The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill

Philip E. Luton, Jonathan M. Wayne, Richard J. Sharp and Paul W. Riley

Author for correspondence: Paul W. Riley. Tel: +44 1980 612315. Fax: +44 1980 611320. e-mail: paul.riley@camr.org.uk

Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 0JG, UK

Inferred amino acid sequences of the methyl coenzyme-M reductase (mcrA) gene from five different methanogen species were aligned and two regions with a high degree of homology flanking a more variable region were identified. Analysis of the DNA sequences from the conserved regions yielded two degenerate sequences from which a forward primer, a 32-mer, and a reverse primer, a 23-mer, could be derived for use in the specific PCR-based detection of methanogens. The primers were successfully evaluated against 23 species of methanogen representing all five recognized orders of this group of Archaea, generating a PCR product between 464 and 491 bp. Comparisons between the mcrA and 16S small subunit rRNA gene sequences using PHYLIP demonstrated that the tree topologies were strikingly similar. Methods were developed to enable the analysis of methanogen populations in landfill using the mcrA gene as the target. Two landfill sites were examined and 63 clones from a site in Mucking, Essex, and 102 from a site in Ondcombe, Somerset, were analysed. Analysis revealed a far greater diversity in the methanogen population within landfill material than has been seen previously.

Keywords: methanogenic Archaea, methyl coenzyme-M reductase, detection, identification

INTRODUCTION

Methanogenic archaea are vital in the anaerobic microbial degradation of organic waste with the resultant production of methane, a gas with potential for environmental harm, but also possible value as a non-fossil fuel. However, despite their key role as the terminal oxidizers in a complex microbial community, controlling the flux of carbon through the anaerobic degradative pathway in landfill, very little is known about methanogen community structure. While some of the methanogenic species in landfill have been recognized (Fielding et al., 1988; Ladapo & Barlaz, 1997; Maule et al., 1994), no satisfactory method has been established for the rapid detection and identification of methanogens present in landfill samples. Current methods may involve an enrichment step, which can introduce bias, or they are technically complex and time-consuming. A method extensively used to detect methanogens in sewage sludge, the monitoring of the fluorescent co-factor F420, gives an overall idea of methanogenic potential (Gorris et al., 1988), but does not provide any information on the composition of the methanogen communities present (Peck & Archer, 1989). Unfortunately, it has been found that recovery of F420 from landfill material is difficult, making detection from these samples imprecise (Archer & Peck, 1989).

Our chosen alternative was to develop PCR-based techniques to investigate naturally occurring methanogen populations. Whilst many groups have used the amplification and analysis of 16S rRNA genes to unravel the complexities of microbial populations in environmental samples, our approach was to simplify the analysis by using PCR to generate methanogen-specific DNA fragments. The DNA sequence of each fragment could then be established and these data used to construct phylogenetic trees to enable comparisons with 16S rRNA phylogenetic trees, for which there is far more sequence data available.

The target for this methanogen-specific PCR was the terminal enzyme complex in the methane generation
pathway, methyl coenzyme-M reductase (MCR), which catalyses the reduction of a methyl group bound to coenzyme-M, with the concomitant release of methane. This enzyme complex is thought to be unique to, and ubiquitous in, methanogens (Thauer, 1998), making it a suitable tool for their specific detection. Targeting an enzyme also offers the potential for the development of activity-based detection methods based on the analysis of messenger RNA. The MCR operon exists in two forms, MCR1 and MCR2. The MCR1 form is thought to be present in all methanogens, whilst the MCR2 form has only been demonstrated to be present in members of the orders Methanobacteriales and Methanococcales. One peptide of the MCR1 complex, encoded by the mcrA gene, was selected as a suitable candidate for the development of PCR-based detection of methanogens. Others have demonstrated the suitability of this marker for the analysis of one of the five recognized orders, the Methanosarcinales (Springer et al., 1995).

