Molecular evolution of the GDP-mannose pathway genes \((manB\text{ and } manC)\) in \textit{Salmonella enterica}

Slade O. Jensen and Peter R. Reeves

The evolutionary history of the GDP-mannose pathway in \textit{Salmonella enterica} was studied via sequencing \(manB\) and \(manC\) genes from 13 representative strains for O antigens containing mannose and/or sugar derivatives of GDP-\(d\)-mannose. In addition, colanic acid (CA) \(manB\) and \(manC\) genes were sequenced from selected strains, as the basis for a detailed comparison. Interestingly, including the eight previously characterized O antigen gene clusters, 12 of the 21 \textit{S. enterica} strains studied in total (each representing a different O antigen structure) possess a \(manB\) gene which displays DNA identity, ranging from 93 to 99%, to the CA \(manB\) gene of \textit{S. enterica} LT2. Furthermore, the CA-like \(manB\) genes (as well as the CA \(manB\) and \(manC\) genes) display subspecies specificity, and the CA and CA-like \(manB\) genes (for individual strains) appear to be evolving in concert via gene conversion events. In comparison, the \(manC\) genes were generally not CA-like, a situation also apparent in \textit{Escherichia coli}, and therefore most strongly reflected the evolutionary history of the \textit{S. enterica} O antigen GDP-mannose pathway. It appears that, in relatively recent times, gene capture from a distant source has occurred infrequently, and that groups of \(manB\) and \(manC\) genes have been maintained and are continuing to evolve within \textit{S. enterica} and more closely related species.

Keywords: concerted evolution, GDP-\(d\)-mannose pathway, gene conversion, lateral transfer, \textit{Salmonella enterica}

INTRODUCTION

Bacterial cell surface repeat-unit polysaccharides comprise linear repeats of identical oligosaccharide units, which commonly consist of three to five or more sugars. They include exopolysaccharides (EPSs) and the O antigen regions of lipopolysaccharides (LPSs), which often display extensive intraspecies variation. LPS replaces the outer leaflet of phospholipid in the outer membrane of Gram-negative bacteria, and the immunodominant O antigen region extends from the cell surface forming a polysaccharide layer. The polymorphisms displayed by the O antigen (variations in sugars present and the linkages between them) are the primary basis of serological classification of species in the \textit{Entero-\(bacteriaceae\).} The O antigen gene cluster contains genes required for nucleotide sugar biosynthesis (O antigen precursors), and for assembly and processing of oligosaccharide units, and in most cases maps directly upstream of the \(gnd\) gene in \textit{Escherichia coli} and \textit{Salmonella enterica}.

Genes within a given bacterial species generally have the same GC content, which is thought to be due to directional mutation pressure (Sueoka, 1988, 1992). The sequencing of several \textit{S. enterica} O antigen gene clusters has shown that the GC content of this region is variable and atypical in comparison to the mean GC content of \textit{S. enterica} DNA. We have previously suggested that this indicates that many of the O antigen genes evolved in other species and were later captured by \textit{S. enterica} via lateral gene transfer (Reeves, 1991, 1993).

\textit{S. enterica} has seven well-defined subspecies, which were initially resolved by biotyping and confirmed by DNA hybridization (Le Minor \textit{et al.}, 1982, 1986).

Abbreviation: CA, colanic acid.

The GenBank accession numbers for the sequences reported in this paper are AY012160–AY012201.
Multilocus enzyme electrophoresis and the sequencing of several housekeeping genes have also shown that strains of a given subspecies generally cluster together, indicating low levels of intersubspecies gene transfer (Boyd et al., 1994; Nelson et al., 1991; Reeves et al., 1989). However, most of the 46 O antigens occur in two or more subspecies, indicating extensive intersubspecies transfer of O antigen genes (Reeves, 1997). Cell surface interactions and niche adaptation are believed to provide the selection pressure for the distribution of O antigen genes amongst subspecies, and the generation of new O antigen gene clusters (Reeves, 1992, 1997).

The nucleotide sugar GDP-d-mannose is required for the mannosylation of many bacterial cell surface repeat-unit polysaccharides and acts as the precursor for other nucleotide sugars (GDP-1-fucose, GDP-colitose, GDP-perosamine and GDP-d-rhamnose) involved in polysaccharide biosynthesis. GDP-d-mannose is synthesized from fructose 6-phosphate by products of the \textit{manA}, \textit{manB} and \textit{manC} genes as follows: \textit{manA}, fructose 6-phosphate to mannose 6-phosphate; \textit{manB}, mannose 6-phosphate to mannose 1-phosphate; \textit{manC}, mannose 1-phosphate to GDP-d-mannose. \textit{manA} encodes type I phosphomannomutase (PMI), and the reversible PMI reaction also enables exogenous mannose to be catabolized via the glycolytic pathway (Neidhardt et al., 1996). The \textit{manA} gene is generally present in \textit{E. coli} and \textit{S. enterica} due to its role in mannose catabolism, and maps as an individual gene not associated with polysaccharide gene clusters (Neidhardt et al., 1987). \textit{manB} and \textit{manC} encode phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMP), respectively. These genes are exclusively used for GDP-d-mannose synthesis, and are located within relevant polysaccharide gene clusters. In most examples found so far, both genes are transcribed as part of the same operon, proceeding from \textit{manC} into \textit{manB}.

