Identity elements in tRNA-mediated transcription antitermination: implication of tRNA D- and T-arms in mRNA recognition

Maarten van de Guchte, S. Dusko Ehrlich and Alain Chopin

Author for correspondence: Maarten van de Guchte. Tel: +33 1 34 65 25 28. Fax: +33 1 34 65 25 21. e-mail: guchte@biotec.jouy.inra.fr

Laboratoire de Génétique Microbiennne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France

trNA-mediated transcription antitermination has been shown to control the expression of several amino acid biosynthesis operons and aminoacyl-tRNA-synthetase-encoding genes in Gram-positive bacteria. A model originally put forward by Grundy & Henkin describes the conserved structural features of the leader sequences of these operons and genes. Two sequences of 3 and 4 nt, respectively, take a central position in this model and are thought to be responsible for the binding of the system-specific uncharged tRNA, an interaction which would stabilize the antiterminator conformation of the leader. Here a further evolution of this model is presented based on an analysis of trp regulation in Lactococcus lactis in which a function is assigned to hitherto unexplained conserved structures in the leader sequence. It is postulated that the mRNA–tRNA interaction involves various parts of the tRNA in addition to the anticodon and the acceptor in the original model and that these additional interactions contribute to the recognition of a specific tRNA, and hence to the specificity and efficacy of the regulatory response.

Keywords: gene regulation, T-box, tRNA, Lactococcus lactis

INTRODUCTION

A transcription antitermination mechanism which has received considerable attention during the last few years, employs a direct interaction between an mRNA and a specific tRNA to stabilize the antitermination conformation of the nascent mRNA transcript. By its nature, this mechanism of antitermination is especially apt to regulate the biosynthesis and use of amino acids. It has been found or hypothesized to govern the regulation of several amino acid biosynthesis operons and aminoacyl-tRNA-synthetase encoding genes, in a number of Gram-positive bacteria.

The non-translated leader transcripts of these genes or operons share strikingly similar secondary structures in which the specifier codon occupies a crucial, conserved position (Fig. 1; Grundy & Henkin, 1993; Chopin et al., 1998; Luo et al., 1998). This codon corresponds to the amino acid which the operon is responsible for the biosynthesis of, or in the case of aminoacyl-tRNA-synthetase encoding genes, to the amino acid that is coupled to a tRNA by that particular synthetase, and is thought to bind to the corresponding tRNA in a codon–anticodon interaction. A second conserved position in the secondary structure is reserved for the anti-acceptor which is situated in the actual terminator and is complementary to the four 3′ terminal nucleotides of the acceptor arm of the tRNA to which this sequence is thought to bind (Grundy & Henkin, 1993; Grundy et al., 1994; Van de Guchte et al., 1998). The latter interaction explains the regulatory potential of this system. An uncharged tRNA can bind to the leader transcript, maintain the antiterminator conformation and thus promote the expression of the operon or gene. A tRNA that is charged with an amino acid on the acceptor arm, however, would not be able to bind and stabilize the antiterminator in the leader transcript. The latter adopts the energetically more favourable terminator conformation and expression of the operon or gene is suppressed.

We have presented evidence in support of this transcription antitermination model for the tryptophan-dependent regulation of the Lactococcus lactis trp operon (Van de Guchte et al., 1998). We showed for several specifier mutants that transcript elongation could be induced by the absence of the newly specified amino acid from the culture medium. The new response was much lower than the response to tryptophan depletion.
in the wild-type system, however, while, as became evident especially under conditions of overexpression of tRNATrp, tryptophan depletion could still induce a low level of transcript elongation in these mutants.

These results showed that when acceptor and anti-acceptor are compatible, specifier codon–anticodon complementarity is neither sufficient for an efficient response to occur nor strictly indispensable for a low level response, and consequently suggested the existence of additional means of recognition between the trp leader transcript and tRNATrp. Here we present experimental results that strongly suggest the implication of the tRNA D- and T-arms in the recognition of conserved stem–loop structures in the trp leader transcript.