Further studies have highlighted the use of the mcrA gene as the target for the detection of methanogens in a wide range of environments. These have included rice paddies (Lueders et al., 2001), peat bogs (Hales et al., 1996; Lloyd et al., 1998; Nercessian et al., 1999), the guts of termites (Ohkuma et al., 1995) and marine environments (Bidle et al., 1999). None of these studies have confirmed, however, that the primers will detect all known orders of methanogen. Lueders et al. (2001) successfully detected methanogens from a range of orders, but failed to detect members of the Methanomicrobiales, an order previously found in endosymbions isolated from the same environment (Grosskopf et al., 1998). They suggested that their mcrA primers used for PCR were not of sufficient utility to detect all the orders of the methanogens.

In this paper we describe the development and evaluation of the methanogen-specific PCR approach to the detection of all known orders of methanogen. We confirm that mcrA and small subunit rRNA gene phylogenies are remarkably similar, validating this approach. Subsequently, we describe the application of this approach to the phylogenetic analyses of two different landfill methanogen populations.

METHODS

Archaeal strains and culture conditions. All 23 culture collection strains used in this study were obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ), Braunschweig, Germany. The majority were type strains as indicated: Methanobacterium formicicum DSM 1312, Methanobacterium bryantii DSM 863T, Methanobacterium thermotrophicum DSM 1053T, Methanobacterium wolfeii DSM 2970T, Methanobrevibacter ruminitum DSM 1093T, Methanobrevibacter arboriphilicus DSM 1125T, Methanococcus (now Methanoterris) igneus DSM 5666T, Methanococcus (now Methanocaldococcus) jan-nashii DSM 2661T, Methanococcus (now Methanococcus) thermolithothrophicum DSM 2093T, Methanococcus vanilledi DSM 1224T, Methanococcus volae DSM 1537T, Methanocorpusculum aggregans DSM 3027T, Methano-corpusculum parvum DSM 3823T, Methanoculleus bourgensis DSM 3045T, Methanofollis liminatans DSM 4140T, Methanomicrobium mobile DSM 1539T, Methanopyrus kandleri DSM 6324T, Methanosaeta concilii DSM 3671T, Methanosarcina barkeri DSM 800T, Methanosarcina mazei DSM 2053T, Methanospirillum bungei DSM 864T and Methanothermus fervidus DSM 2088T. Most cultures were grown in 100 ml medium in 160 ml Wheaton bottles for 7 days at the temperature and in the medium recommended by the DSMZ. The exceptions to this were the thermophiles, which were grown for a maximum of 48 h.

Landfill sample collection and processing. Landfill material was recovered from two landfills, the Cory Environmental Waste Management site at Mucking, Essex, and the Wyvern Waste Management site at Odncombe, Somerset. The Mucking material was new landfill, less than 3 years old, recovered from a depth of 1–10 m using an excavator. The Odncombe material was obtained during drilling operations to install gas abstraction wells. It was obtained from a depth of 5–20 m, it was 2–5 years old and appeared well digested. The landfill material was packed into double-lined gas impermeable plastic sacks and sealed to exclude as much air as possible. Both samples of landfill material were hand-sorted to remove recalcitrant material and placed into model systems incubated at 37 °C. The models were flushed with oxygen-free nitrogen for 10 min to accelerate the establishment of anaerobic conditions. Sterile distilled water was added to the top of these model systems and leachate was collected from a sample port located at the bottom. To maximize the numbers of methanogens, the samples were incubated in the models until methane production had peaked, when it was believed the methanogen population would be at its greatest. Leachate samples were then collected. Cells were recovered immediately from the Odncombe leachate sample. Leachate (50 ml) was centrifuged at 7000 g for 10 min at room temperature. The peller was resuspended in 0·6 ml TE (10 mM Tris/HCl, 1 mM EDTA, pH 8·0) and the DNA was extracted using the RiboLyser technique described below. Leachate from the Mucking sample was inoculated into a methanogen growth medium (DSM 119) and grown for a further 2 weeks prior to processing as described above, for the Odncombe leachate sample.