Colonic acid (CA) or M antigen is an EPS produced by \textit{E. coli}, \textit{S. enterica} and other enteric bacteria. CA contains 1-fucose, and the \textit{manB} and \textit{manC} genes, required for the production of GDP-1-fucose via GDP-d-mannose, are located within the CA gene cluster (Aoyama et al., 1994; Stevenson et al., 1991), which maps upstream of the O antigen gene cluster. Strains with an O antigen containing mannose and/or sugars with precursors derived from GDP-d-mannose have a separate set of \textit{manB} and \textit{manC} genes in their O antigen gene cluster. For the sake of brevity, the location of specific \textit{manB} and \textit{manC} genes will be denoted, when necessary, in subscript following the gene name. For example, the \textit{manB} genes from the O antigen and CA gene clusters will be referred to as \textit{manB}_{OAg} and \textit{manB}_{CA}, respectively. \textit{In S. enterica}, O antigen genes are generally of lower GC content (ranging between 0.30 and 0.50) than the chromosomal mean (0.52), whereas the \textit{manB}_{CA} and \textit{manC}_{CA} genes of \textit{S. enterica} LT2 have a mean GC content of 0.62. Interestingly, the \textit{manB}_{OAg} genes of \textit{S. enterica} C1 (Lee et al., 1992) and \textit{E. coli} O7 and O157 (Marolda & Valvano, 1993; Wang & Reeves, 1998) display a high level of sequence identity to the \textit{manB}_{CA} genes of \textit{S. enterica} LT2 and \textit{E. coli} K-12, respectively, indicating that in these cases the \textit{manB}_{OAg} gene was derived from a CA \textit{manB} gene (Lee et al., 1992; Marolda & Valvano, 1993; Wang & Reeves, 1998).

Homologues of the \textit{S. enterica} manB and manC genes have been identified in a broad range of species and repeat-unit polysaccharide gene clusters. Therefore, the \textit{manB} and \textit{manC} genes provide a basis for following lateral gene transfer, as unlike most other genes in these clusters, the distinct homologies of the GDP-mannose pathway genes enable evolutionary relationships to be studied. This initial study focuses on determining the extent of variation within \textit{S. enterica} and, for the \textit{manB}_{OAg} gene, the relationships with the CA isogene.

Twenty-one \textit{S. enterica} O antigen structures are known to contain mannose and/or sugars with precursors derived from GDP-d-mannose, based on a chemotype study (Luderitz et al., 1966), which included 37 of the 46 currently known structures (Popoff & Minor, 1997). The \textit{manB}_{OAg} and \textit{manC}_{OAg} genes from 8 of these 21 structures have previously been characterized, many of them being closely related. In this study, we sequenced these genes from representative \textit{S. enterica} strains for the remaining 13 O antigen gene clusters. Furthermore, \textit{manB}_{CA} and \textit{manC}_{CA} genes were also sequenced for comparison.

METHODS

Bacterial strains, plasmids, bacteriophage and antisera. In \textit{S. enterica}, two different systems have been used to name O antigens. The O antigens initially studied in detail were given alphabetical names (A, B, etc.), with individual epitopes, identified by serum absorption studies, given numbers. More recently, specific numbered epitope/s have been used to name O antigens, and in this study we have used the numerical system except for the well recognized alphabetical O antigen names A–E.

Details of bacterial strains, plasmids and bacteriophages used in this study are given in Table 1. Bacteria were routinely grown in nutrient broth (10 g peptone l\(^{-1}\), Amyl Media; 5 g yeast extract l\(^{-1}\), Amyl Media; and 5 g sodium chloride l\(^{-1}\) in water) and on nutrient agar (15 g bacteriological agar l\(^{-1}\) in nutrient broth), which were supplemented with ampicillin (25 µg ml\(^{-1}\)) and chloramphenicol (25 µg ml\(^{-1}\)) when required. Antiserum against the \textit{E. coli} O9 antigen was supplied by the Institute of Medical and Veterinary Science (Adelaide, South Australia, Australia).