METHODS

Bacterial strains, plasmids and media. The bacterial strains and plasmids used in this study are listed in Table 1. *Escherichia coli* was grown in LB broth (Miller, 1972) or on LB solidified with 1–5 % agar. *L. lactis* was grown in glucose M17 broth (Terzaghi & Sandine, 1975) to which sucrose (0–5 M) was added to osmotically stabilize electroporated cells or on glucose M17 solidified with 1.5 % agar.

RNA was extracted from *L. lactis* grown in chemically defined medium (CDM; Raya et al., 1998). When present, tryptophan, asparagine, cysteine, alanine, phenylalanine and tyrosine were used at 100 μg ml\(^{-1}\). Erythromycin was added where appropriate to 2.5–5 μg ml\(^{-1}\) for *L. lactis*. Ampicillin was used at 150 μg ml\(^{-1}\) for *E. coli*.

DNA manipulations and transformation. *E. coli* and *L. lactis* were transformed by electroporation (Dower et al., 1988; Holo & Ness, 1995). Plasmid DNA was isolated by the method of Birnboim & Doly (1979). Restriction enzymes and T4 DNA ligase were purchased from Boehringer or New England Biolabs and used according to the instructions of the suppliers. Taq DNA polymerase and Vent DNA polymerase for use in PCR were purchased from Promega and New England Biolabs, respectively. Polynucleotide kinase was purchased from New England Biolabs. PCR-mediated DNA amplification was performed using a Perkin Elmer Cetus DNA thermal cycler 2400 or 9600. DNA sequence analysis was performed using an Applied Biosystems 373 automated DNA sequencer. Oligonucleotides were synthesized using a Beckman Oligo 1000M DNA synthesizer.

PCR-directed mutagenesis and overexpression of tRNAs. Mutations in the lactococcal trp leader region were generated by PCR using mutagenic primers as described previously (Van de Guchte et al., 1998). Mutated leader fragments (EcoRI–HindIII) were subsequently cloned in the delivery vector pIL931 and integrated upstream of the *E. coli lacZ* gene in *L. lactis* IL56012 to reconstitute a functional trpE-lacZ fusion on the chromosome. The fusion is located within the bis operon, which is transcriptionally silent in the presence of histidine in the culture medium (Delorme et al., 1999). Recombinant tRNA sequences were generated by PCR using two partially overlapping oligonucleotides and subsequently cloned under control of the lactococcal promoter P59 (Van der Vossen et al., 1997) in pNuc9 as described previously (Van de Guchte et al., 1998).

RNA manipulations. For RNA extraction, cultures were grown in the presence of Trp, Asn and erythromycin to an OD\textsubscript{600} of 0.6. The cells were collected by centrifugation and resuspended in an equal volume of fresh medium containing or lacking Asn or Trp. After incubation for 30 min in these media at 30°C, the cells were harvested and RNA was extracted as described by Raya et al. (1998). Aliquots of 20 μg were subjected to electrophoresis in 1 % agarose and blotted onto Nytran membranes (NY12N; Schleicher & Schuell). Northern
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Bacterial strain or plasmid</th>
<th>Relevant features</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. lactis subsp. lactis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL56012</td>
<td>IL1403 containing a promoterless E. coli lacZ gene on the chromosome</td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>IL56013</td>
<td>IL1403 containing a trpE-lacZ fusion on the chromosome; specifier TGG (Trp)</td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>IL56016</td>
<td>IL1403 containing a trpE-lacZ fusion on the chromosome; specifier AAC (Asn)</td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>IL56026</td>
<td>IL1403 containing a trpE-lacZ fusion on the chromosome; specifier AAC (Asn), mutation ML1 (Fig. 4b)</td>
<td>This study</td>
</tr>
<tr>
<td>IL56027</td>
<td>IL1403 containing a trpE-lacZ fusion on the chromosome; specifier AAC (Asn), mutation ML2 (Fig. 4b)</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pIL931</td>
<td>Chromosomal delivery vector</td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>pIL253</td>
<td>Em<sup>®</sup>, pAM<sup>®</sup>-derived cloning vector</td>
<td>Simon & Chopin (1988)</td>
</tr>
<tr>
<td>pNuc9</td>
<td>Em<sup>®</sup>, pIL253 derivative containing the strong lactococcal promoter P59</td>
<td>Le Loir et al. (1998)</td>
</tr>
<tr>
<td>pIL938</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying trNA<sup>Trp</sup></td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>pIL939</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying trNA<sup>Asn</sup></td>
<td>Van de Guchte et al. (1998)</td>
</tr>
<tr>
<td>pIL940</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>1</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL941</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>2</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL942</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>3</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL943</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>4</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL944</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>5</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL945</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>6</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL946</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>7</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
<tr>
<td>pIL947</td>
<td>Em<sup>®</sup>, pNuc9 derivative specifying hybrid tRNA<sup>8</sup> (Fig. 5)</td>
<td>This study</td>
</tr>
</tbody>
</table>