DNA extraction and recovery. The RiboLyser (Hybaid), a high-speed reciprocal shaker which retains samples in screw-capped tubes containing ceramic and silica beads, was used for DNA isolation. The sample (0·5 ml) was added, together with 0·5 ml Tris/HCl-equilibrated phenol, pH 8·0, and 0·1 ml chloroform/isooamyl alcohol solution (25:1, v/v), to a ‘blue’ RiboLyser tube and placed into the RiboLyser. The tube was treated for 30 s at 6 m s−1 to maximize the release of DNA, and cooled on ice for 10 s. The phases were separated by centrifugation (10000 g, 10 min, 4 °C) and the aqueous phase was recovered and washed with 0·3 ml chloroform/isooamyl alcohol solution. The aqueous phase was recovered as before and the DNA was precipitated with an equal volume of 2–5 M sodium acetate, pH 4·5, and ethanol. The DNA was resuspended in 0·1 ml of TE.

Oligonucleotide primers. Degenerate primers were designed based on the alignment of five published mcrA gene sequences (Allmansberger et al., 1986; Bokranz et al., 1988; Bokranz & Klein, 1988; Cram et al., 1987; Well et al., 1988) and the identification of two regions with a high degree of homology flanking a more variable region (Fig. 1). The two oligonucleotide primers were a forward primer, 5′-GGTGGTGTMGGA-TTCACACARTAYGCWACAGC-3′, and a reverse primer, 5′-TTCATTGCGTGTTWGGRTAGTT-3′. These oligonucleotides were obtained from the Structural Sciences De-
Detection of methanogens by PCR

Fig. 1. Alignment of partial amino acid sequences of the mcrA gene from five different methanogens, Methanococcus (Mc.) volae (X07793), Methanococcus (Mc.) vannielii (M16893), Methanothermus (Mt.) fervidus (J03375), Methanobacterium (Mt.) thermoautotrophicus (U10036) and Methanosaeta (Ms.) barkeri (Y00158), using the PILEUP alignment tool of the GCG package, with Blosum62 as the scoring matrix and gap creation and gap extension penalties set to 1. Accession numbers in GenBank are shown in parentheses. Consensus sequences used for the design of PCR primers are indicated in bold.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

Fig. 1. Alignment of partial amino acid sequences of the mcrA gene from five different methanogens, Methanococcus (Mc.) volae (X07793), Methanococcus (Mc.) vannielii (M16893), Methanothermus (Mt.) fervidus (J03375), Methanobacterium (Mt.) thermoautotrophicus (U10036) and Methanosaeta (Ms.) barkeri (Y00158), using the PILEUP alignment tool of the GCG package, with Blosum62 as the scoring matrix and gap creation and gap extension penalties set to 1. Accession numbers in GenBank are shown in parentheses. Consensus sequences used for the design of PCR primers are indicated in bold.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.

RESULTS

Development of a detection method for methanogens

In examining 23 species of methanogens representing the five proposed phylogenetic lineages of methanogenic Archaea, we hoped to demonstrate the general applicability of this PCR technique to the detection of all methanogens. Also, as we were interested in developing techniques for all methanogens, we chose a physical shearing method for the extraction of DNA. The method of choice involved the use of a Ribolyser, a high-speed bead-beater designed, along with a series of kits, to enable RNA extraction from a range of organisms.
P. E. Luton and others

Table 1. Operational taxonomic units (OTUs) and corresponding RFLPs of TaqI-digested mcrA PCR products from two landfill samples

Analysis of cloned mcrA gene PCR products cut with the restriction endonuclease TaqI. The fragment sizes were estimated against a 50 bp DNA ladder on 4% agarose gels and confirmed by analysis of the DNA sequences of representative clones from each OTU. The OTUs are shown in the order of initial detection. E and F were found only in the Mucking sample, whereas G–S were found only in the Odcombe sample. Numbers in parentheses indicate the distribution of clones in the same OTU between samples (Mucking, Odcombe). All DNA sequences were obtained in this study except that for Methanosarcina thermophila which was obtained from GenBank (accession no. U22250).