Cloning of the manB and manC genes. Chromosomal DNA was partially digested with \textit{Sau}3A and subjected to agarose gel electrophoresis. Fragments approximately 3–5 kb in length were purified from the gel and ligated to \textit{BamH}I-digested pUC19 treated with alkaline phosphatase. \textit{E. coli} HU1190, containing the plasmid pXX195 (Kido et al., 1995), was transformed with the ligation mix and grown for 3 h at 37°C. HU1190 does not express O antigen due to a chromosomal deletion of the region encompassing the CA and O antigen gene clusters. The plasmid pXX195 contains the \textit{E. coli} O9 O antigen gene cluster but does not confer O antigen expression.
Table 1. Bacterial strains, plasmids and bacteriophage

<table>
<thead>
<tr>
<th>Strain*/plasmid/ bacteriophage</th>
<th>Relevant properties</th>
<th>Source†/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains S. enterica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1639</td>
<td>z₄, z₂₃: —</td>
<td>O11 (IIa)</td>
</tr>
<tr>
<td>M324</td>
<td>a:1,5</td>
<td>O11 (VI)</td>
</tr>
<tr>
<td>M258</td>
<td>Raus</td>
<td>O13 (I)</td>
</tr>
<tr>
<td>M1711</td>
<td>r: —</td>
<td>O13 (V)</td>
</tr>
<tr>
<td>M252</td>
<td>Carrau</td>
<td>O6,14 (I)</td>
</tr>
<tr>
<td>M264</td>
<td>Hvittingfoss</td>
<td>O16 (I)</td>
</tr>
<tr>
<td>M1728</td>
<td>k:z</td>
<td>O17 (IIIb)</td>
</tr>
<tr>
<td>M255</td>
<td>Cerro</td>
<td>O18 (I)</td>
</tr>
<tr>
<td>M284</td>
<td>Urbana</td>
<td>O30 (I)</td>
</tr>
<tr>
<td>M274</td>
<td>Adelaide</td>
<td>O35 (I)</td>
</tr>
<tr>
<td>M1784</td>
<td>g, z₂₃: —</td>
<td>O38 (IIa)</td>
</tr>
<tr>
<td>M273</td>
<td>Champaign</td>
<td>O39 (I)</td>
</tr>
<tr>
<td>M1646</td>
<td>Shikmonah</td>
<td>O40 (I)</td>
</tr>
<tr>
<td>M261</td>
<td>a:z₂₉</td>
<td>O40 (II)</td>
</tr>
<tr>
<td>M1651</td>
<td>z₄, z₂₃: —</td>
<td>O40 (IIa)</td>
</tr>
<tr>
<td>M1653</td>
<td>i:1,5,7</td>
<td>O40 (IIIb)</td>
</tr>
<tr>
<td>M1654</td>
<td>g, t: —</td>
<td>O40 (IV)</td>
</tr>
<tr>
<td>M1655</td>
<td>g, z₂₃: —</td>
<td>O40 (IV)</td>
</tr>
<tr>
<td>M1656</td>
<td>z₂₃: —</td>
<td>O40 (V)</td>
</tr>
<tr>
<td>M1657</td>
<td>z₂₃: —</td>
<td>O40 (V)</td>
</tr>
<tr>
<td>M286</td>
<td>Vietnam</td>
<td>O41 (I)</td>
</tr>
<tr>
<td>M277</td>
<td>z₂₃:1,5,7</td>
<td>O43 (II)</td>
</tr>
<tr>
<td>M326</td>
<td>a:e,n,x</td>
<td>O45 (VI)</td>
</tr>
<tr>
<td>M1633</td>
<td>i: —</td>
<td>O48 (V)</td>
</tr>
<tr>
<td>M290</td>
<td>z:e,n,x</td>
<td>O50 (II)</td>
</tr>
</tbody>
</table>

Genotype or O group

<table>
<thead>
<tr>
<th>Strain</th>
<th>O group‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1180</td>
<td>O39</td>
</tr>
<tr>
<td>M1182</td>
<td>O41</td>
</tr>
<tr>
<td>M1194</td>
<td>O125</td>
</tr>
<tr>
<td>M1204</td>
<td>O6</td>
</tr>
<tr>
<td>HU1190</td>
<td>Δ(sbcB–rfb) hsdR4 recA56 srl::Tn10</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pXX195</td>
<td>Derivative of pACYC184 Sugiyama et al. (1994)</td>
</tr>
<tr>
<td>pBHC4</td>
<td>Derivative of pBluescript II Sugiyama et al. (1994)</td>
</tr>
</tbody>
</table>

Bacteriophage

<table>
<thead>
<tr>
<th>Bacteriophage</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ffm</td>
<td>Lyses E. coli strains with rough LPS Jayaratne et al. (1994)</td>
</tr>
</tbody>
</table>

* M numbers denote laboratory strain names.
† I, Institute of Medical and Veterinary Science, Adelaide, Australia (C. Murray); P, Pasteur Institute, Paris, France (L. Le Minor).
‡ Numerals in parentheses denote subspecies.

due to a deletion of the manB and manC genes. The gene bank in E. coli HU1190 was spread onto plates seeded with approximately 10⁶ p.f.u. Ffm. Transformants containing both the manB and manC genes expressed the E. coli O9 O antigen and were positively selected for via resistance to the bacteriophage Ffm (Jayaratne et al., 1994). Ffm attaches to the core of the LPS molecule and expression of the O antigen confers resistance by masking the receptor site. Sequencing of the manB and manC genes and adjacent areas revealed that many of the clones were derived from the CA
gene cluster. In order to find the manB and manC genes derived from the O antigen gene cluster, we screened clones by using a CA-specific primer, based on sequence immediately upstream of the manC_{CA} gene of LT2, and a degenerate primer, based on manB sequences from a variety of species. If this primer combination did not produce a PCR fragment of 162 kb the clone was sequenced. For all of the strains tested, the PCR negative clones were found to be derived from the O antigen gene cluster, on the basis of sequence adjacent to the manB and manC genes.