hybridizations were performed using either of the following γ-³²P labelled oligonucleotide probes: 5'-CTGGTCACCTTCG-ATGGTT-3' (complementary to the *E. coli* lacZ gene) or 5'-GGCCGTATGTCACGCCGGTGCCACCG-3' (complementary to lactococcal trp leader transcripts). Transcripts were quantified using a PhosphorImager (Storm; Molecular Dynamics). The relative readthrough was determined as described previously (Van de Guchte et al., 1998). Briefly, the relative amount of full-length transcript was determined using a lacZ-specific probe and a correction for the Trp-independent variation in the level of transcription initiation (Raya et al., 1998) and possible gel charging errors was made after rehybridization with a trp leader-specific probe. Comparison of the signals obtained with the lacZ probe for different lanes on the same Northern blot allowed, after correction based on the signals obtained with the trp leader probe, calculation of a relative antitermination value for each lane (relative to a given lane on the same blot). The presented relative antitermination values are mean values from two to five experiments.

RESULTS

Specified-codon-independent transcription antitermination

The isogenic *L. lactis* strains IL56013 and IL56016 carry, in addition to the trp operon, a trpE-lacZ fusion on the chromosome, inserted in the transcriptionally silent *bis* operon (Fig. 2; Van de Guchte et al., 1998). Upstream of the translational fusion between trpE, the first gene of the trp operon, and lacZ the trp promoter and leader sequence are present. In IL56013, this leader sequence is identical to the wild-type leader of the trp operon, whereas in IL56016 the leader sequence of the trpE-lacZ fusion contains the specifier codon AAC (Asn) instead of TGG (Trp).

Earlier studies (Van de Guchte et al., 1998) showed that transcription antitermination in the trpE-lacZ fusion
with the wild-type leader was strongly induced by the absence of Trp from the culture medium (Fig. 3, lane 1), whereas the specifier (AAC) mutant was induced at only a very low level by Asn depletion (Fig. 3, lane 2). However, under conditions of overexpression of the lactococcal tRNA_{Trp} in the specifier (AAC) mutant, it became evident that induction was still possible, albeit at a low level, by Trp depletion (Fig. 3, lane 3). In contrast, the wild-type fusion could not be induced by Asn depletion under conditions of overexpression of tRNA_{Asn} (Fig. 3, lane 4).

These results indicate that transcription antitermination induced by Trp depletion in a specifier mutant may involve specifier-codon-independent interactions between tRNA_{Trp} and the <i>trp</i> leader transcript. This type of interaction did not seem to occur between tRNA_{Asn} and the <i>trp</i> leader.