<table>
<thead>
<tr>
<th>OTU</th>
<th>Size of DNA fragments after restriction (bp)</th>
<th>Total fragment size (bp)</th>
<th>Total no. of clones with same restriction pattern</th>
<th>Species with same restriction pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>51, 53, 387</td>
<td>491</td>
<td>19 (18, 1)</td>
<td>Methanofollis liminatans, Methanospirillum hungatei</td>
</tr>
<tr>
<td>B</td>
<td>33, 53, 384</td>
<td>470</td>
<td>5 (1, 4)</td>
<td>Methanobacterium formicicum</td>
</tr>
<tr>
<td>C</td>
<td>9, 21, 170, 267</td>
<td>467</td>
<td>12 (10, 2)</td>
<td>Methanococcus (now Methanosarcina) jannaschii, Methanobacterium formicicum mrtA</td>
</tr>
<tr>
<td>D</td>
<td>464</td>
<td>464</td>
<td>60 (30, 30)</td>
<td>Methanosarcina thermophila</td>
</tr>
<tr>
<td>E</td>
<td>53, 417</td>
<td>470</td>
<td>2</td>
<td>Methanocorpusculum aggregans, Methanocorpusculum parvum</td>
</tr>
<tr>
<td>F</td>
<td>45, 53, 93, 297</td>
<td>488</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>104, 387</td>
<td>491</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>104, 185, 202</td>
<td>491</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>77, 99, 297</td>
<td>473</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>104, 154, 233</td>
<td>491</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>104, 113, 120, 154</td>
<td>491</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>170, 294</td>
<td>464</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>491</td>
<td>491</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>77, 396</td>
<td>473</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>51, 53, 113, 120, 154</td>
<td>491</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>104, 184, 203</td>
<td>491</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>6, 53, 67, 81, 263</td>
<td>470</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>86, 93, 288</td>
<td>467</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>21, 179, 267</td>
<td>467</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Modifications of the standard protocols provided with the kits enabled DNA extraction from a wide range of sources, including liquid cultures and landfill leachate. This general technique, which is able to recover total DNA from a range of sources, would be critical if PCR were to be applied to the qualitative and quantitative analysis of environmental samples.

DNA was successfully extracted from all 23 species of methanogen using the RiboLyser. Once the DNA had been purified, the PCR methodology was evaluated. A single major PCR product of the expected size (464–491 bp) was generated for all 23 methanogen species using the primers described. These primers were those found to give the most consistent results, although other primer pairs were evaluated (data not shown). To confirm the identity of PCR products, the DNA sequence of each was determined. These sequences were verified as the predicted part of the mcrA gene by comparison with the published sequences of the mcrA gene. Those evaluated included the five previously published DNA sequences for the mcrA gene used in the alignment for the design of the PCR primers.

Eight DNAs from non-methanogen species, seven eubacterial and one archaeal DNA (Pyrococcus furiosus) were also evaluated to see if they generated a PCR product with the same primers. Under the conditions outlined for the PCR, none of these DNAs generated a PCR product (data not shown).