DNA methods. Alkaline phosphatase, the Expand Long Template PCR System, restriction endonucleases and T4 DNA ligase were obtained from Roche Molecular Biochemicals. Taq polymerase was obtained from Pharmacia Biotech. Plasmid DNA was isolated by using the Wizard MiniPreps DNA Purification System (Promega) and chromosomal DNA by using the method described by Bastin et al. (1991) and the Wizard Genomic DNA Purification Kit (Promega). Oligonucleotide primers were synthesized by Beckman or Auspep, or Life Technologies. PCR was carried out using the method described by Saiki et al. (1988) and an FTS-960 thermal cycler (Corbett Research). PCR products were purified using the Wizard PCR Purification System (Promega), and DNA sequencing was carried out by the Sydney University and Prince Alfred Macromolecular Analysis Centre (SUPAMAC) (Sydney, New South Wales, Australia).

Computer analysis. The manB and manC nucleotide sequences were edited and assembled using the Phred, Phrap and Consed programs (Ewing & Green, 1998; Ewing et al., 1998, Gordon et al., 1998). Sequences were aligned using the PILEUP program (Feng & Doolittle, 1986), and phylogenetic analysis was carried out using the PHYLIP (Felsenstein, 1993) and MULTICOMP (Reeves et al., 1994) programs. These programs were accessed using the Australian National Genomic Information Service (Reisner et al., 1993).

RESULTS AND DISCUSSION

We sequenced the manB_{OAg} and manC_{OAg} genes from representative strains for *S. enterica* O antigens O11, O13, O6/14, O16, O18, O30, O35, O39, O40, O41, O43, O45 and O50, which contain mannose and/or sugars with precursors derived from GDP-<i>mannose</i>. The sequences were aligned and the results are presented diagrammatically in Fig. 1, together with the *S. enterica* manB_{OAe} and manC_{OAe} genes previously characterized. Interestingly, most of the manB_{OAe} genes (11 of the 13 new sequences) displayed a high level of DNA identity (ranging from 93 to 99%) to the manB_{CA} gene of *S. enterica* LT2 (Stevenson et al., 1991). These genes are referred to as CA-like manB_{OAe} genes.

It is now evident that CA-like manB_{OAe} genes are common in *Salmonella*, although previously only seen for group C1 (Lee et al., 1992). However, six of the previously characterized O antigen gene clusters (A, B, D1, D2, D3 and E1; Brown et al., 1992; Curt et al., 1998; Jiang et al., 1991; Liu et al., 1991; Wang et al., 1992; Xiang et al., 1994) are closely related and essentially contain the same manB_{OAe} and manC_{OAe} genes. Note that the manB_{OAe} and manC_{OAe} genes of O antigens A, D1, D2, D3 and E1 were not fully sequenced but shown, by detailed restriction mapping and limited sequencing, to be very similar to the LT2 (B) O antigen genes. With the new data included, 12 of the 21 strains studied (each representing a different O antigen structure) possess a manB_{OAe} gene which, in whole or part, displays a high level of identity to the LT2 manB_{CA} gene, with six of the nine exceptions being very closely related.

In general, the manC_{OAe} genes do not display a high level of identity to the LT2 manC_{CA} gene (Stevenson et al., 1991). However, the manC_{OAe} genes of M255 (O18), M286 (O41) and M324 (O11) (Fig. 1) are chimeric in structure, resembling in part both a manC_{CA} gene (5′ end) and a manC_{OAe} gene (low GC content) (5′ end). We
Evolution of the *manB* and *manC* genes in *S. enterica*