Sequence complementarity between tRNA_{Trp} and the <i>trp</i> leader transcript

The above observations prompted a renewed analysis of the tRNA_{Trp} leader. The lactococcal tRNA_{Trp} sequence, which has recently become available (P. Renault, unpublished), was used to search for mRNA–tRNA complementarity that could be indicative of additional recognition mechanisms. As shown in Fig. 4(a), there is extensive sequence complementarity between the tRNA_{Trp} leader and the <i>trp</i> leader. A stretch of 21 nt in stem–loop structure IV of the <i>trp</i> leader (Fig. 1) is complementary to the D-arm and the anticodon arm of tRNA_{Trp}, whereas another stretch of 18 nt is complementary to the T-arm. Moreover, parts of the latter sequence are repeated several times upstream of the 18 nt sequence in stem–loop structure II of the <i>trp</i> leader (Fig. 1). This large extent of mRNA–tRNA complementarity suggests a functional role in antitermination.
Identity elements in tRNA-mediated antitermination

Fig. 4. Complementarity between trp leader fragments and (a) tRNATrp or (b) tRNAAsn. D, tRNA D-arm; T, tRNA T-arm; E, tRNA extra arm. trp leader sequence fragments complementary to tRNATrp are highlighted (clockwise: anti-acceptor, T-complementary region, specifier codon, D-complementary region); compare with Fig. 1 for the localization of these fragments. Boxed sequences ML1 and ML2 represent mutated trp leader sequences; mutations (encircled nucleotides) are introduced to improve the complementarity to tRNAAsn.

Effect of chimeric tRNAs on transcription antitermination in the specifier Asn mutant

To examine whether the above differences between tRNAAsn and tRNATrp could be responsible for the weak antitermination response in the specifier (AAC) mutant, chimeric tRNAs were constructed. Based on the \textit{L. lactis} tRNAAsn gene, recombinant genes were created in which (i) the D-arm, (ii) the T-arm and extra arm or (iii) both sequences were replaced by the corresponding arms of tRNATrp (Fig. 5). In addition, a gene was created based on the tRNATrp gene in which the anticodon CCA (anti-TGG, Trp) was replaced by GTT (anti-AAC, Asn). The resulting tRNA can be regarded as a tRNAAsn in which all but the anticodon is replaced by the corresponding parts of tRNATrp. The different chimeric tRNAs all contain the identity elements of tRNAAsn, the anticodon GUU and the discriminator base G, and therefore are likely to be chargeable by asparaginyl-tRNA synthetase, even if tRNATrp and tRNAAsn are normally charged by synthetases that belong to different classes (Giege \textit{et al.}, 1998).

tRNAAsn and the chimeric tRNAs were overproduced in the specifier (AAC) mutant and their effect on transcription antitermination in the \textit{trpE–lacZ} fusion was studied. Under conditions of Asn limitation, the overproduction of tRNAAsn affected antitermination only a little or not at all (Fig. 3, lanes 2 and 5). In contrast, overproduction of tRNAAsn containing either the D-arm or the T-arm and extra arm of tRNATrp, resulted in a clearly enhanced level of antitermination which was increased even further when all these tRNATrp arms were present (Fig. 3, lanes 6, 7, 8). Expression of the latter chimera resulted in a level of antitermination approaching that realized by the overproduction of tRNATrp in which the anticodon had been replaced by the anticodon GUU (anti-AAC, Asn) (Fig. 3, lane 9). These results suggest an important role for the tRNA D- and T-arms in the mRNA–tRNA interaction.

