere between 5 and 10 µM) prevents mitotic onset and this morphogenetic checkpoint blocks the cells in G2. Cells having an abnormally large length (oversized cdc25Δ), may override this checkpoint (×). The calculations were made using the data from Rupeš et al. (5).
size, and we agree with Sveiczer et al. (6) that it would be difficult to suggest otherwise. Although simple experiments clearly point to a sizing mechanism, we do not yet understand what biochemical correlate of size is actually measured by cells. Concentration of a particular protein, total protein mass, the density of ribosomes in the cytoplasm, cell volume and various other structurally based determinants may ultimately all be found to contribute to an integrated measure of cell size. For the moment, simple measures of length, volume or mass must serve as proxies for the underlying mechanism.

In their Comment, Sveiczer et al. (6) reinterpret aspects of our work in favour of an alternative hypothesis unrelated to size control. They make two assumptions. First, from a theoretical model summarized by Tyson et al. (7), they assume that cells measure their size through accumulation of the Cdc13/Cdc2 complex in the nucleus in a way proportional to the total cell mass. Arguably, accumulation of Cdc13/Cdc2 during G2 depends on cell growth. The role of Cdc13/Cdc2 accumulation as a sole measure of cell size, however, is not well supported by the evidence, since its accumulation in the nucleus levels off well before cells enter mitosis (1). This does not challenge the conceptual framework for understanding the dynamic behaviour of the cell-cycle regulatory network as outlined by Tyson et al. (1), but rather encourages us to look for other components that may communicate the information about cell size to the network. We propose that Cdc25 is one such component.

Sveiczer et al. (6) believe that we misinterpreted our data and that Cdc25 is in fact a downstream effector of a morphogenesis checkpoint. This checkpoint is proposed to monitor the integrity of the actin cytoskeleton as originally described by McMillan et al. (4) in budding yeast. To support their argument, in drawing their protein mass line Sveiczer et al. (6) make a second assumption. They assume that the rate of protein synthesis in cells remains unaffected after actin has been depolymerized by a drug such as Lat A. This is quite apart from the inability of the cell to grow in length under these conditions. In their interpretation this leads to continuous mass accumulation and an increase in protein density. This is an ad hoc premise that has not been tested and has no support in the literature. Indeed, there is evidence to the contrary, showing that the rate of protein synthesis gradually decreases after cells have been exposed to actin-depolymerizing drugs (3). In addition, there is increasing recognition that cells may tolerate only limited macromolecular overcrowding (2). However, even if we assume that overall protein synthesis continues unaffected for some time after the exposure of cells to Lat A, problems remain with the rest of the argument. Most importantly, the value of 20-7 µm taken from our data at 10 µM Lat A, which the authors equate with a minimum cell mass at which cells are able to enter mitosis under these conditions, is in fact an arbitrary value. It depends entirely on the duration of the cdc25-22 conditional arrest used to generate oversized cells. In the experiment in question (Fig. 2 in ref. 5), the 20-7 µm refers to a cell length at the second mitosis after release from a 3 hour arrest. A longer arrest would produce larger cells at mitosis and vice versa. Keeping in mind that their projection of the rate of cell mass increase would be independent of duration of cdc25-22 arrest, the fact that 20-7 µm falls on their line is due to chance alone. Presumably, any cdc25-22 cells larger than ~ 17 µm (mitotic size for this strain at permissive temperatures) will have little trouble initiating mitosis in Lat A.

The actin checkpoint model does not explain other experiments reported in our paper. The model predicts that perturbation of actin will arrest progression into mitosis even after a change of critical size such as that induced by nutritional shift. Furthermore, if Cdc25 is not involved in cell size control then Cdc25 deletion strains made viable by heterologous tyrosine phosphatase activity would accelerate mitosis after a nutritional shift with kinetics similar to wild type. Instead, as we see in Fig. 8 of ref. 5, exponentially growing wild-type cells accelerate mitosis whether Lat A is present or not, and in a strain lacking Cdc25 this acceleration is delayed.

Two other points are important to emphasize. By no means are our results in contradiction with earlier results identifying Weel as a component of the mitotic cell-size control. Our results are a step towards defining distinct roles for both Weel and Cdc25 in this process. Critical cell size is set by a Weel-dependent process and mitosis is released by Cdc25 activation (see our model in Fig. 9 in ref. 5). Finally, the idea of a cell-size checkpoint does not contradict the view that conventional checkpoints operate by raising the barrier and with it the apparent critical size that has to be overcome to allow transition from one stable dynamic state to another (7). The difference is that the cell-size checkpoint through its molecular mechanism simply prevents reaching that barrier if cell growth is perturbed.

We believe Cdc25 responds to a correlate of cell size and not to the state of actin itself. We also continue to believe that the data in our paper are best interpreted as in support of this model.

Acknowledgements
We thank Akos Sveiczer for communicating his ideas and fruitful discussions.

Ivan Rupeš and Paul G. Young
Dept. of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
Author for correspondence: Paul Young.
Tel: +1 613 533 6148. Fax: +1 613 533 6617.
e-mail: youngpg@biology.queensu.ca