Fig. 2. Neighbour-joining trees of ManB and ManC sequences from *S. enterica* and other species. (a) ManB sequences; (b) ManC sequences; (c) N-terminal end of ManC sequences (approximately the first 100 amino acids). Bootstrap values are percentages of 1000 computer-generated trees and are shown at the nodes, except for (c). Values of less than 50 are also not shown. Individual sequences are designated by species and polysaccharide type (if known). The following GenPept accession numbers are given in the order (if more than one) of *manC* and *manB*: Ab, *Azospirillum brasilense* (AAA63608); Ac, *Acinetobacter calcoaceticus* (CAA57100); Ax, *Acetobacter xylinus* (CAA72316); Ec, *Escherichia coli* (K12, AAC77846 AAC77847; O7, AAC27538 AAC27539; O8, BAA28322 BAA28323; O9a, BAA28329 BAA28330; O11, AAC44883 AAC44882; O157, AAC32348 AAC32349); Hp, *Helicobacter pylori* (AAD05624); Kp, *Klebsiella pneumoniae* (O3, BAA28338 BAA28337; O5, AAF04378 AAF04379); Pa, *Pseudomonas aeruginosa* (AAAZ761 AAAZ7610; AAC61851; AAC72283); Pab, *Pyrococcus abyssi* (CAB50140 CAB50141); Ph, *Prochlorothrix hollandica* (AAC44309); Pho, *Pyrococcus horikoshii* (BAA30021); Rm, *Rhizobium meliloti* (AAB91607 AAB91606); Rr, *Rhodospirillum rubrum* (BAA02175); Se, *Salmonella enterica* (B, CAA40128 CAA40129; C1, AAB49390; C2, CAA43915 CAA43916); Sp, *Sphingomonas paucimobilis* (AAAF0690); Vc, *Vibrio cholerae* (O1, CAA42134 CAA42135; O2, BAA36638 BAA36639; O139, BAA36608 BAA36609); Xc, *Xanthomonas campestris* (AAAZ761 AAAZ7610); Ye, *Yersinia enterocolitica* (O8, AAC60775 AAC60776); Yp, *Yersinia pseudotuberculosis* (1b, CAA63302 CAA63304). Individual *S. enterica* CA and CA-like sequences are not shown. The *E. coli* Boydii 5, Boydii 6 and O55 sequences are unpublished.

also sequenced the *manB*_{CA} and *manC*_{CA} genes from selected *S. enterica* strains as the basis for a more detailed comparison.

Phylogenetic analysis of the GDP-mannose pathway

To examine the phylogenetic relationships of the derived ManB and ManC sequences, evolutionary trees were constructed using the neighbour-joining method (Saitou & Nei, 1987). The trees, shown in Fig. 2(a, b), also include ManB and ManC sequences from several other species, and for both trees *S. enterica* and *E. coli* sequences predominantly cluster together. In considering this, we also constructed a tree based on the N-terminal end of the ManC sequences, which included the O antigen (not CA-like) segments of the chimeric *manC_{OAg}* genes from M255 (O18), M286 (O41) and M324 (O11) (Fig. 2c). It can be seen in Fig. 2(c) that the O18, O41 and O11’ gene segments also cluster with *S. enterica* and *E. coli* sequences. Furthermore, in addition to the CA and CA-like sequences (discussed in detail later), there are a number of distinct relationships among the *S. enterica* ManB and ManC sequences which we will discuss.

GDP-colitose, GDP-1-fucose and GDP-perosamine are synthesized via extensions of the GDP-d-mannose pathway, and there are eight *S. enterica* O antigens known to contain one or more of these sugars. Six of these O antigens (O13, O30, O35, O43, O45 and O50) lack d-mannose, and with the exception of O35, they all have similar *manC_{OAg}* genes (Fig. 2b) (DNA identity ranging from 90 to 98%). These six *manC_{OAg}* genes are also preceded by the *gmm* gene, which encodes GDP-mannose mannosyl hydrolase (Frick et al., 1995).

S. enterica O35 has the same O antigen structure as *E. coli* O111 and it is interesting that their *manB_{OAg}* and *manC_{OAg}* genes are closely related (Fig. 2a, b, respect-
The level of divergence between their \textit{manB}_{OAg} and \textit{manC}_{OAg} genes (data not shown) is consistent with these genes, and presumably the whole O antigen gene cluster, having been present in the common ancestor and maintained in both extant species. Similarly, \textit{S. enterica} O50 and O30 have the same O antigen structures as \textit{E. coli} O55 and O157, respectively. However, in these examples, the \textit{manC} \textsubscript{OAg} genes are more divergent and not as closely related (Fig. 2b). The \textit{S. enterica} O50 and O30 and \textit{E. coli} O157 \textit{manB}_{OAg} genes are CA-like, and are therefore not relevant in discussing common ancestry.

The \textit{S. enterica} O16 and O39 O antigen structures contain both D-mannose and L-fucose, and their \textit{manC}_{OAg} and CA-like \textit{manB}_{OAg} genes are unique in \textit{S. enterica}, as they are separated by an additional gene. Their \textit{manC}_{OAg} genes are almost identical (99.9\% identity), and are related to those from \textit{E. coli} O41 and O125 (this study). Yersinia pseudotuberculosis 1b (Skurnik et al., 2000) and \textit{Yersinia enterocolitica} O8 (Zhang et al., 1997) (Fig. 2b). Interestingly, in \textit{E. coli} O41 and O125 and \textit{Y. pseudotuberculosis} 1b, the \textit{manC}_{OAg} and \textit{manB}_{OAg} genes are also separated by an additional gene. In each case, the additional gene encodes a putative glycosyl transferase, which like the \textit{manC}_{OAg} gene, is related amongst these species (data not shown).