Since it is the ratio between the amount of uncharged and charged tRNA that determines whether, and to what extent, antitermination occurs (Grundy \textit{et al.}, 1994; Putzer \textit{et al.}, 1995; Van de Guchte \textit{et al.}, 1998), the possibility remained that the increased antitermination in the presence of chimeric tRNAs was due to an
M. van de GUCHTE, S. D. EHRLICH and A. CHOPIN

Fig. 5. Sequence of wild-type and chimeric tRNAs. 1, tRNA_{Asn} in which the D-arm has been replaced by the D-arm of tRNA_{Trp}; 2, tRNA_{Asn} in which the T-arm and the extra arm have been replaced by the T-arm and the extra arm of tRNA_{Trp}; 3, tRNA_{Asn} in which the D-arm, the T-arm and the extra arm have been replaced by the D-arm, the T-arm and the extra arm of tRNA_{Trp}; 4, tRNA_{Asn} in which the whole sequence except for the anticodon has been replaced by the sequence of tRNA_{Trp}, i.e. tRNA_{Trp} with anticodon Asn; 5, tRNA_{Asn} in which the D-arm has been replaced by the D-arm of tRNA_{Trp} (tRNA₁), with 2 nt substitutions in the T-loop (bold type); 6, tRNA_{Asn} in which the D-arm has been replaced by the D-arm of tRNA_{Trp} (tRNA₁), with a 2 nt size reduction of the extra arm (**); 7, tRNA_{Asn} in which the T-arm and the extra arm have been replaced by the T-arm and the extra arm of tRNA_{Trp} (tRNA₂), with 4 nt substitutions in the D-loop (bold type); 8, tRNA_{Asn} in which the T-arm and the extra arm have been replaced by the T-arm and the extra arm of tRNA_{Trp} (tRNA₂), with a 2 nt size reduction of the D-loop (***). tRNA_{Trp}, tRNA_{Asn}, wild-type sequences of <i>L. lactis</i> subsp. <i>lactis</i>; –––, stem; ***, loop.

Table 2. Transcription antitermination in the presence of an excess of Asn

<table>
<thead>
<tr>
<th>Specifier *</th>
<th>tRNA †</th>
<th>CDM ‡</th>
<th>Antitermination §</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp</td>
<td>–</td>
<td>–Trp</td>
<td>100</td>
</tr>
<tr>
<td>Asn</td>
<td>–</td>
<td>Complete</td>
<td>0.2</td>
</tr>
<tr>
<td>Asn</td>
<td>Asn</td>
<td>Complete</td>
<td>0.2</td>
</tr>
<tr>
<td>Asn</td>
<td>1</td>
<td>Complete</td>
<td>0.2</td>
</tr>
<tr>
<td>Asn</td>
<td>2</td>
<td>Complete</td>
<td>0.2</td>
</tr>
<tr>
<td>Asn</td>
<td>3</td>
<td>Complete</td>
<td>3.7</td>
</tr>
<tr>
<td>Asn</td>
<td>4</td>
<td>Complete</td>
<td>4.5</td>
</tr>
</tbody>
</table>

*Specifier codon present in the <i>trp</i> leader upstream of the chromosomal <i>trp-E-lacZ</i> fusion: Asn (AAC) or Trp (TGG).
†Overexpressed tRNAs are indicated. Numbers refer to chimeric tRNAs described in Fig. 5. Strains in which no tRNA is overexpressed contain plasmid pIL253.
‡ – Trp indicates that Trp was lacking from the medium after the growth medium shift.
§Relative antitermination determined as described in Methods. Antitermination in the wild-type <i>trp-E-lacZ</i> fusion under conditions of Trp starvation is arbitrarily set to 100.

Together, these results strongly suggest that the chimeric tRNAs enhance antitermination through an improved interaction with the leader transcript and, consequently, that the tRNA D- and T-arms play a role in mRNA–tRNA recognition.

Effect of mutations in chimeric tRNAs on transcription antitermination

The lactococcal tRNA_{Trp} and tRNA_{Asn}, and the chimeric tRNAs not only differ in the nucleotide sequences of their D-, T- and extra arms, but also in the sizes of the D-stem and D-loop, as well as the size of the extra arm, features that may also affect mRNA–tRNA interaction. To address the question whether the antitermination-enhancing effects of the chimeric tRNAs could be ascribed to either an improved mRNA–tRNA sequence complementarity or to an enhanced structural compatibility because of the sizes of the D- and extra arm, the effects of small mutations in tRNA_{Asn} were studied.