Restriction enzyme analysis

Once purified DNA had been recovered from the model reactors, the mixed mcrA gene fragments were PCR-amplified and the population of fragments separated by cloning and transformation. A total of 63 Mucking clones and 102 Odcombe clones were screened for the presence of the mcrA gene fragment by restriction digestion with TaqI. In total six restriction patterns were obtained from the Mucking site and 17 from the Odcombe site, four of which were found in both (Table 1). Screening by restriction analysis allowed the clones to be grouped based on TaqI RFLP patterns, reducing the total number of clones that needed to be sequenced. However, several members of each pattern were sequenced to confirm the reliability of this pre-screening.
Detection of methanogens by PCR

Fig. 2. Phylogenetic trees showing the relationship between 16S rDNA sequences (A) and partial mcrA DNA sequences (B) of methanogens. All 16S rRNA and some mcrA sequences were retrieved from GenBank; the remaining mcrA sequences, marked in bold, were determined in this study (GenBank accession numbers AF414034–AF414051). Alignments were made using 1532 bp of the 16S rRNA sequence and 440 bp of the mcrA sequence with the PILEUP program of the GCG package. Trees were constructed using the DNADIST program with the Kimura two-parameter model, followed by FITCH to construct the trees from the calculated distances. The outgroup used was Methanopyrus kandleri. Bootstrap values, indicated at nodes, were calculated from 100 resamplings (values < 50 not shown). All these programs were from PHYLIP (Felsenstein, 1995). The trees were visualized using TREEVIEW. The scalebar represents 0.1 substitutions per base position. Genus names have been abbreviated in agreement with those found in the Ribosomal Database Project as follows: Mb., Methanobacterium; Mbt., Methanothermobacter; Mbb., Methanobrevibacter; Mcc., Methanococcoides; Mc., Methanococcus; Mcr., Methanocorpusculum; Mccu., Methanoculleus; Mf., Methanofoellis; Mhl., Methanolobibium; Mha., Methanolphilus; Mlo., Methanolobus; Mm., Methanomicrobium; Mp., Methanopyrus; Ms., Methanoseta; Mr., Methanosarcina; Mpr., Methanosphaera; Msp., Methanosprillum; Mt., Methanothermus.

In total, 20 of the 63 Mucking clones and 53 of the 102 Odcombe clones were sequenced.

Phylogenetic analysis

The fragment of the mcrA gene corresponding to the conserved Tyrosine amino acid residues between positions 363 and 510 in the alignment in Fig. 1 were used in DNA and protein sequence alignments. The size of the DNA fragment compared varied between 414 and 438 bases, depending on the species. In constructing the phylogenetic trees it was decided to root them. As only methanogens carry the mcrA gene, the outgroup chosen for these analyses had to be a methanogen. From taxonomy and 16S rRNA phylogeny, the deepest branching methanogen so far identified is Methanopyrus kandleri (Burggraf et al., 1991) and the mcrA gene sequence from this species was therefore chosen as the outgroup.

Phylogenetic trees based on DNA and amino acid sequences of the mcrA gene were compared to see if there where any major differences in the phylogenetic trees generated. No major differences were apparent between DNA and amino acid sequences, nor between the different algorithms used. The possibility of chimeric sequences were also checked by separate phylogenetic analyses on the N and C termini of the McrA proteins. No evidence for chimeras were seen (data not shown).
Fig. 3. Phylogenetic tree showing the relationship of predicted mcrA amino acid sequences from two landfill sites with characterized methanogens. This tree was constructed from an alignment of sequences made by the PILEUP program of the GCG package, using the PROTDIST (PAM-Dayhoff) and FITCH programs in PHYLIP (Felsenstein, 1995), with Methanopyrus kandleri as the outgroup, and visualized using TREEVIEW. Bootstrap values out of 100 resamplings are shown at each node (≥50 not shown). Values in parentheses reflect the number of clones detected for each sequence represented and the corresponding OTU. The scalebar represents 0–1 substitutions per amino acid position. Genus names have been abbreviated in agreement with those found in the Ribosomal Database Project as described in the legend to Fig. 2. The GenBank accession numbers for the mcrA sequences of the environmental isolates are AF414007–AF414033.