Many of the well-documented O antigens (A, B, D and E) are structurally similar, based on O-unit linkages and sugar composition, and have related gene clusters (discussed above). The individual O antigen groups with related \textit{manC–manB} gene assemblages, which in some cases include adjacent genes, also have structural elements in common. The relationships within these groups are only based on parts of the O antigen gene cluster; however, they indicate that there are conserved groups of O antigen genes, related to structural elements, which can cross species boundaries.

\textbf{CA-like \textit{manB}_{OAg} genes}

There is a very distinct group of \textit{manB}_{OAg} and \textit{manC}_{OAg} genes with CA-like characteristics, based on sequence similarity and GC content. In addition to the \textit{manB}_{CA} and \textit{manC}_{CA} genes, the CA-like O antigen genes also have a GC content ranging from 0.60 to 0.62. In comparison, the GC content of other \textit{manB}_{OAg} and \textit{manC}_{OAg} genes (or gene segments) ranges from 0.34 to 0.43. As in the case of the \textit{S. enterica} C1 CA-like \textit{manB}_{OAg} gene, the newly sequenced CA-like \textit{manB}_{OAg} genes display a high level of identity to the LT2 \textit{manB}_{CA} gene. In addition, the CA-like \textit{manB}_{OAg} genes of strains M324 (O11), M286 (O41) and M255 (O18) display CA similarity in the upstream intergenic region and/or \textit{manC} gene (discussed in detail later). However, the 28–60 bp segment at the 3’ end exhibits a high level of divergence between strains, a low GC content, and variation in the position of stop codons over a range of 15 bp. In the case of strain M255, the divergence extends 360 bp upstream of the 3’ end.

\textbf{CA-like \textit{manB}_{OAg} genes are subspecies-specific}

The phylogenetic relationships of the \textit{manB}_{CA} genes and the CA-like \textit{manB}_{OAg} genes are shown in a tree constructed using the neighbour-joining method (Saitou & Nei, 1987) (Fig. 3a). Only CA and CA-like sequences were used for this analysis and it became clear that these genes display subspecies specificity. The strains initially studied were not selected with subspecies in mind and are predominantly subspecies I. Therefore, to provide further data on subspecies specificity of the CA-like \textit{manB}_{OAg} genes, we sequenced CA and/or O antigen \textit{manB} genes from additional strains. In particular, we included both the \textit{manB}_{CA} and CA-like \textit{manB}_{OAg} isogenes of some strains, and representative O40 strains from subspecies I, II, IIIa, IIIb, IV and V. It can be seen in Fig. 3(a) that not only do CA and CA-like \textit{manB} genes display subspecies specificity but that the topology of this tree is generally in accordance with a tree constructed from the combined sequences of five housekeeping genes (Neidhardt et al., 1996) (Fig. 3b). The \textit{manC}_{CA} genes also clustered according to subspecies (data not shown).

The subspecies V \textit{manB}_{CA} gene is atypical, as it appears to be partially derived from subspecies I. We constructed trees for different regions of the \textit{manB}_{CA} gene and found that for nucleotide positions 1–825 subspecies V clusters apart from the other subspecies in accordance with the consensus tree for housekeeping genes. However, for nucleotide positions 826–1307, subspecies V is most closely related to subspecies I. This indicates that since the divergence of subspecies I from the other subspecies, the 3’ end of a subspecies I \textit{manB}_{CA} gene replaced the 3’ end of a subspecies V \textit{manB}_{CA} gene and was maintained during the continuing divergence of subspecies V.

The only other exceptions to the subspecies specificity of the CA-like \textit{manB}_{OAg} genes were the sequences from strains M1653 (O40, IIIb) and M326 (O45, VI), which clustered with subspecies I sequences. This presumably reflects intersubspecies transfer of O antigen genes, as also inferred from similar observations on the \textit{gnd} gene (Reeves, 1997; Thampapillai et al., 1994). Thampapillai et al. (1994) observed that the \textit{gnd} genes of several \textit{S. enterica} strains have a chimeric structure, and proposed that the 3’ end of these genes had transferred between subspecies in association with O antigen genes, presumably driven by natural selection for antigenic variation.