To allow for maximum interaction between mRNA and tRNA, the chimeric tRNA containing the D-arm of tRNA_{Trp} was used to create mutations in the T-arm or
in the extra arm, whereas the chimeric tRNA containing the T-arm of tRNA^{Trp} was used to create mutations in the D-arm. The resulting tRNAs are shown in Fig. 5. In tRNAs 5 and 7 the complementarity of the T- or the D-arm, respectively, to the trp leader has been improved, without changing the size of these arms or the extra arm. In tRNA 6 the size of the extra arm has been reduced, thereby also slightly improving the complementarity to the trp leader. In tRNA 8 the size of the D-loop has been reduced without improving mRNA complementarity.

The results of overproduction of these modified tRNAs, presented in Table 3, show that it was not possible to separate sequence complementarity and arm size effects. Only the overexpression of tRNA 6 resulted in a slightly enhanced antitermination. These results suggest that a combination of primary sequence and structure information is responsible for the correct interaction of mRNA and tRNA.

Table 3. Effect of mutations in chimeric tRNAs on transcription antitermination

<table>
<thead>
<tr>
<th>tRNA</th>
<th>Antitermination</th>
<th>tRNA</th>
<th>Antitermination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>7</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>135</td>
<td>8</td>
<td>69</td>
</tr>
</tbody>
</table>

Effect of mutations in the trp leader on transcription antitermination

In a second approach, complementary to the one described above, mutations were made in the trp leader to enhance its complementarity to either the T-arm (ML1) or the D-arm (ML2) of tRNA^{Asn}. The mutations are indicated in Fig. 4(b). In the strain carrying the mutation aimed at an improved interaction with the D-arm of tRNA^{Asn}, the hybrid tRNA containing the T-arm of tRNA^{Trp} was overexpressed, and in the strain carrying the mutation aiming at an improved interaction with the T-arm of tRNA^{Asn}, the hybrid tRNA containing the D-arm of tRNA^{Trp} was overexpressed, to allow for maximum interaction between mRNA and tRNA. Under conditions of Asn limitation, neither of these mutations gave rise to an enhanced level of antitermination [19% of the antitermination in the wild-type leader with anticodon AAC (Asn) for ML1; 74% for ML2]. This result is in agreement with the results obtained with mutations in the chimeric tRNAs described above, where improved sequence complementarity alone did not suffice to enhance antitermination, probably due to the fact that structural incompatibilities between tRNA and mRNA remain.

mRNA–tRNA complementarity in analogous systems

On the basis of the conserved structural features of their leader transcripts, several aminoacyl-tRNA synthetase genes and amino acid biosynthesis operons in Bacillus subtilis and L. lactis have been postulated to be regulated by tRNA-mediated transcription antitermination (Grundy & Henkin, 1993, 1994; Henkin, 1994; Van de Guchte et al., 1998; Luo et al., 1998; Chopin et al., 1998; Delorme et al., 1999). Taking the L. lactis trp leader as a model, we looked for the presence of mRNA–tRNA sequence complementarity in the systems listed in Fig. 6, focusing on complementarity between stem–loop structure II of the leader transcript and the T-arm of the cognate tRNA and between stem–loop structure IV and the D-arm of the tRNA.

The results presented in Fig. 6 show that while the extent of the complementarity in the L. lactis trp leader seems to be exceptional, in all cases short stretches of complementarity between the respective mRNA and tRNA structures could be found. These sequences comprise at least three and generally from four to nine consecutive complementary nucleotides (including G:U pairs). Interestingly, nearly all involve at least a part of the single-stranded loop regions in the tRNAs, in the majority of cases complementary to single-stranded loop regions in the leader transcripts. In a number of cases complementarity to the tRNA T-arm involves the single-stranded spacer region between stem–loop structures II and III of the leader transcripts, like in the L. lactis trp leader. In some cases this complementary sequence extends into stem–loop structure III of the leader transcript.