We have chosen to present trees generated from DNA sequence data when comparing mcrA and 16S rRNA sequences from known species (Fig. 2), and inferred amino acid sequences when examining environmental samples (Fig. 3), all using DNAIDIST or PROTIDIST followed by FITCH. The use of inferred amino acid sequences reduces the variation seen in the DNA sequence, principally in the third base of the codon, and simplifies the trees by grouping together those with identical amino acid sequence. This is suitable for our purpose, but does mean that some of the finer genetic variation enabling differentiation at the subspecies level is lost. It has been suggested, however, that the third codon position can introduce major bias into a phylogenetic analysis, particularly when the G+C content is similar in unrelated species (Gupta, 1998). The use of amino acid sequences avoids this potential source of error and is more appropriate as we are analysing a functional gene.

Closer consideration of the phylogenetic analysis applied to the landfill samples and comparisons at the amino acid sequence level of the mcrA gene fragments reveals a number of associations. Three groups of mcrA sequences clustered within the Methanobacteriales. One group showed 92% similarity to Methanobacterium formicicum, a second group showed 92–8% similarity to Methanothermobacter thermoautotrophicus and a single sequence showed 92–2% to Methanobrevibacter arboriphilicus. The mrtA sequences of the Methanobacteriales were readily distinguishable from the Methanobacteriales mcrA sequences, grouping together in a tight cluster on the phylogenetic tree close to the Methanococcales and showing between 94–9 and 100% similarity to the Methanobacterium formicicum mrtA sequence.

Four major clusters of sequences grouped within the Methanomicrobiales and each showed strong similarity to a recognized species: 92.5% to Methanoculleus bourgensis, 93.8% to Methanospirillum hungatei, 92.4–96% to Methanocorpusculum bavaricum and 99.3% to Methanocorpusculum parvum. All the sequences grouping within the Methanocorpusculaceae were isolated
from the Odcombe site. A single clone, OS77, branching at a deeper point in the tree, showed 74-7% similarity to its closest recognized species, Methanomicrobium mobile. Two sequences grouping close to Methanosarcina barkeri showed 92-4-93-1% similarity. Another two sequences, OS18 and OS55, both from the Odcombe sample, formed a deep-branching cluster with only 60-7% similarity to their closest recognized species, Methanoseta concilii.

DISCUSSION

The application of PCR-based technologies to the investigation of naturally occurring methanogen populations has many advantages over traditional culture-based methods. No culturing of these fastidious anaerobes is required and novel sequences may be detected, indicating new species, which may be at present unculurable, providing a more complete description of the methanogen community. However, molecular methods introduce their own bias, such as the favoured lysis of one cell type over another, leading to the recovery of unrepresentative DNA fractions or skewed PCR amplification, where certain sequences are favoured over others (Moré et al., 1994; Suzuki & Giovannoni, 1996). To minimize bias in DNA recovery, physical shear techniques were developed. The RiboLyser was successfully used in recovering DNA from the 23 pure cultures of methanogens covering the broad range of known methanogen phylogeny used in this study. On application to environmental samples, DNA could also be recovered from solid landfill and leachate. Additionally, slight modifications to the protocol enables the recovery of RNA using the RiboLyser, which can be used in studies of activity within methanogen populations.

Springer et al. (1995) previously reported that the phylogenetic trees of 16S rRNA, and part of the mcrA gene analysed, for the methanogen family Methanosarcinaeae, were broadly similar. The far more comprehensive analysis, in terms of the breadth of methanogen phylogeny, examined in this study (Fig. 2B), supports this view, with the five proposed orders of methanogens clearly distinguishable. Indeed, closer comparison at the genus and species level within orders reveals that there is a strong correlation between 16S rRNA and mcrA even at this level. This strongly supports the view that we can use the analysis of mcrA gene sequences to describe the community present in environmental samples without the need to recover these isolates in culture.