\textbf{Origins of the CA-like O antigen sequence}

The \textit{manB}_{OAg} and \textit{manC}_{OAg} genes identified in this study are distributed at various positions within the O antigen gene cluster (data not shown), and no definitive pattern is evident. Most of these genes are internally located, and in reference to lateral transfer between subspecies, are presumably transferred with the O antigen gene cluster. In considering this, and the subspecies specificity of the CA-like \textit{manB}_{OAg} genes, we conclude that in general the CA-like \textit{manB}_{OAg} and \textit{manC}_{OAg} genes were acquired after transfer to the
Evolution of the manB and manC genes in S. enterica

Fig. 3. (a) Neighbour-joining tree of S. enterica CA and CA-like manB genes. Bootstrap values are percentages of 1000 computer-generated trees and are shown at the nodes (calculated without subspecies V strains). Values of less than 50 are not shown. Individual genes are designated by laboratory strain name and polysaccharide type, and numerals denote subspecies. Dashed lines do not reflect evolutionary distance and represent the position of subspecies V strains for the regions shown in brackets. (b) Neighbour-joining tree based on the combined sequences of five S. enterica housekeeping genes, putP, gapA, mdh, gnd and aceK (adapted from Neidhardt et al., 1996).

relevant subspecies. Therefore, it appears that the CA and O antigen manB genes, of individual strains, are evolving in concert via gene conversion events. These gene conversion events appear to be unidirectional, as we have not seen a manB OAg gene (low GC content), in a CA gene cluster.

The CA-like manB OAg genes from strains M277 (O43), M290 (O50), M324 (O11) and M1654 (O40) are not only subspecies-specific but most closely related to their respective CA isogenes (Fig. 3a). This indicates that relatively recent gene conversion events have occurred within these strains, supporting the above explanation for the subspecies specificity of CA-like manB OAg genes. The manB isogenes from strains M264 (O16), M273 (O39), M286 (O41), M1651 (O40) and M1656 (O40) are not as closely related. However, both genes of each pair still cluster within the same subspecies group, and presumably the CA-like manB OAg genes originated from earlier gene conversion events, after transfer of the O antigen gene cluster to the relevant subspecies.

Distribution of polymorphic nucleotide sites within the CA and CA-like manB OAg genes

Among the S. enterica CA and CA-like manB genes (22 and 17 sequences, respectively), there were 362 polymorphic nucleotide sites within the 1307 bp segment studied (codons 1–444, excluding the divergent 3’ end) (Fig. 4). The mean pairwise difference was 7.65% at the DNA level, with variation predominantly attributable to differences between subspecies.

The Stephens test (Stephens, 1985) was used to detect non-random clustering of polymorphic nucleotide sites, which may be indicative of intragenic recombination. For the manB CA and CA-like manB OAg genes of the S. enterica strains studied, the Stephens test identified two partitions with significantly non-random distribution of sites. Partitions based on subspecies specificity and/or supported by five or fewer sites are not discussed.

The first partition, from nucleotide positions 123 to 825 (5’ end of the gene), separates the subspecies V strains from other subspecies, and reflects the fact that the 3’ end of the subspecies V genes (both CA and CA-like) is similar to those of subspecies I, as discussed above. The remaining partition, from nucleotide positions 1076 to 1307, separates the M255 (O18) CA-like manB OAg sequence from all others. This region represents the divergent (low GC content) 3’ end of the M255 CA-like manB OAg gene (Fig. 4). Visual inspection of the polymorphic nucleotide sites (Fig. 4) provides evidence for recent intragenic exchange between the manB CA and CA-like manB OAg isogenes from strain M326. M326 is a subspecies VI strain with a subspecies I CA-like manB OAg gene (discussed above). However, for nucleotide positions 403 to 798 the CA and CA-like manB isogenes are identical. This region most closely resembles subspecies VI manB CA sequence,
Fig. 4. Polymorphic nucleotide sites among _S. enterica_ CA and CA-like _manB_ genes (nucleotide positions 1–1307). Individual sequences are specified by O antigen group, polysaccharide type and laboratory strain number. Roman numerals denote subspecies and asterisks indicate synonymous substitutions. The low GC content 3’ end of the CA-like _manB_ genes is not shown.
Evolution of the manB and manC genes in *S. enterica*.

Fig. 5. Polymorphic nucleotide sites among the CA and O antigen manC–manB gene assemblages for *S. enterica* strains M255, M286 and M324. Individual sequences are specified by O antigen group, polysaccharide type and laboratory strain number. The low GC content end of the CA-like manB OAg genes is not shown.

...to the downstream intergenic region and manBCA gene. In contrast, the O antigen gene cluster of M255 appears to have acquired the CA-like part of its manC gene (positions 808–1391) in a separate event to the acquisition of the CA-like manB OAg genes.

Chimeric CA-like manC OAg genes

Strains M255 (O18), M286 (O41) and M324 (O11) possess a CA-like manB OAg gene and a chimeric manC gene with a CA-like 3’ end (Fig. 1). These genes (including the intergenic region) were aligned with their respective CA isogenes. Visual inspection of the polymorphic nucleotide sites (Fig. 5) reveals that, for M286 and M324, the CA-like O antigen manC–manB gene assemblage (nucleotide positions 376–2888 and 466–2888, respectively) is very similar to that of their own CA gene clusters. It is likely that a relatively recent gene conversion event involved part of the manC CA gene, in addition to the downstream intergenic region and manBCA gene. In contrast, the O antigen gene cluster of M255 appears to have acquired the CA-like part of its manC gene (positions 808–1391) in a separate event to the acquisition of the CA-like manB OAg genes.