DISCUSSION

Whereas various studies have highlighted the conservation of structures and short, functionally important, conserved sequence elements at various positions in the leader transcripts that are subject to tRNA-mediated transcription antitermination (Rollins et al., 1997; Chopin et al., 1998; Luo et al., 1998), the present study emphasizes the differences between the different systems that would contribute to the specificity of the antitermination response. The specifier codon has been recognized as a major determinant of specificity (Grundy & Henkin, 1993), while Grundy et al. (1994) showed that an anti-acceptor nucleotide complementary to the tRNA discriminator base also contributes to tRNA recognition. However, as exemplified by the low inducibility of antitermination in the L. lactis trp leader with specifier codon AAC (Asn) (Van de Guchte et al., 1998) codon–anticodon and acceptor–anti-acceptor correspondence are not sufficient for an efficient mRNA–tRNA interaction.

In this specifier mutant of the lactococcal trp leader, antitermination can still be induced by Trp limitation,
Fig. 6. For legend see facing page.
suggested that interactions between tRNA and leader transcript other than the codon–anticodon and acceptor–anti-acceptor interactions actively contribute to the stabilization of the antiterminator conformation of the leader transcript. As overexpression of lactococcal tRNA_{Asn} under conditions of Asn limitation had no inducing effect in the wild-type <i>trp</i> leader, these interactions appear to be part of a recognition mechanism allowing the <i>trp</i> leader to specifically interact with tRNA^{trp}.

Asn starvation induced a low level of antitermination in the specifier (AAC) mutant. The overexpression of tRNA^{Asn} did not affect this induction level. In contrast, the overexpression of chimeric tRNAs, consisting of tRNA^{Asn} in which either the D-arm or the T-arm and extra arm were replaced by the corresponding sequences from tRNA^{Trp}, gave rise to increased antitermination. The overexpression of a chimeric tRNA containing both sequences from tRNA^{Trp} augmented antitermination still further, as did the overexpression of tRNA^{trp} in which the anticodon had been replaced by the anti-Asn (anti-AAC) anticodon. The fact that in the single-arm replacement mutants antitermination was only observed in the absence of Asn from the culture medium indicates that these chimeric tRNAs can be charged efficiently and that, therefore, the enhanced antitermination is not due to an impaired charging of the tRNA, but to an intrinsic property of the replacement arm. In the multi-arm replacement mutants, enhanced antitermination largely depended on the absence of Asn, suggesting that here too the intrinsic arm properties rather than the partially impaired chargeability of these chimeric tRNAs are responsible for the enhancement.

Together, these results evoke an important role for the tRNA D- and T-arms in the specificity and efficacy of the mRNA–tRNA interaction. The exceptional degree of sequence complementarity between these tRNA arms and stem–loop structures IV and II, respectively, of the <i>trp</i> leader transcript strongly suggests the latter structures, to which until now no specific function had been assigned, as the counterparts in the interaction. The fact that mutations in tRNA^{Asn} or the <i>trp</i> leader (with specifier Asn), aimed at improving the complementarity between the two sequences, did not result in enhanced antitermination shows that sequence complementarity per se is not sufficient to allow an efficient mRNA–tRNA interaction. Most likely, a combination of sequence and structural context is important. These observations lead us to propose a model of tRNA-mediated transcription antitermination according to which the cognate tRNA would be recognized by the following ‘identity elements’ of the leader transcript: the specifier codon, the nucleotide complementary to the D- or T-arms of the tRNA, and the nucleotides situated in loop structures or in other single-stranded regions.