However, there are some anomalies. Whilst the reorganization of the taxonomy of the methanogens as suggested by Boone et al. (1993) is broadly supported by our data, some of the more specific taxonomic relationships are not confirmed. An example is the position of Methanosphaera stadtmanae, which is considered to be a member of the order Methanobacteriales, grouping within this order by 16S rRNA analysis, but not by mcrA analysis (Fig. 2). Methanosphaera stadtmanae is an unusual member of the Methanobacteriales, having a coccoid shape, unlike all the rest which are rods, and growth is limited to the reduction of methanol by H₂. The mcrA sequence we obtained is more closely related to the mrtA sequences of other Methanobacteriales (Fig. 3). It is therefore possible that either our primers failed to amplify the Methanosphaera stadtmanae mcrA gene fragment, or it is no longer present, as we were only able to detect this mrtA-like sequence. The rest of the Methanobacteriales fall readily into the taxonomic organization proposed by Boone et al. (1993) and confirmed by Wasserfallen et al. (2000). Similarly, the reorganization of the Methanococcales into two families and four genera is supported.

The taxonomy of the Methanomicrobiales is more complex with not all of the nine established genera represented on our mcrA tree, making overall comparisons difficult. However, the Methanocorpusculaceae clearly group together in a coherent group and the recognition of Methanocorpusculum aggregans and Methanocorpusculum parvum as synonymous (Boone et al., 1993) is supported. The application of the mcrA gene in the analysis of the Methanosarcinales has been considered before (Springer et al., 1995). An additional observation, supported by our data, is the division of the Methanosarcinales into two families, the Methanosetaeae, which is represented by only one species, Methanoseta concilii, in our mcrA study, and the Methanosarcinaeae, which includes a large number of species.

A potential pitfall in using the mcrA gene for detection is the high degree of DNA sequence conservation between mcrA and mrtA, the equivalent gene in the MCRII complex, a complex found in a limited number of methanogen species. This means that detection based on primers for PCR designed to conserved regions in mcrA is also likely to detect mrtA sequences, complicating the analysis. Fortunately, the mrtA gene sequences form a coherent group close to the Methanococcales (Fig. 3) and therefore are readily distinguishable from mcrA gene sequences. This close proximity has been reported previously and led to the suggestion that the mrtA gene has arisen by lateral transfer from the Methanococcales rather than gene duplication (Reeve et al., 1997). There were, however, noticeably more mrtA sequences than mcrA Methanobacteriales sequences, suggesting overrepresentation of this sequence type in the analysis. This is likely to be due to PCR bias, amplifying the mrtA sequences preferentially, rather than a wider distribution of mrtA genes in the methanogen community, as the mrtA gene sequences group closely with a single Methanobacteriales mrtA sequence from Methanobacterium formicicum.

The principal aim of this study was not to compare 16S rRNA and mcrA as rival phylogenetic approaches, but to confirm the validity of using the mcrA gene as an alternative phylogenetic tool in the specific detection and identification of methanogens. This was achieved successfully, a comparison of the phylogeny of the mcrA and 16S rRNA genes from the five recognized orders of methanogens clearly indicating a strong similarity (Fig.
2). Additionally, unlike other studies, where all the expected orders of methanogens have not been detected in environmental samples (Lueders et al., 2001), our primers were able to amplify the mcrA gene from all the known orders using DNA extracted from type species (Fig. 2B), and all the expected orders using DNA extracted from environmental samples (Fig. 3).

The two landfill sites examined both had complex methanogen communities, reflected by a wide distribution of sequences, with a far greater diversity than had previously been described in the literature (Fielding et al., 1988; Maule et al., 1994). This was despite the extensive sample treatment undergone by the solid landfill material collected, which was necessary to convert it into artificial leachate. The reason for using leachate is that it is likely to yield a more representative sample of the microbial community compared to extracting DNA from a small, single solid sample (Barlaz, 1997). Additionally, the artificial leachate from the Mucking sample was then inoculated into a methanogen growth medium in an attempt to boost numbers further. It is therefore unlikely that the populations we examined in this study are accurate representations of the overall methanogen population in the original solid landfill samples, but they will be subsets of this population. No attempts have therefore been made to compare populations as we were seeking only to exemplify the methods developed. Additionally, taking single samples is not statistically valid for the purpose of making comparisons between populations.