Comparison of *E. coli* and *S. enterica*

Recently, Lai *et al.* (1998), in an attempt to determine the ancestral O antigen of *E. coli* Sonnei, found 14 *E. coli* strains (each representing a different O antigen group) to have, at least in part, a CA-like manB OAg gene. Therefore, including the *E. coli* O antigens O7, O8, O9a, O111 and O157, 16 out of the 20 *E. coli* strains previously studied, which contain mannose or sugar derivatives of GDP-β-mannose, possess a manB OAg gene with a high level of identity to the manBCA gene of *E. coli* K-12. In this study, we completely sequenced the manB OAg and manC OAg genes from four of the strains partly sequenced by Lai *et al.* (1998) (see Table 1), representing O antigen groups O6, O39, O41 and O125. These strains (like in *E. coli* O7 and O157) were found to possess a CA-like manB OAg gene and a low GC manC OAg gene (shown in Fig. 2b). Therefore, in parallel to *S.
enterica, CA-like man\(B_{OAg}\) genes are prevalent in *E. coli*, and are associated with low GC man\(C_{OAg}\) genes.

In addition, we also sequenced part of the O6, O39, O41 and O125 man\(B_{CA}\) genes. In contrast to the situation in *S. enterica*, we found that the man\(B\) isogenes of individual strains were not particularly similar (data not shown), indicating that the CA-like man\(B_{OAg}\) genes have been affected by recombination since any gene conversion events. This is not too surprising, as *E. coli* does not display a defined subspecies structure, which is probably due to a higher rate of recombination than in *S. enterica*.

Concluding comments

CA-like man\(B_{OAg}\) genes have previously been observed in both *E. coli* and *S. enterica*; however in this study, a distinct pattern has emerged. The prevalence of subspecies-specific CA-like man\(B_{OAg}\) genes in *S. enterica* indicates that the man\(B\) genes of individual strains are evolving in concert, with a strong preference for the acquisition and maintenance of an entire man\(B_{CA}\) gene within the O antigen gene cluster.

The efficiency of individual O antigen genes may not be critical with respect to O antigen expression when these genes are first transferred to *S. enterica*. In contrast, if the O antigen occupies a particular niche, selection pressure may eventually drive replacement of specific genes with better adapted homologues (if available). In particular, if the man\(B_{CA}\) genes were better adapted to expression in *S. enterica*, this could explain the uni-directional gene conversion events (man\(B_{CA}\) genes replacing man\(B_{OAg}\) genes).

However, the replacement of existing CA-like man\(B_{OAg}\) genes with subspecies-specific sequence, derived from the man\(B_{CA}\) isogene, is unlikely to confer any selective advantage. This suggests that the direction of gene conversion is not random, and a possible explanation could relate to the chromosomal location of the individual man\(B\) isogenes. Abdulkarim & Hughes (1996) observed that for the *tufA* and *tufB* genes in *S. enterica* (which are evolving in concert), the rate of sequence transfer was different depending on which *tuf* gene was the donor. It was suggested that the distribution and frequency of chromosomal breakpoints and chi sites, in relation to the location of the individual *tuf* genes, contributed to the biased rates of sequence transfer in one direction (Abdulkarim & Hughes, 1996). At present we have no specific explanation for the unidirectional gene conversion of man\(B_{OAg}\) genes; however, there is a precedent in relation to the *tufA* and *tufB* genes.

We embarked on this study with the expectancy that the evolutionary relationships of man\(B\) and man\(C\) genes would provide information on the origin of O antigen gene clusters. Due to the unexpected finding that homogenization of *S. enterica* man\(B_{OAg}\) genes is widespread, limited information is provided in this regard. However, for both the ManB and ManC trees (Fig. 2a, b, respectively) there is a general clustering of sequences from *E. coli*, *S. enterica* and other related species (**Klebsiella pneumoniae**, **Y. enterocolitica** and **Y. pseudotuberculosis**), which encompasses a number of distinct relationships discussed above. This suggests that in relatively recent times, gene capture from a distant source (as suggested by atypical GC content) has occurred infrequently and that the man\(B\) and man\(C\) genes, and their associated gene assemblages, are maintained and continue to evolve within these species. It is not surprising that genetic exchange would occur more frequently between closely related species; however, a broad-range study of the GDP-mannose pathway genes (encompassing many bacterial species) is required.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Australian Research Council. We especially thank Dr N. Kido (Nagoya University, Nagoya, Japan) for supplying the *E. coli* strain HU1190 and the plasmid pXX195. We also thank Dr Ruiting Lan and Qun Li for helpful discussions during preparation of this manuscript.

REFERENCES

Evolution of the manB and manC genes in S. enterica

Received 9 June 2000; revised 25 September 2000; accepted 23 October 2000.