![Fig. 6. Complementarity between tRNAs (upper line) and leader transcript fragments (lower line). Single-stranded loop regions are indicated by bold type. Single-stranded sequences between stem–loop structures in the leader transcripts are underlined. Roman numbers indicate stem–loop structures in leader transcripts analogous to the numbering in Fig. 1. tRNA/leader transcript: a. L. lactis tRNA^{trp}L. lactis trp; b. L. lactis tRNA^{his}L. lactis his; 1. b. subtilis tRNA^{ser} (trnD-ser)/B. subtilis serS; 2. b. subtilis tRNA^{asp}(trnD-cys)/B. subtilis cysES; 3. b. subtilis tRNA^{pro} (trnI-pro)/B. subtilis proBA; 3b. b. subtilis tRNA^{pro} (trnB-pro)/B. subtilis proC; 4. b. subtilis tRNA^{ile} (trnO-ile)/B. subtilis ileS; 5a. b. subtilis tRNA^{trp} (trnS-tyr)/B. subtilis tyrS; 5b. b. subtilis tRNA^{trp} (trnS-tyr)/B. subtilis tyrZ; 6. b. subtilis tRNA^{val} (trnJ-val)/B. subtilis valS; 7. b. subtilis tRNA^{phe} (trnB-phe)/B. subtilis pheS; 8a. b. subtilis tRNA^{trp} (trn-thr)/B. subtilis thrS; 8b. b. subtilis tRNA^{trp} (trn-thr)/B. subtilis thrZ1; 8c. b. subtilis tRNA^{trp} (trn-thr)/B. subtilis thrZ2; 9a. b. subtilis tRNA^{ala} (trnS-ala)/B. subtilis alaS; 9b. b. subtilis tRNA^{ala} (trnS-ala)/B. subtilis alaS; 10. b. subtilis tRNA^{trp} (trnD-trp)/B. subtilis trpS; 11. b. subtilis tRNA^{his} (trnD-his)/B. subtilis hisS; 12. b. subtilis tRNA^{ala} (trnA-ala)/B. subtilis alaS; 13. b. subtilis tRNA^{gly} (trnD-gly)/B. subtilis glyQS.](Image 94x599 to 521x734)
stranded regions of the respective RNAs. Scarabino et al. (1999) used an in vitro molecular selection approach to show that a tRNA preferentially binds RNA sequences complementary to its single-stranded anticodon, D- or T-loop sequence. The complementary sequences appeared to be present in a single-stranded loop or adjacent to a stem–loop structure in the selected RNAs, while the same sequences in an RNA molecule without secondary structure did not bind to the tRNA. Earlier studies by Grosjean et al. (1976) showed that complementary triplets in hairpin loops have a much higher affinity than free nucleotides. In agreement with these results, long-range RNA–RNA interactions involved in E. coli ColEI replication control have been shown to be initiated by the interaction between complementary kissing loops of the folded RNA structures (Tomizawa, 1984). The proposed interactions between the tRNA D- and T-loops and stem–loop structures IV and II of the leader transcripts could fit a similar model in which very short complementary sequences placed in the correct structural context suffice for an interaction to take place.

Alternatively, one could conceive a model in which the nascent mRNA, after the establishment of a specifier codon–anticodon interaction, is guided in its folding by a dynamic interaction with the tRNA. In the lactococcal trp leader, the fact that parts of the 18 nt sequence complementary to the tRNATrp T-arm are repeated several times upstream of this sequence (Fig. 1) may be indicative of such a process.

In conclusion, our results clearly show the importance of the D- and T-arms of tRNA in the establishment or maintenance of an efficient, specific mRNA–tRNA interaction in the L. lactis trp leader. These tRNA sequences presumably interact with complementary sequences in the leader transcript, notably in stem–loop structures IV and II. Although the short tRNA-complementary sequences in the conserved stem–loop structures of other T-box leaders are less suggestive, these interactions may represent a general principle in tRNA-mediated transcription antitermination.

ACKNOWLEDGEMENTS

We thank P. Renault for critical reading of the manuscript.

REFERENCES

Received 6 November 2000; revised 3 January 2001; accepted 16 January 2001.