Methanobacterium formicicum has been detected previously in landfill, as an endosymbiont of the ciliate *Metopus palaeformis* (Finlay & Fenchel, 1991) and by oligonucleotide probe analysis to the mcrA gene on leachate samples (Maule et al., 1994). Microorganisms antigenically related to *Methanobrevibacter arboriphilicus* have been detected in an anaerobic sludge blanket reactor (Grotenhuis et al., 1991), but there are no reports of previous detection in landfill.

Of the four *Methanomicrobiales* group sequences, two have been detected before in landfill, *Methanoctidulus bourgensis* and *Methanospirillum hungatei*, using species-specific probes against the mcrA gene (Luton, 1996). Fielding et al. (1988) isolated a coccoid methanogen from landfill that was thought to be a *Methanogenium* sp. or a *Methanocorpusculum* sp. Mori et al. (2000) also reported the isolation of *Methanocalculus pumilus*, a member of the *Methanocorpusculaceae* family, from landfill. The inclusion of the mcrA gene sequence from this recently isolated methanogen may have further resolved the large number of clones in these *Methanocorpusculum* clusters. The unclustered sequence, OS77, could represent a novel *Methanomicrobiales* lineage or could simply be a representative of an as yet unsequenced mcrA gene from a recognized species. No previous studies have described this level of diversity among the *Methanomicrobiales* in landfill. Additionally, a recent report by Lueders et al. (2001) using detection of the mcrA gene in rice field soil failed to detect any *Methanomicrobiales*.

Analysis revealed a low number of clones from both samples grouping with the acetoclastic methanogen family, the *Methanosarcinacae*. In the Mucking site, 2 of the 66 clones examined aligned with the acetoclastic methanogen *Methanosarcina barkeri*; in the Odcombe sample no acetoclastic methanogen clones were detected. However, these landfill samples were introduced into laboratory model systems which is likely to have had some effect on methanogen population composition. The Mucking sample, which was subsequently inoculated into a *Methanobacterium* medium, did yield some acetoclastic methanogen sequences as well as a range of *Methanomicrobiales* sequences. The medium therefore was not totally selective for *Methanobacteriales*. Reports of low numbers of acetoclastic methanogens as compared with hydrogenotrophic methanogens in landfill have been reported previously (Fielding & Archer, 1986). Alternatively, the low numbers of *Methanosarcinacae* could be explained by bias in the PCR where some sequences are amplified in preference to others. Bias in PCR has been observed when amplifying 16S rRNA genes (Reysenbach et al., 1992), when very low template concentration is used (Chandler et al., 1997) or when using degenerate primers (Polz & Cavanaugh, 1998).

Further examination of the OS18 and OS55 clones, which formed a deep-branching cluster separate from the other five orders of methanogens, revealed amino acid sequence similarity of between 55 and 61% with these orders. An additional sequence, uncultured archaeon 85A (GenBank accession no. AF268654), isolated from an anaerobic digestor and deposited in GenBank, showed 84% amino acid sequence similarity and also fell into this cluster when included in a phylogenetic analysis. The low values of sequence identity with other methanogenic orders support the conclusion that this cluster of sequences is distinct from any described species of methanogen and may represent an uncultured novel methanogenic lineage. The independent recovery of sequences within this cluster by two groups strengthens the validity of this observation.

ACKNOWLEDGEMENTS

The work documented in this paper was undertaken with funding from the UK Environment Agency. The opinions and judgements expressed in this report are those of the authors and do not necessarily reflect those of the UK Environment Agency. The results of this work may be used in formulation of Government policy but at this stage they do not necessarily represent Government policy.

REFERENCES

Received 8 April 2002; revised 28 June 2002; accepted 12 July 2002.